//========= Copyright Valve Corporation, All rights reserved. ============// // // Purpose: // //===========================================================================// #include "pch_materialsystem.h" #define MATSYS_INTERNAL #include "cmaterialsystem.h" #include "colorspace.h" #include "materialsystem/materialsystem_config.h" #include "IHardwareConfigInternal.h" #include "shadersystem.h" #include "texturemanager.h" #include "shaderlib/ShaderDLL.h" #include "tier1/callqueue.h" #include "vstdlib/jobthread.h" #include "cmatnullrendercontext.h" #include "filesystem/IQueuedLoader.h" #include "datacache/idatacache.h" #include "materialsystem/imaterialproxy.h" #include "vstdlib/IKeyValuesSystem.h" #include "ctexturecompositor.h" #if defined( _X360 ) #include "xbox/xbox_console.h" #include "xbox/xbox_win32stubs.h" #endif // NOTE: This must be the last file included!!! #include "tier0/memdbgon.h" #ifdef POSIX #define _finite finite #endif // this is hooked into the engines convar ConVar mat_debugalttab( "mat_debugalttab", "0", FCVAR_CHEAT ); ConVar mat_forcemanagedtextureintohardware( "mat_forcemanagedtextureintohardware", "1", FCVAR_HIDDEN | FCVAR_ALLOWED_IN_COMPETITIVE ); ConVar mat_supportflashlight( "mat_supportflashlight", "-1", FCVAR_HIDDEN, "0 - do not support flashlight (don't load flashlight shader combos), 1 - flashlight is supported" ); #ifdef OSX #define CV_FRAME_SWAP_WORKAROUND_DEFAULT "1" #else #define CV_FRAME_SWAP_WORKAROUND_DEFAULT "0" #endif ConVar mat_texture_reload_frame_swap_workaround( "mat_texture_reload_frame_swap_workaround", CV_FRAME_SWAP_WORKAROUND_DEFAULT, FCVAR_INTERNAL_USE, "Workaround certain GL drivers holding unnecessary amounts of data when loading many materials by forcing synthetic frame swaps" ); // This ConVar allows us to skip ~40% of our map load time, but it doesn't work on GPUs older // than ~2005. We set it automatically and don't expose it to players. ConVar mat_requires_rt_alloc_first( "mat_requires_rt_alloc_first", "0", FCVAR_HIDDEN ); // Make sure this convar gets created before videocfg.lib is initialized, so it can be driven by dxsupport.cfg static ConVar mat_tonemapping_occlusion_use_stencil( "mat_tonemapping_occlusion_use_stencil", "0" ); #ifdef DX_TO_GL_ABSTRACTION // In GL mode, we currently require mat_dxlevel to be between 90-92 static ConVar mat_dxlevel( "mat_dxlevel", "92", 0, "", true, 90, true, 92, NULL ); #else static ConVar mat_dxlevel( "mat_dxlevel", "0", 0, "Current DirectX Level. Competitive play requires at least mat_dxlevel 90", false, 0, false, 0, true, 90, false, 0, NULL ); #endif IMaterialInternal *g_pErrorMaterial = NULL; CreateInterfaceFn g_fnMatSystemConnectCreateInterface = NULL; static int ReadListFromFile(CUtlVector* outReplacementMaterials, const char *pszPathName); //#define PERF_TESTING 1 //----------------------------------------------------------------------------- // Implementational structures //----------------------------------------------------------------------------- //----------------------------------------------------------------------------- // Singleton instance exposed to the engine //----------------------------------------------------------------------------- CMaterialSystem g_MaterialSystem; EXPOSE_SINGLE_INTERFACE_GLOBALVAR( CMaterialSystem, IMaterialSystem, MATERIAL_SYSTEM_INTERFACE_VERSION, g_MaterialSystem ); // Expose this to the external shader DLLs MaterialSystem_Config_t g_config; EXPOSE_SINGLE_INTERFACE_GLOBALVAR( MaterialSystem_Config_t, MaterialSystem_Config_t, MATERIALSYSTEM_CONFIG_VERSION, g_config ); //----------------------------------------------------------------------------- CThreadFastMutex g_MatSysMutex; //----------------------------------------------------------------------------- // Purpose: additional materialsystem information, internal use only //----------------------------------------------------------------------------- #ifndef _X360 struct MaterialSystem_Config_Internal_t { int r_waterforceexpensive; }; MaterialSystem_Config_Internal_t g_config_internal; #endif //----------------------------------------------------------------------------- // Necessary to allow the shader DLLs to get ahold of IMaterialSystemHardwareConfig //----------------------------------------------------------------------------- IHardwareConfigInternal* g_pHWConfig = 0; static void *GetHardwareConfig() { if ( g_pHWConfig ) return (IMaterialSystemHardwareConfig*)g_pHWConfig; // can't call QueryShaderAPI here because it calls a factory function // and we end up in an infinite recursion return NULL; } EXPOSE_INTERFACE_FN( GetHardwareConfig, IMaterialSystemHardwareConfig, MATERIALSYSTEM_HARDWARECONFIG_INTERFACE_VERSION ); //----------------------------------------------------------------------------- // Necessary to allow the shader DLLs to get ahold of ICvar //----------------------------------------------------------------------------- static void *GetICVar() { return g_pCVar; } EXPOSE_INTERFACE_FN( GetICVar, ICVar, CVAR_INTERFACE_VERSION ); //----------------------------------------------------------------------------- // Accessor to get at the material system //----------------------------------------------------------------------------- IMaterialSystemInternal *g_pInternalMaterialSystem = &g_MaterialSystem; IShaderUtil *g_pShaderUtil = &g_MaterialSystem; #if defined(USE_SDL) #include "appframework/ilaunchermgr.h" ILauncherMgr *g_pLauncherMgr = NULL; // set in CMaterialSystem::Connect #endif //----------------------------------------------------------------------------- // Factory used to get at internal interfaces (used by shaderapi + shader dlls) //----------------------------------------------------------------------------- void *ShaderFactory( const char *pName, int *pReturnCode ) { if (pReturnCode) { *pReturnCode = IFACE_OK; } if ( !Q_stricmp( pName, FILESYSTEM_INTERFACE_VERSION )) return g_pFullFileSystem; if ( !Q_stricmp( pName, QUEUEDLOADER_INTERFACE_VERSION )) return g_pQueuedLoader; if ( !Q_stricmp( pName, SHADER_UTIL_INTERFACE_VERSION )) return g_pShaderUtil; #ifdef USE_SDL if ( !Q_stricmp( pName, "SDLMgrInterface001" /*SDLMGR_INTERFACE_VERSION*/ )) return g_pLauncherMgr; #endif void * pInterface = g_MaterialSystem.QueryInterface( pName ); if ( pInterface ) return pInterface; if ( pReturnCode ) { *pReturnCode = IFACE_FAILED; } return NULL; } //----------------------------------------------------------------------------- // Resource preloading for materials. //----------------------------------------------------------------------------- class CResourcePreloadMaterial : public CResourcePreload { virtual bool CreateResource( const char *pName ) { IMaterial *pMaterial = g_MaterialSystem.FindMaterial( pName, TEXTURE_GROUP_WORLD, false ); IMaterialInternal *pMatInternal = static_cast< IMaterialInternal * >( pMaterial ); if ( pMatInternal ) { // always work with the realtime material internally pMatInternal = pMatInternal->GetRealTimeVersion(); // tag these for later identification (prevents an unwanted purge) pMatInternal->MarkAsPreloaded( true ); if ( !pMatInternal->IsErrorMaterial() ) { // force material's textures to create now pMatInternal->Precache(); return true; } else { if ( IsPosix() ) { printf("\n ##### CResourcePreloadMaterial::CreateResource can't find material %s\n", pName); } } } return false; } //----------------------------------------------------------------------------- // Called before queued loader i/o jobs are actually performed. Must free up memory // to ensure i/o requests have enough memory to succeed. The materials that were // touched by the CreateResource() are inhibited from purging (as is their textures, // by virtue of ref counts), all others are candidates. The preloaded materials // are by definition zero ref'd until owned by the normal loading process. Any material // that stays zero ref'd is a candidate for the post load purge. //----------------------------------------------------------------------------- virtual void PurgeUnreferencedResources() { bool bSpew = ( g_pQueuedLoader->GetSpewDetail() & LOADER_DETAIL_PURGES ) != 0; bool bDidUncacheMaterial = false; MaterialHandle_t hNext; for ( MaterialHandle_t hMaterial = g_MaterialSystem.FirstMaterial(); hMaterial != g_MaterialSystem.InvalidMaterial(); hMaterial = hNext ) { hNext = g_MaterialSystem.NextMaterial( hMaterial ); IMaterialInternal *pMatInternal = g_MaterialSystem.GetMaterialInternal( hMaterial ); Assert( pMatInternal->GetReferenceCount() >= 0 ); // preloaded materials are safe from this pre-purge if ( !pMatInternal->IsPreloaded() ) { // undo any possible artifical ref count pMatInternal->ArtificialRelease(); if ( pMatInternal->GetReferenceCount() <= 0 ) { if ( bSpew ) { Msg( "CResourcePreloadMaterial: Purging: %s (%d)\n", pMatInternal->GetName(), pMatInternal->GetReferenceCount() ); } bDidUncacheMaterial = true; pMatInternal->Uncache(); pMatInternal->DeleteIfUnreferenced(); } } else { // clear the bit pMatInternal->MarkAsPreloaded( false ); } } // purged materials unreference their textures // purge any zero ref'd textures TextureManager()->RemoveUnusedTextures(); // fixup any excluded textures, may cause some new batch requests MaterialSystem()->UpdateExcludedTextures(); } virtual void PurgeAll() { bool bSpew = ( g_pQueuedLoader->GetSpewDetail() & LOADER_DETAIL_PURGES ) != 0; bool bDidUncacheMaterial = false; MaterialHandle_t hNext; for ( MaterialHandle_t hMaterial = g_MaterialSystem.FirstMaterial(); hMaterial != g_MaterialSystem.InvalidMaterial(); hMaterial = hNext ) { hNext = g_MaterialSystem.NextMaterial( hMaterial ); IMaterialInternal *pMatInternal = g_MaterialSystem.GetMaterialInternal( hMaterial ); Assert( pMatInternal->GetReferenceCount() >= 0 ); pMatInternal->MarkAsPreloaded( false ); // undo any possible artifical ref count pMatInternal->ArtificialRelease(); if ( pMatInternal->GetReferenceCount() <= 0 ) { if ( bSpew ) { Msg( "CResourcePreloadMaterial: Purging: %s (%d)\n", pMatInternal->GetName(), pMatInternal->GetReferenceCount() ); } bDidUncacheMaterial = true; pMatInternal->Uncache(); pMatInternal->DeleteIfUnreferenced(); } } // purged materials unreference their textures // purge any zero ref'd textures TextureManager()->RemoveUnusedTextures(); } }; static CResourcePreloadMaterial s_ResourcePreloadMaterial; //----------------------------------------------------------------------------- // Resource preloading for cubemaps. //----------------------------------------------------------------------------- class CResourcePreloadCubemap : public CResourcePreload { virtual bool CreateResource( const char *pName ) { ITexture *pTexture = g_MaterialSystem.FindTexture( pName, TEXTURE_GROUP_CUBE_MAP, true ); ITextureInternal *pTexInternal = static_cast< ITextureInternal * >( pTexture ); if ( pTexInternal ) { // There can be cubemaps that are unbound by materials. To prevent an unwanted purge, // mark and increase the ref count. Otherwise the pre-purge discards these zero // ref'd textures, and then the normal loading process hitches on the miss. // The zombie cubemaps DO get discarded after the normal loading process completes // if no material references them. pTexInternal->MarkAsPreloaded( true ); pTexInternal->IncrementReferenceCount(); if ( !IsErrorTexture( pTexInternal ) ) { return true; } } return false; } //----------------------------------------------------------------------------- // All valid cubemaps should have been owned by their materials. Undo the preloaded // cubemap locks. Any zero ref'd cubemaps will be purged by the normal loading path conclusion. //----------------------------------------------------------------------------- virtual void OnEndMapLoading( bool bAbort ) { int iIndex = -1; for ( ;; ) { ITextureInternal *pTexInternal; iIndex = TextureManager()->FindNext( iIndex, &pTexInternal ); if ( iIndex == -1 || !pTexInternal ) { // end of list break; } if ( pTexInternal->IsPreloaded() ) { // undo the artificial increase pTexInternal->MarkAsPreloaded( false ); pTexInternal->DecrementReferenceCount(); } } } }; static CResourcePreloadCubemap s_ResourcePreloadCubemap; //----------------------------------------------------------------------------- // Creates the debugging materials //----------------------------------------------------------------------------- void CMaterialSystem::CreateDebugMaterials() { if ( !m_pDrawFlatMaterial ) { KeyValues *pVMTKeyValues = new KeyValues( "UnlitGeneric" ); pVMTKeyValues->SetInt( "$model", 1 ); pVMTKeyValues->SetFloat( "$decalscale", 0.05f ); pVMTKeyValues->SetString( "$basetexture", "error" ); // This is the "error texture" g_pErrorMaterial = static_cast(CreateMaterial( "___error.vmt", pVMTKeyValues ))->GetRealTimeVersion(); pVMTKeyValues = new KeyValues( "UnlitGeneric" ); pVMTKeyValues->SetInt( "$flat", 1 ); pVMTKeyValues->SetInt( "$vertexcolor", 1 ); m_pDrawFlatMaterial = static_cast(CreateMaterial( "___flat.vmt", pVMTKeyValues ))->GetRealTimeVersion(); pVMTKeyValues = new KeyValues( "BufferClearObeyStencil" ); pVMTKeyValues->SetInt( "$nocull", 1 ); m_pBufferClearObeyStencil[BUFFER_CLEAR_NONE] = static_cast(CreateMaterial( "___buffer_clear_obey_stencil0.vmt", pVMTKeyValues ))->GetRealTimeVersion(); pVMTKeyValues = new KeyValues( "BufferClearObeyStencil" ); pVMTKeyValues->SetInt( "$nocull", 1 ); pVMTKeyValues->SetInt( "$clearcolor", 1 ); pVMTKeyValues->SetInt( "$vertexcolor", 1 ); m_pBufferClearObeyStencil[BUFFER_CLEAR_COLOR] = static_cast(CreateMaterial( "___buffer_clear_obey_stencil1.vmt", pVMTKeyValues ))->GetRealTimeVersion(); pVMTKeyValues = new KeyValues( "BufferClearObeyStencil" ); pVMTKeyValues->SetInt( "$nocull", 1 ); pVMTKeyValues->SetInt( "$clearalpha", 1 ); pVMTKeyValues->SetInt( "$vertexcolor", 1 ); m_pBufferClearObeyStencil[BUFFER_CLEAR_ALPHA] = static_cast(CreateMaterial( "___buffer_clear_obey_stencil2.vmt", pVMTKeyValues ))->GetRealTimeVersion(); pVMTKeyValues = new KeyValues( "BufferClearObeyStencil" ); pVMTKeyValues->SetInt( "$nocull", 1 ); pVMTKeyValues->SetInt( "$clearcolor", 1 ); pVMTKeyValues->SetInt( "$clearalpha", 1 ); pVMTKeyValues->SetInt( "$vertexcolor", 1 ); m_pBufferClearObeyStencil[BUFFER_CLEAR_COLOR_AND_ALPHA] = static_cast(CreateMaterial( "___buffer_clear_obey_stencil3.vmt", pVMTKeyValues ))->GetRealTimeVersion(); pVMTKeyValues = new KeyValues( "BufferClearObeyStencil" ); pVMTKeyValues->SetInt( "$nocull", 1 ); pVMTKeyValues->SetInt( "$cleardepth", 1 ); m_pBufferClearObeyStencil[BUFFER_CLEAR_DEPTH] = static_cast(CreateMaterial( "___buffer_clear_obey_stencil4.vmt", pVMTKeyValues ))->GetRealTimeVersion(); pVMTKeyValues = new KeyValues( "BufferClearObeyStencil" ); pVMTKeyValues->SetInt( "$nocull", 1 ); pVMTKeyValues->SetInt( "$cleardepth", 1 ); pVMTKeyValues->SetInt( "$clearcolor", 1 ); pVMTKeyValues->SetInt( "$vertexcolor", 1 ); m_pBufferClearObeyStencil[BUFFER_CLEAR_COLOR_AND_DEPTH] = static_cast(CreateMaterial( "___buffer_clear_obey_stencil5.vmt", pVMTKeyValues ))->GetRealTimeVersion(); pVMTKeyValues = new KeyValues( "BufferClearObeyStencil" ); pVMTKeyValues->SetInt( "$nocull", 1 ); pVMTKeyValues->SetInt( "$cleardepth", 1 ); pVMTKeyValues->SetInt( "$clearalpha", 1 ); pVMTKeyValues->SetInt( "$vertexcolor", 1 ); m_pBufferClearObeyStencil[BUFFER_CLEAR_ALPHA_AND_DEPTH] = static_cast(CreateMaterial( "___buffer_clear_obey_stencil6.vmt", pVMTKeyValues ))->GetRealTimeVersion(); pVMTKeyValues = new KeyValues( "BufferClearObeyStencil" ); pVMTKeyValues->SetInt( "$nocull", 1 ); pVMTKeyValues->SetInt( "$cleardepth", 1 ); pVMTKeyValues->SetInt( "$clearcolor", 1 ); pVMTKeyValues->SetInt( "$clearalpha", 1 ); pVMTKeyValues->SetInt( "$vertexcolor", 1 ); m_pBufferClearObeyStencil[BUFFER_CLEAR_COLOR_AND_ALPHA_AND_DEPTH] = static_cast(CreateMaterial( "___buffer_clear_obey_stencil7.vmt", pVMTKeyValues ))->GetRealTimeVersion(); if ( IsX360() ) { pVMTKeyValues = new KeyValues( "RenderTargetBlit_X360" ); m_pRenderTargetBlitMaterial = static_cast(CreateMaterial( "___renderTargetBlit.vmt", pVMTKeyValues ))->GetRealTimeVersion(); } ShaderSystem()->CreateDebugMaterials(); } } //----------------------------------------------------------------------------- // Creates compositor materials //----------------------------------------------------------------------------- void CMaterialSystem::CreateCompositorMaterials() { // precache composite materials for ( int i = ECO_FirstPrecacheMaterial; i < ECO_LastPrecacheMaterial; i++ ) { const char *pszMaterial = GetCombinedMaterialName( ( ECombineOperation ) i ); if ( pszMaterial[ 0 ] == '\0' ) continue; IMaterialInternal *pMatqf = assert_cast< IMaterialInternal* >( FindMaterial( pszMaterial, TEXTURE_GROUP_RUNTIME_COMPOSITE ) ); Assert( pMatqf ); Assert( !pMatqf->IsErrorMaterial() ); IMaterialInternal *pMatrt = pMatqf->GetRealTimeVersion(); Assert( pMatrt ); pMatrt->IncrementReferenceCount(); // Hold a ref. m_pCompositorMaterials.AddToTail( pMatrt ); } } //----------------------------------------------------------------------------- // Cleanup compositor materials //----------------------------------------------------------------------------- void CMaterialSystem::CleanUpCompositorMaterials() { FOR_EACH_VEC( m_pCompositorMaterials, i ) { if ( m_pCompositorMaterials[ i ] == NULL ) continue; m_pCompositorMaterials[ i ]->DecrementReferenceCount(); RemoveMaterial( m_pCompositorMaterials[ i ] ); } m_pCompositorMaterials.RemoveAll(); } //----------------------------------------------------------------------------- // Creates the debugging materials //----------------------------------------------------------------------------- void CMaterialSystem::CleanUpDebugMaterials() { if ( m_pDrawFlatMaterial ) { m_pDrawFlatMaterial->DecrementReferenceCount(); RemoveMaterial( m_pDrawFlatMaterial ); m_pDrawFlatMaterial = NULL; for ( int i = BUFFER_CLEAR_NONE; i < BUFFER_CLEAR_TYPE_COUNT; ++i ) { m_pBufferClearObeyStencil[i]->DecrementReferenceCount(); RemoveMaterial( m_pBufferClearObeyStencil[i] ); m_pBufferClearObeyStencil[i] = NULL; } if ( IsX360() ) { m_pRenderTargetBlitMaterial->DecrementReferenceCount(); RemoveMaterial( m_pRenderTargetBlitMaterial ); m_pRenderTargetBlitMaterial = NULL; } ShaderSystem()->CleanUpDebugMaterials(); } } void CMaterialSystem::CleanUpErrorMaterial() { // Destruction of g_pErrorMaterial is deferred until after CMaterialDict::Shutdown. // The global g_pErrorMaterial is set to NULL so that IsErrorMaterial() will return false and // RemoveMaterial() / DestroyMaterial() will delete it. IMaterialInternal *pErrorMaterial = g_pErrorMaterial; g_pErrorMaterial = NULL; pErrorMaterial->DecrementReferenceCount(); RemoveMaterial( pErrorMaterial ); } //----------------------------------------------------------------------------- // Constructor //----------------------------------------------------------------------------- CMaterialSystem::CMaterialSystem() { m_nRenderThreadID = 0xFFFFFFFF; m_hAsyncLoadFileCache = NULL; m_ShaderHInst = 0; m_pMaterialProxyFactory = NULL; m_nAdapter = 0; m_nAdapterFlags = 0; m_bRequestedEditorMaterials = false; m_bCanUseEditorMaterials = false; m_StandardTexturesAllocated = false; m_bInFrame = false; m_bThreadHasOwnership = false; m_ThreadOwnershipID = 0; m_pShaderDLL = NULL; m_FullbrightLightmapTextureHandle = INVALID_SHADERAPI_TEXTURE_HANDLE; m_FullbrightBumpedLightmapTextureHandle = INVALID_SHADERAPI_TEXTURE_HANDLE; m_BlackTextureHandle = INVALID_SHADERAPI_TEXTURE_HANDLE; m_FlatNormalTextureHandle = INVALID_SHADERAPI_TEXTURE_HANDLE; m_GreyTextureHandle = INVALID_SHADERAPI_TEXTURE_HANDLE; m_GreyAlphaZeroTextureHandle = INVALID_SHADERAPI_TEXTURE_HANDLE; m_WhiteTextureHandle = INVALID_SHADERAPI_TEXTURE_HANDLE; m_LinearToGammaTableTextureHandle = INVALID_SHADERAPI_TEXTURE_HANDLE; m_LinearToGammaIdentityTableTextureHandle = INVALID_SHADERAPI_TEXTURE_HANDLE; m_MaxDepthTextureHandle = INVALID_SHADERAPI_TEXTURE_HANDLE; m_bInStubMode = false; m_pForcedTextureLoadPathID = NULL; m_bAllocatingRenderTargets = false; m_pRenderContext.Set( &m_HardwareRenderContext ); m_iCurQueuedContext = 0; #if defined(DEDICATED) m_bThreadingNotAvailable = true; m_bForcedSingleThreaded = true; m_bAllowQueuedRendering = false; #else m_bThreadingNotAvailable = false; m_bForcedSingleThreaded = false; m_bAllowQueuedRendering = true; #endif m_bGeneratedConfig = false; m_pActiveAsyncJob = NULL; m_pMatQueueThreadPool = NULL; m_IdealThreadMode = m_ThreadMode = MATERIAL_SINGLE_THREADED; m_nServiceThread = 0; m_nRenderTargetFrameBufferHeightOverride = m_nRenderTargetFrameBufferWidthOverride = 0; m_bReplacementFilesValid = false; } CMaterialSystem::~CMaterialSystem() { if (m_pShaderDLL) { delete[] m_pShaderDLL; } } //----------------------------------------------------------------------------- // Creates/destroys the shader implementation for the selected API //----------------------------------------------------------------------------- CreateInterfaceFn CMaterialSystem::CreateShaderAPI( char const* pShaderDLL ) { if ( !pShaderDLL ) return 0; // Clean up the old shader DestroyShaderAPI(); // Load the new shader m_ShaderHInst = Sys_LoadModule( pShaderDLL ); // Error loading the shader if ( !m_ShaderHInst ) return 0; // Get our class factory methods... return Sys_GetFactory( m_ShaderHInst ); } void CMaterialSystem::DestroyShaderAPI() { if (m_ShaderHInst) { // NOTE: By unloading the library, this will destroy m_pShaderAPI Sys_UnloadModule( m_ShaderHInst ); g_pShaderAPI = 0; g_pHWConfig = 0; g_pShaderShadow = 0; m_ShaderHInst = 0; } } //----------------------------------------------------------------------------- // Sets which shader we should be using. Has to be done before connect! //----------------------------------------------------------------------------- void CMaterialSystem::SetShaderAPI( char const *pShaderAPIDLL ) { if ( m_ShaderAPIFactory ) { Error( "Cannot set the shader API twice!\n" ); } if ( !pShaderAPIDLL ) { pShaderAPIDLL = "shaderapidx9"; } // m_pShaderDLL is needed to spew driver info Assert( pShaderAPIDLL ); int len = Q_strlen( pShaderAPIDLL ) + 1; m_pShaderDLL = new char[len]; memcpy( m_pShaderDLL, pShaderAPIDLL, len ); m_ShaderAPIFactory = CreateShaderAPI( pShaderAPIDLL ); if ( !m_ShaderAPIFactory ) { DestroyShaderAPI(); } } //----------------------------------------------------------------------------- // Connect/disconnect //----------------------------------------------------------------------------- bool CMaterialSystem::Connect( CreateInterfaceFn factory ) { // __stop__(); if ( !factory ) return false; if ( !BaseClass::Connect( factory ) ) return false; if ( !g_pFullFileSystem ) { Warning( "The material system requires the filesystem to run!\n" ); return false; } // Get at the interfaces exported by the shader DLL g_pShaderDeviceMgr = (IShaderDeviceMgr*)m_ShaderAPIFactory( SHADER_DEVICE_MGR_INTERFACE_VERSION, 0 ); if ( !g_pShaderDeviceMgr ) return false; g_pHWConfig = (IHardwareConfigInternal*)m_ShaderAPIFactory( MATERIALSYSTEM_HARDWARECONFIG_INTERFACE_VERSION, 0 ); if ( !g_pHWConfig ) return false; #if !defined(DEDICATED) #if defined( USE_SDL ) g_pLauncherMgr = (ILauncherMgr *)factory( "SDLMgrInterface001" /*SDL_MGR_INTERFACE_VERSION*/, NULL ); if ( !g_pLauncherMgr ) { return false; } #endif // USE_SDL #endif // !DEDICATED // FIXME: ShaderAPI, ShaderDevice, and ShaderShadow should only come in after setting mode g_pShaderAPI = (IShaderAPI*)m_ShaderAPIFactory( SHADERAPI_INTERFACE_VERSION, 0 ); if ( !g_pShaderAPI ) return false; g_pShaderDevice = (IShaderDevice*)m_ShaderAPIFactory( SHADER_DEVICE_INTERFACE_VERSION, 0 ); if ( !g_pShaderDevice ) return false; g_pShaderShadow = (IShaderShadow*)m_ShaderAPIFactory( SHADERSHADOW_INTERFACE_VERSION, 0 ); if ( !g_pShaderShadow ) return false; // Remember the factory for connect g_fnMatSystemConnectCreateInterface = factory; return g_pShaderDeviceMgr->Connect( ShaderFactory ); } void CMaterialSystem::Disconnect() { // Forget the factory for connect g_fnMatSystemConnectCreateInterface = NULL; if ( g_pShaderDeviceMgr ) { g_pShaderDeviceMgr->Disconnect(); g_pShaderDeviceMgr = NULL; // Unload the DLL DestroyShaderAPI(); } g_pShaderAPI = NULL; g_pHWConfig = NULL; g_pShaderShadow = NULL; g_pShaderDevice = NULL; BaseClass::Disconnect(); } //----------------------------------------------------------------------------- // Used to enable editor materials. Must be called before Init. //----------------------------------------------------------------------------- void CMaterialSystem::EnableEditorMaterials() { m_bRequestedEditorMaterials = true; } //----------------------------------------------------------------------------- // Method to get at interfaces supported by the SHADDERAPI //----------------------------------------------------------------------------- void *CMaterialSystem::QueryShaderAPI( const char *pInterfaceName ) { // Returns various interfaces supported by the shader API dll void *pInterface = NULL; if (m_ShaderAPIFactory) { pInterface = m_ShaderAPIFactory( pInterfaceName, NULL ); } return pInterface; } //----------------------------------------------------------------------------- // Method to get at different interfaces supported by the material system //----------------------------------------------------------------------------- void *CMaterialSystem::QueryInterface( const char *pInterfaceName ) { // Returns various interfaces supported by the shader API dll void *pInterface = QueryShaderAPI( pInterfaceName ); if ( pInterface ) return pInterface; CreateInterfaceFn factory = Sys_GetFactoryThis(); // This silly construction is necessary return factory( pInterfaceName, NULL ); // to prevent the LTCG compiler from crashing. } //----------------------------------------------------------------------------- // Must be called before Init(), if you're going to call it at all... //----------------------------------------------------------------------------- void CMaterialSystem::SetAdapter( int nAdapter, int nAdapterFlags ) { m_nAdapter = nAdapter; m_nAdapterFlags = nAdapterFlags; } //----------------------------------------------------------------------------- // Initializes the color correction terms //----------------------------------------------------------------------------- void CMaterialSystem::InitColorCorrection( ) { if ( ColorCorrectionSystem() ) { ColorCorrectionSystem()->Init(); } } //----------------------------------------------------------------------------- // Initialization + shutdown of the material system //----------------------------------------------------------------------------- InitReturnVal_t CMaterialSystem::Init() { InitReturnVal_t nRetVal = BaseClass::Init(); if ( nRetVal != INIT_OK ) return nRetVal; // NOTE! : Overbright is 1.0 so that Hammer will work properly with the white bumped and unbumped lightmaps. MathLib_Init( 2.2f, 2.2f, 0.0f, 2.0f ); g_pShaderDeviceMgr->SetAdapter( m_nAdapter, m_nAdapterFlags ); if ( g_pShaderDeviceMgr->Init( ) != INIT_OK ) { DestroyShaderAPI(); return INIT_FAILED; } // Texture manager... TextureManager()->Init( m_nAdapterFlags ); // Shader system! ShaderSystem()->Init(); #if defined( WIN32 ) && !defined( _X360 ) // HACKHACK: This horrible hack is possibly the only way to reliably detect an old // version of hammer initializing the material system. We need to know this so that we set // up the editor materials properly. If we don't do this, we never allocate the white lightmap, // for example. We can remove this when we update the SDK!! char szExeName[_MAX_PATH]; if ( ::GetModuleFileName( ( HINSTANCE )GetModuleHandle( NULL ), szExeName, sizeof( szExeName ) ) ) { char szRight[20]; Q_StrRight( szExeName, 11, szRight, sizeof( szRight ) ); if ( !Q_stricmp( szRight, "\\hammer.exe" ) ) { m_bRequestedEditorMaterials = true; } } #endif // WIN32 m_bCanUseEditorMaterials = m_bRequestedEditorMaterials; InitColorCorrection(); // Set up debug materials... CreateDebugMaterials(); #if !defined(DEDICATED) CreateCompositorMaterials(); #endif if ( IsX360() ) { g_pQueuedLoader->InstallLoader( RESOURCEPRELOAD_MATERIAL, &s_ResourcePreloadMaterial ); g_pQueuedLoader->InstallLoader( RESOURCEPRELOAD_CUBEMAP, &s_ResourcePreloadCubemap ); } // Set up a default material system config // GenerateConfigFromConfigKeyValues( &g_config, false ); // UpdateConfig( false ); // JAY: Added this command line parameter to force creating <32x32 mips // to test for reported performance regressions on some systems if ( CommandLine()->FindParm("-forceallmips") ) { extern bool g_bForceTextureAllMips; g_bForceTextureAllMips = true; } #if defined(DEDICATED) m_bThreadingNotAvailable = true; #else for ( int i = 0; i < ARRAYSIZE( m_QueuedRenderContexts ); i++ ) { if ( !m_QueuedRenderContexts[i].IsInitialized() ) { if ( !m_QueuedRenderContexts[i].Init( this, &m_HardwareRenderContext ) ) { m_bThreadingNotAvailable = true; break; } } } #endif return m_HardwareRenderContext.Init( this ); } //----------------------------------------------------------------------------- // For backwards compatability //----------------------------------------------------------------------------- static CreateInterfaceFn s_TempCVarFactory; static CreateInterfaceFn s_TempFileSystemFactory; void* TempCreateInterface( const char *pName, int *pReturnCode ) { void *pRetVal = NULL; if ( s_TempCVarFactory ) { pRetVal = s_TempCVarFactory( pName, pReturnCode ); if (pRetVal) return pRetVal; } pRetVal = s_TempFileSystemFactory( pName, pReturnCode ); if (pRetVal) return pRetVal; return NULL; } //----------------------------------------------------------------------------- // Initializes and shuts down the shader API //----------------------------------------------------------------------------- CreateInterfaceFn CMaterialSystem::Init( char const* pShaderAPIDLL, IMaterialProxyFactory *pMaterialProxyFactory, CreateInterfaceFn fileSystemFactory, CreateInterfaceFn cvarFactory ) { SetShaderAPI( pShaderAPIDLL ); s_TempCVarFactory = cvarFactory; s_TempFileSystemFactory = fileSystemFactory; if ( !Connect( TempCreateInterface ) ) return 0; if (Init() != INIT_OK) return NULL; // save the proxy factory m_pMaterialProxyFactory = pMaterialProxyFactory; return m_ShaderAPIFactory; } void CMaterialSystem::Shutdown( ) { DestroyMatQueueThreadPool(); m_HardwareRenderContext.Shutdown(); // Clean up standard textures ReleaseStandardTextures(); CleanUpCompositorMaterials(); // Clean up the debug materials CleanUpDebugMaterials(); g_pMorphMgr->FreeMaterials(); g_pOcclusionQueryMgr->FreeOcclusionQueryObjects(); GetLightmaps()->Shutdown(); m_MaterialDict.Shutdown(); CleanUpErrorMaterial(); // Shader system! ShaderSystem()->Shutdown(); // Texture manager... TextureManager()->Shutdown(); if (g_pShaderDeviceMgr) { g_pShaderDeviceMgr->Shutdown(); } BaseClass::Shutdown(); } void CMaterialSystem::ModInit() { // Set up a default material system config GenerateConfigFromConfigKeyValues( &g_config, false ); UpdateConfig( false ); // Shader system! ShaderSystem()->ModInit(); } void CMaterialSystem::ModShutdown() { // Shader system! ShaderSystem()->ModShutdown(); // HACK - this is here to unhook ourselves from the client interface, since we're not actually notified when it happens m_pMaterialProxyFactory = NULL; } //----------------------------------------------------------------------------- // Returns the current adapter in use //----------------------------------------------------------------------------- IMaterialSystemHardwareConfig *CMaterialSystem::GetHardwareConfig( const char *pVersion, int *returnCode ) { return ( IMaterialSystemHardwareConfig * )m_ShaderAPIFactory( pVersion, returnCode ); } //----------------------------------------------------------------------------- // Returns the current adapter in use //----------------------------------------------------------------------------- int CMaterialSystem::GetCurrentAdapter() const { return g_pShaderDevice->GetCurrentAdapter(); } //----------------------------------------------------------------------------- // Returns the device name for the current adapter //----------------------------------------------------------------------------- char *CMaterialSystem::GetDisplayDeviceName() const { return g_pShaderDevice->GetDisplayDeviceName(); } //----------------------------------------------------------------------------- // //----------------------------------------------------------------------------- void CMaterialSystem::SetThreadMode( MaterialThreadMode_t nextThreadMode, int nServiceThread ) { m_IdealThreadMode = nextThreadMode; m_nServiceThread = nServiceThread; } MaterialThreadMode_t CMaterialSystem::GetThreadMode() { return m_ThreadMode; } bool CMaterialSystem::IsRenderThreadSafe( ) { return ( m_ThreadMode != MATERIAL_QUEUED_THREADED && ThreadInMainThread() ) || ( m_ThreadMode == MATERIAL_QUEUED_THREADED && m_nRenderThreadID == ThreadGetCurrentId() ); } bool CMaterialSystem::AllowThreading( bool bAllow, int nServiceThread ) { #if defined(DEDICATED) return false; #else if ( CommandLine()->ParmValue( "-threads", 2 ) < 2 ) // if -threads specified on command line to restrict all the pools then obey and not turn on QMS bAllow = false; bool bOldAllow = m_bAllowQueuedRendering; if ( GetCPUInformation()->m_nPhysicalProcessors >= 2 ) { m_bAllowQueuedRendering = bAllow; bool bQueued = m_IdealThreadMode != MATERIAL_SINGLE_THREADED; if ( bAllow && !bQueued ) { // go into queued mode DevMsg( "Queued Material System: ENABLED!\n" ); SetThreadMode( MATERIAL_QUEUED_THREADED, nServiceThread ); } else if ( !bAllow && bQueued ) { // disabling queued mode just needs to stop the queuing of drawing // but still allow other threaded access to the Material System // flush the queue DevMsg( "Queued Material System: DISABLED!\n" ); ForceSingleThreaded(); MaterialLock_t hMaterialLock = Lock(); SetThreadMode( MATERIAL_SINGLE_THREADED, -1 ); Unlock( hMaterialLock ); } } else { m_bAllowQueuedRendering = false; } return bOldAllow; #endif // !DEDICATED } void CMaterialSystem::ExecuteQueued() { } //----------------------------------------------------------------------------- // //----------------------------------------------------------------------------- IMatRenderContext *CMaterialSystem::GetRenderContext() { IMatRenderContext *pResult = m_pRenderContext.Get(); if ( !pResult ) { pResult = &m_HardwareRenderContext; m_pRenderContext.Set( &m_HardwareRenderContext ); } return RetAddRef( pResult ); } //----------------------------------------------------------------------------- // //----------------------------------------------------------------------------- IMatRenderContext *CMaterialSystem::CreateRenderContext( MaterialContextType_t type ) { switch ( type ) { case MATERIAL_HARDWARE_CONTEXT: return NULL; case MATERIAL_QUEUED_CONTEXT: { CMatQueuedRenderContext *pQueuedContext = new CMatQueuedRenderContext; pQueuedContext->Init( this, &m_HardwareRenderContext ); pQueuedContext->BeginQueue( &m_HardwareRenderContext ); return pQueuedContext; } case MATERIAL_NULL_CONTEXT: { CMatRenderContextBase *pNullContext = CreateNullRenderContext(); pNullContext->Init(); pNullContext->InitializeFrom( &m_HardwareRenderContext ); return pNullContext; } } Assert(0); return NULL; } //----------------------------------------------------------------------------- // //----------------------------------------------------------------------------- IMatRenderContext *CMaterialSystem::SetRenderContext( IMatRenderContext *pNewContext ) { IMatRenderContext *pOldContext = m_pRenderContext.Get(); if ( pNewContext ) { pNewContext->AddRef(); m_pRenderContext.Set( assert_cast(pNewContext) ); } else { m_pRenderContext.Set( NULL ); } return pOldContext; } //----------------------------------------------------------------------------- // Get/Set Material proxy factory //----------------------------------------------------------------------------- IMaterialProxyFactory* CMaterialSystem::GetMaterialProxyFactory() { return m_pMaterialProxyFactory; } void CMaterialSystem::SetMaterialProxyFactory( IMaterialProxyFactory* pFactory ) { // Changing the factory requires an uncaching of all materials // since the factory may contain different proxies UncacheAllMaterials(); m_pMaterialProxyFactory = pFactory; } //----------------------------------------------------------------------------- // Can we use editor materials? //----------------------------------------------------------------------------- bool CMaterialSystem::CanUseEditorMaterials() const { return m_bCanUseEditorMaterials; } //----------------------------------------------------------------------------- // Methods related to mode setting... //----------------------------------------------------------------------------- // Gets the number of adapters... int CMaterialSystem::GetDisplayAdapterCount() const { return g_pShaderDeviceMgr->GetAdapterCount( ); } // Returns info about each adapter void CMaterialSystem::GetDisplayAdapterInfo( int adapter, MaterialAdapterInfo_t& info ) const { g_pShaderDeviceMgr->GetAdapterInfo( adapter, info ); } // Returns the number of modes int CMaterialSystem::GetModeCount( int adapter ) const { return g_pShaderDeviceMgr->GetModeCount( adapter ); } //----------------------------------------------------------------------------- // Compatability function, should go away eventually //----------------------------------------------------------------------------- static void ConvertModeStruct( ShaderDeviceInfo_t *pMode, const MaterialSystem_Config_t &config ) { pMode->m_DisplayMode.m_nWidth = config.m_VideoMode.m_Width; pMode->m_DisplayMode.m_nHeight = config.m_VideoMode.m_Height; pMode->m_DisplayMode.m_Format = config.m_VideoMode.m_Format; pMode->m_DisplayMode.m_nRefreshRateNumerator = config.m_VideoMode.m_RefreshRate; pMode->m_DisplayMode.m_nRefreshRateDenominator = config.m_VideoMode.m_RefreshRate ? 1 : 0; pMode->m_nBackBufferCount = 1; pMode->m_nAASamples = config.m_nAASamples; pMode->m_nAAQuality = config.m_nAAQuality; pMode->m_nDXLevel = MAX( ABSOLUTE_MINIMUM_DXLEVEL, config.dxSupportLevel ); pMode->m_nWindowedSizeLimitWidth = (int)config.m_WindowedSizeLimitWidth; pMode->m_nWindowedSizeLimitHeight = (int)config.m_WindowedSizeLimitHeight; pMode->m_bWindowed = config.Windowed(); pMode->m_bResizing = config.Resizing(); pMode->m_bUseStencil = config.Stencil(); pMode->m_bLimitWindowedSize = config.LimitWindowedSize(); pMode->m_bWaitForVSync = config.WaitForVSync(); pMode->m_bScaleToOutputResolution = config.ScaleToOutputResolution(); pMode->m_bUsingMultipleWindows = config.UsingMultipleWindows(); } static void ConvertModeStruct( MaterialVideoMode_t *pMode, const ShaderDisplayMode_t &info ) { pMode->m_Width = info.m_nWidth; pMode->m_Height = info.m_nHeight; pMode->m_Format = info.m_Format; pMode->m_RefreshRate = info.m_nRefreshRateDenominator ? ( info.m_nRefreshRateNumerator / info.m_nRefreshRateDenominator ) : 0; } //----------------------------------------------------------------------------- // Returns mode information.. //----------------------------------------------------------------------------- void CMaterialSystem::GetModeInfo( int nAdapter, int nMode, MaterialVideoMode_t& info ) const { ShaderDisplayMode_t shaderInfo; g_pShaderDeviceMgr->GetModeInfo( &shaderInfo, nAdapter, nMode ); ConvertModeStruct( &info, shaderInfo ); } //----------------------------------------------------------------------------- // Returns the mode info for the current display device //----------------------------------------------------------------------------- void CMaterialSystem::GetDisplayMode( MaterialVideoMode_t& info ) const { ShaderDisplayMode_t shaderInfo; g_pShaderDeviceMgr->GetCurrentModeInfo( &shaderInfo, m_nAdapter ); ConvertModeStruct( &info, shaderInfo ); } void CMaterialSystem::ForceSingleThreaded() { if ( !ThreadInMainThread() ) { Error("Can't force single thread from within thread!\n"); } if ( GetThreadMode() != MATERIAL_SINGLE_THREADED ) { if ( m_pActiveAsyncJob && !m_pActiveAsyncJob->IsFinished() ) { m_pActiveAsyncJob->WaitForFinish(); } SafeRelease( m_pActiveAsyncJob ); ThreadRelease(); g_pShaderAPI->EnableShaderShaderMutex( false ); m_HardwareRenderContext.InitializeFrom(&m_QueuedRenderContexts[m_iCurQueuedContext]); m_pRenderContext.Set( &m_HardwareRenderContext ); for ( int i = 0; i < ARRAYSIZE( m_QueuedRenderContexts ); i++ ) { Assert( m_QueuedRenderContexts[i].IsInitialized() ); m_QueuedRenderContexts[i].EndQueue(true); } if( mat_debugalttab.GetBool() ) { Warning("Forcing queued mode off!\n"); } // NOTE: Must happen after EndQueue or proxies get bound again, which is bad. m_ThreadMode = MATERIAL_SINGLE_THREADED; m_bForcedSingleThreaded = true; } } //----------------------------------------------------------------------------- // Sets the mode... //----------------------------------------------------------------------------- bool CMaterialSystem::SetMode( void* hwnd, const MaterialSystem_Config_t &config ) { Assert( m_bGeneratedConfig ); ForceSingleThreaded(); ShaderDeviceInfo_t info; ConvertModeStruct( &info, config ); bool bPreviouslyUsingGraphics = g_pShaderDevice->IsUsingGraphics(); if( config.m_nVRModeAdapter != -1 && config.m_nVRModeAdapter < GetDisplayAdapterCount() && !bPreviouslyUsingGraphics ) { // if this is init-time, we need to override the adapter with the // VR mode adapter m_nAdapter = config.m_nVRModeAdapter; } bool bOk = g_pShaderAPI->SetMode( hwnd, m_nAdapter, info ); if ( !bOk ) return false; #if defined( USE_SDL ) uint width = info.m_DisplayMode.m_nWidth; uint height = info.m_DisplayMode.m_nHeight; g_pLauncherMgr->RenderedSize( width, height, true ); // true = set #endif TextureManager()->FreeStandardRenderTargets(); TextureManager()->AllocateStandardRenderTargets(); // FIXME: There's gotta be a better way of doing this? // After the first mode set, make sure to download any textures created // before the first mode set. After the first mode set, all textures // will be reloaded via the reaquireresources call. Same goes for procedural materials if ( !bPreviouslyUsingGraphics ) { if ( IsPC() ) { TextureManager()->RestoreRenderTargets(); TextureManager()->RestoreNonRenderTargetTextures(); if ( MaterialSystem()->CanUseEditorMaterials() ) { // We are in Hammer. Allocate these here since we aren't going to allocate // lightmaps. // HACK! // NOTE! : Overbright is 1.0 so that Hammer will work properly with the white bumped and unbumped lightmaps. MathLib_Init( 2.2f, 2.2f, 0.0f, OVERBRIGHT ); } AllocateStandardTextures(); TextureManager()->WarmTextureCache(); } if ( IsX360() ) { // shaderapi was not viable at init time, it is now TextureManager()->ReloadTextures(); AllocateStandardTextures(); } } g_pShaderDevice->SetHardwareGammaRamp( config.m_fMonitorGamma, config.m_fGammaTVRangeMin, config.m_fGammaTVRangeMax, config.m_fGammaTVExponent, config.m_bGammaTVEnabled ); // Copy over that state which isn't stored currently in convars g_config.m_VideoMode = config.m_VideoMode; g_config.SetFlag( MATSYS_VIDCFG_FLAGS_WINDOWED, config.Windowed() ); g_config.SetFlag( MATSYS_VIDCFG_FLAGS_STENCIL, config.Stencil() ); g_config.SetFlag( MATSYS_VIDCFG_FLAGS_VR_MODE, config.VRMode() ); WriteConfigIntoConVars( config ); extern void SetupDirtyDiskReportFunc(); SetupDirtyDiskReportFunc(); return true; } // Creates/ destroys a child window bool CMaterialSystem::AddView( void* hwnd ) { return g_pShaderDevice->AddView( hwnd ); } void CMaterialSystem::RemoveView( void* hwnd ) { g_pShaderDevice->RemoveView( hwnd ); } // Activates a view void CMaterialSystem::SetView( void* hwnd ) { g_pShaderDevice->SetView( hwnd ); } //----------------------------------------------------------------------------- // Installs a function to be called when we need to release vertex buffers //----------------------------------------------------------------------------- void CMaterialSystem::AddReleaseFunc( MaterialBufferReleaseFunc_t func ) { // Shouldn't have two copies in our list Assert( m_ReleaseFunc.Find( func ) == -1 ); m_ReleaseFunc.AddToTail( func ); } void CMaterialSystem::RemoveReleaseFunc( MaterialBufferReleaseFunc_t func ) { int i = m_ReleaseFunc.Find( func ); if( i != -1 ) m_ReleaseFunc.Remove(i); } //----------------------------------------------------------------------------- // Installs a function to be called when we need to restore vertex buffers //----------------------------------------------------------------------------- void CMaterialSystem::AddRestoreFunc( MaterialBufferRestoreFunc_t func ) { // Shouldn't have two copies in our list Assert( m_RestoreFunc.Find( func ) == -1 ); m_RestoreFunc.AddToTail( func ); } void CMaterialSystem::RemoveRestoreFunc( MaterialBufferRestoreFunc_t func ) { int i = m_RestoreFunc.Find( func ); Assert( i != -1 ); m_RestoreFunc.Remove(i); } //----------------------------------------------------------------------------- // Called by the shader API when it's just about to lose video memory //----------------------------------------------------------------------------- void CMaterialSystem::ReleaseShaderObjects() { if( mat_debugalttab.GetBool() ) { Warning( "mat_debugalttab: CMaterialSystem::ReleaseShaderObjects\n" ); } m_HardwareRenderContext.OnReleaseShaderObjects(); g_pOcclusionQueryMgr->FreeOcclusionQueryObjects(); TextureManager()->ReleaseTextures(); ReleaseStandardTextures(); GetLightmaps()->ReleaseLightmapPages(); for (int i = 0; i < m_ReleaseFunc.Count(); ++i) { m_ReleaseFunc[i](); } } void CMaterialSystem::RestoreShaderObjects( CreateInterfaceFn shaderFactory, int nChangeFlags ) { if ( shaderFactory ) { g_pShaderAPI = (IShaderAPI*)shaderFactory( SHADERAPI_INTERFACE_VERSION, NULL ); g_pShaderDevice = (IShaderDevice*)shaderFactory( SHADER_DEVICE_INTERFACE_VERSION, NULL ); g_pShaderShadow = (IShaderShadow*)shaderFactory( SHADERSHADOW_INTERFACE_VERSION, NULL ); } for( MaterialHandle_t i = m_MaterialDict.FirstMaterial(); i != m_MaterialDict.InvalidMaterial(); i = m_MaterialDict.NextMaterial( i ) ) { IMaterialInternal *pMat = m_MaterialDict.GetMaterialInternal( i ); if ( pMat ) pMat->ReportVarChanged( NULL ); } if ( mat_debugalttab.GetBool() ) { Warning( "mat_debugalttab: CMaterialSystem::RestoreShaderObjects\n" ); } // Shader API sets this to the max value the card supports when it resets // the state, so restore this value. g_pShaderAPI->SetAnisotropicLevel( GetCurrentConfigForVideoCard().m_nForceAnisotropicLevel ); // NOTE: render targets must be restored first, then vb/ibs, then managed textures // FIXME: Gotta restore lightmap pages + standard textures before restore funcs are called // because they use them both. TextureManager()->RestoreRenderTargets(); AllocateStandardTextures(); GetLightmaps()->RestoreLightmapPages(); g_pOcclusionQueryMgr->AllocOcclusionQueryObjects(); for (int i = 0; i < m_RestoreFunc.Count(); ++i) { m_RestoreFunc[i]( nChangeFlags ); } TextureManager()->RestoreNonRenderTargetTextures( ); } //----------------------------------------------------------------------------- // Use this to spew information about the 3D layer //----------------------------------------------------------------------------- void CMaterialSystem::SpewDriverInfo() const { Warning( "ShaderAPI: %s\n", m_pShaderDLL ); g_pShaderDevice->SpewDriverInfo(); } //----------------------------------------------------------------------------- // Color converting blitter //----------------------------------------------------------------------------- bool CMaterialSystem::ConvertImageFormat( unsigned char *src, enum ImageFormat srcImageFormat, unsigned char *dst, enum ImageFormat dstImageFormat, int width, int height, int srcStride, int dstStride ) { return ImageLoader::ConvertImageFormat( src, srcImageFormat, dst, dstImageFormat, width, height, srcStride, dstStride ); } //----------------------------------------------------------------------------- // Figures out the amount of memory needed by a bitmap //----------------------------------------------------------------------------- int CMaterialSystem::GetMemRequired( int width, int height, int depth, ImageFormat format, bool mipmap ) { return ImageLoader::GetMemRequired( width, height, depth, format, mipmap ); } //----------------------------------------------------------------------------- // Method to allow clients access to the MaterialSystem_Config //----------------------------------------------------------------------------- MaterialSystem_Config_t& CMaterialSystem::GetConfig() { //hushed Assert( m_bGeneratedConfig ); return g_config; } //----------------------------------------------------------------------------- // Gets image format info //----------------------------------------------------------------------------- ImageFormatInfo_t const& CMaterialSystem::ImageFormatInfo( ImageFormat fmt) const { return ImageLoader::ImageFormatInfo(fmt); } //----------------------------------------------------------------------------- // Reads keyvalues for information //----------------------------------------------------------------------------- static void ReadInt( KeyValues *pGroup, const char *pName, int nDefaultVal, int nUndefinedVal, int *pDest ) { *pDest = pGroup->GetInt( pName, nDefaultVal ); // Warning( "\t%s = %d\n", pName, *pDest ); Assert( *pDest != nUndefinedVal ); } static void ReadFlt( KeyValues *pGroup, const char *pName, float flDefaultVal, float flUndefinedVal, float *pDest ) { *pDest = pGroup->GetFloat( pName, flDefaultVal ); // Warning( "\t%s = %f\n", pName, *pDest ); Assert( *pDest != flUndefinedVal ); } static void LoadFlags( KeyValues *pGroup, const char *pName, bool bDefaultValue, unsigned int nFlag, unsigned int *pFlags ) { int nValue = pGroup->GetInt( pName, bDefaultValue ? 1 : 0 ); // Warning( "\t%s = %s\n", pName, nValue ? "true" : "false" ); if ( nValue ) { *pFlags |= nFlag; } } #define ASPECT_4x3 0 #define ASPECT_16x9 1 #define ASPECT_16x10 2 //----------------------------------------------------------------------------- // Purpose: aspect ratio mappings (for normal/widescreen combo) //----------------------------------------------------------------------------- struct RatioToAspectMode_t { int nAspectCode; float flAspectRatio; }; RatioToAspectMode_t g_RatioToAspectModes[] = { { ASPECT_4x3, 4.0f / 3.0f }, { ASPECT_16x9, 16.0f / 9.0f }, { ASPECT_16x10, 16.0f / 10.0f }, { ASPECT_16x10, 1.0f }, }; //----------------------------------------------------------------------------- // Purpose: returns the aspect ratio mode number for the given resolution //----------------------------------------------------------------------------- int GetScreenAspectMode( int width, int height ) { float flAspectRatio = (float)width / (float)height; // Just find the closest ratio float flClosestAspectRatioDist = 99999.0f; int nClosestAspectCode = ASPECT_4x3; for ( int i = 0; i < ARRAYSIZE(g_RatioToAspectModes); i++ ) { float flDist = fabs( g_RatioToAspectModes[i].flAspectRatio - flAspectRatio ); if ( flDist < flClosestAspectRatioDist ) { flClosestAspectRatioDist = flDist; nClosestAspectCode = g_RatioToAspectModes[i].nAspectCode; } } return nClosestAspectCode; } // Heuristic similar to one we put into L4D bool BetterResolution( int nRecommendedNumPixels, int nBestNumPixels, int nNewNumPixels ) { float flRecommendedNumPixels = (float) nRecommendedNumPixels; float flBestNumPixels = (float) nBestNumPixels; float flNewNumPixels = (float) nNewNumPixels; // Give ourselves a little head room float flTooBig = flRecommendedNumPixels * 1.1f; // If our best is too big and the new resolution is no bigger, pick it if ( ( flBestNumPixels > flTooBig ) && ( flNewNumPixels < flBestNumPixels ) ) return true; // Don't allow resolutions which are too big if ( flNewNumPixels > flTooBig ) return false; // Finally, just check for nearness to desired number of pixels float flDelta = fabs( flRecommendedNumPixels - flNewNumPixels ); float flBestDelta = fabs( flRecommendedNumPixels - flBestNumPixels ); if ( flDelta >= flBestDelta ) return false; return true; } //----------------------------------------------------------------------------- // This is called when the config changes //----------------------------------------------------------------------------- void CMaterialSystem::GenerateConfigFromConfigKeyValues( MaterialSystem_Config_t *pConfig, bool bOverwriteCommandLineValues ) { if ( !g_pShaderDeviceMgr || !pConfig ) return; // Look for the default recommended dx support level MaterialAdapterInfo_t adapterInfo; g_pShaderDeviceMgr->GetAdapterInfo( m_nAdapter, adapterInfo ); pConfig->dxSupportLevel = MAX( ABSOLUTE_MINIMUM_DXLEVEL, adapterInfo.m_nDXSupportLevel ); KeyValues *pKeyValues = new KeyValues( "config" ); if ( !GetRecommendedConfigurationInfo( pConfig->dxSupportLevel, pKeyValues ) ) { pKeyValues->deleteThis(); return; } pConfig->m_Flags = 0; #ifdef LINUX uint width = 0; uint height = 0; uint refreshHz = 0; // Not used #ifdef USE_SDL // query backbuffer size (window size whether FS or windowed) if( g_pLauncherMgr ) { g_pLauncherMgr->GetNativeDisplayInfo( -1, width, height, refreshHz ); } #endif pConfig->m_VideoMode.m_Width = width; pConfig->m_VideoMode.m_Height = height; #else // Get the recommended resolution from dxsupport.cfg, this assumes a 4:3 aspect ratio int nRecommendedWidth, nRecommendedHeight; ReadInt( pKeyValues, "DefaultRes", 640, -1, &nRecommendedWidth ); nRecommendedHeight = ( nRecommendedWidth * 3 ) / 4; int nRecommendedPixels = nRecommendedHeight * nRecommendedWidth; // Get the desktop resolution and aspect ratio ShaderDisplayMode_t displayMode; g_pShaderDeviceMgr->GetCurrentModeInfo( &displayMode, 0 ); int nCurrentScreenAspect = GetScreenAspectMode( displayMode.m_nWidth, displayMode.m_nHeight ); // Let's see what the device supports and pick the most appropriate mode g_pShaderDeviceMgr->GetModeInfo( &displayMode, 0, 0 ); int nBestMode, nBestWidth, nBestHeight; nBestMode = nBestWidth = nBestHeight = -1; int nBestPixels = displayMode.m_nHeight * displayMode.m_nWidth; int nNumVideoModes = g_pShaderDeviceMgr->GetModeCount( 0 ); // Pick the resolution with the right aspect ratio which matches the recommended resolution most closely for ( int i=0; iGetModeInfo( &displayMode, 0, i ); if ( nCurrentScreenAspect == GetScreenAspectMode( displayMode.m_nWidth, displayMode.m_nHeight ) ) { int nNumPixels = displayMode.m_nWidth * displayMode.m_nHeight; // Initially select the first mode we find of the correct aspect ratio for the display if ( ( nBestMode == -1) || BetterResolution( nRecommendedPixels, nBestPixels, nNumPixels ) ) { nBestMode = i; nBestPixels = nNumPixels; nBestWidth = displayMode.m_nWidth; nBestHeight = displayMode.m_nHeight; } } } // We found a good mode if ( nBestMode != -1 ) { pConfig->m_VideoMode.m_Width = nBestWidth; pConfig->m_VideoMode.m_Height = nBestHeight; } else // Fall back to 4:3 mode from the cfg file. This should never happen { pConfig->m_VideoMode.m_Width = nRecommendedWidth; pConfig->m_VideoMode.m_Height = nRecommendedHeight; } #if defined( _X360 ) pConfig->m_VideoMode.m_Width = GetSystemMetrics( SM_CXSCREEN ); pConfig->m_VideoMode.m_Height = GetSystemMetrics( SM_CYSCREEN ); #endif pKeyValues->deleteThis(); #endif // LINUX WriteConfigurationInfoToConVars( bOverwriteCommandLineValues ); m_bGeneratedConfig = true; } //----------------------------------------------------------------------------- // If mat_proxy goes to 0, we need to reload all materials, because their shader // params might have been messed with. //----------------------------------------------------------------------------- static void MatProxyCallback( IConVar *pConVar, const char *old, float flOldValue ) { ConVarRef var( pConVar ); int oldVal = (int)flOldValue; if ( var.GetInt() == 0 && oldVal != 0 ) { g_MaterialSystem.ReloadMaterials(); } } //----------------------------------------------------------------------------- // Convars that control the config record //----------------------------------------------------------------------------- static ConVar mat_vsync( "mat_vsync", "0", FCVAR_ALLOWED_IN_COMPETITIVE, "Force sync to vertical retrace", true, 0.0, true, 1.0 ); static ConVar mat_forcehardwaresync( "mat_forcehardwaresync", IsPC() ? "1" : "0", FCVAR_ALLOWED_IN_COMPETITIVE ); // Texture-related static ConVar mat_trilinear( "mat_trilinear", "0", FCVAR_ALLOWED_IN_COMPETITIVE ); #ifdef _X360 // The code that reads this out of moddefaults.txt is #if'd out for the 360, so force aniso to 2 here. static ConVar mat_forceaniso( "mat_forceaniso", "2", FCVAR_ARCHIVE ); // 0 = Bilinear, 1 = Trilinear, 2+ = Aniso #elif defined ( OSX ) static ConVar mat_forceaniso( "mat_forceaniso", "1", FCVAR_ARCHIVE, "Filtering level", true, 0, true, 8 ); // 0 = Bilinear, 1 = Trilinear, 2+ = Aniso #else static ConVar mat_forceaniso( "mat_forceaniso", "1", FCVAR_ARCHIVE ); // 0 = Bilinear, 1 = Trilinear, 2+ = Aniso #endif static ConVar mat_filterlightmaps( "mat_filterlightmaps", "1" ); static ConVar mat_filtertextures( "mat_filtertextures", "1" ); static ConVar mat_mipmaptextures( "mat_mipmaptextures", "1" ); static ConVar mat_vrmode_adapter( "mat_vrmode_adapter", "-1" ); static void mat_showmiplevels_Callback_f( IConVar *var, const char *pOldValue, float flOldValue ) { // turn off texture filtering if we are showing mip levels. mat_filtertextures.SetValue( ( ( ConVar * )var )->GetInt() == 0 ); } // Debugging textures static ConVar mat_showmiplevels( "mat_showmiplevels", "0", FCVAR_CHEAT, "color-code miplevels 2: normalmaps, 1: everything else", mat_showmiplevels_Callback_f ); static ConVar mat_specular( "mat_specular", "1", FCVAR_ALLOWED_IN_COMPETITIVE, "Enable/Disable specularity for perf testing. Will cause a material reload upon change." ); static ConVar mat_bumpmap( "mat_bumpmap", "1", FCVAR_ALLOWED_IN_COMPETITIVE ); static ConVar mat_phong( "mat_phong", "1" ); static ConVar mat_parallaxmap( "mat_parallaxmap", "1", FCVAR_HIDDEN | FCVAR_ALLOWED_IN_COMPETITIVE ); static ConVar mat_reducefillrate( "mat_reducefillrate", "0", FCVAR_ALLOWED_IN_COMPETITIVE ); #if defined( OSX ) && !defined( STAGING_ONLY ) && !defined( _DEBUG ) // OSX users are currently running OOM. We limit them to texture quality high here, which avoids the problem while we come up with a real solution. static ConVar mat_picmip( "mat_picmip", "1", FCVAR_ARCHIVE, "", true, 0, true, 4 ); #else static ConVar mat_picmip( "mat_picmip", "0", FCVAR_ARCHIVE, "", true, -1, true, 4 ); #endif static ConVar mat_slopescaledepthbias_normal( "mat_slopescaledepthbias_normal", "0.0f", FCVAR_CHEAT ); static ConVar mat_depthbias_normal( "mat_depthbias_normal", "0.0f", FCVAR_CHEAT | FCVAR_ALLOWED_IN_COMPETITIVE ); static ConVar mat_slopescaledepthbias_decal( "mat_slopescaledepthbias_decal", "-0.5", FCVAR_CHEAT ); // Reciprocals of these biases sent to API static ConVar mat_depthbias_decal( "mat_depthbias_decal", "-262144", FCVAR_CHEAT | FCVAR_ALLOWED_IN_COMPETITIVE ); // static ConVar mat_slopescaledepthbias_shadowmap( "mat_slopescaledepthbias_shadowmap", "16", FCVAR_CHEAT ); static ConVar mat_depthbias_shadowmap( "mat_depthbias_shadowmap", "0.0005", FCVAR_CHEAT ); static ConVar mat_monitorgamma( "mat_monitorgamma", "2.2", FCVAR_ARCHIVE, "monitor gamma (typically 2.2 for CRT and 1.7 for LCD)", true, 1.6f, true, 2.6f ); static ConVar mat_monitorgamma_tv_range_min( "mat_monitorgamma_tv_range_min", "16" ); static ConVar mat_monitorgamma_tv_range_max( "mat_monitorgamma_tv_range_max", "255" ); // TV's generally have a 2.5 gamma, so we need to convert our 2.2 frame buffer into a 2.5 frame buffer for display on a TV static ConVar mat_monitorgamma_tv_exp( "mat_monitorgamma_tv_exp", "2.5", 0, "", true, 1.0f, true, 4.0f ); #ifdef _X360 static ConVar mat_monitorgamma_tv_enabled( "mat_monitorgamma_tv_enabled", "1", FCVAR_ARCHIVE, "" ); #else static ConVar mat_monitorgamma_tv_enabled( "mat_monitorgamma_tv_enabled", "0", FCVAR_ARCHIVE, "" ); #endif static ConVar mat_antialias( "mat_antialias", "0", FCVAR_ARCHIVE ); static ConVar mat_aaquality( "mat_aaquality", "0", FCVAR_ARCHIVE ); static ConVar mat_diffuse( "mat_diffuse", "1", FCVAR_CHEAT ); //============================================================================= // HPE_BEGIN: // [Forrest] Make this a cheat variable because low res textures makes enemy // players and bullet impacts stand out more. //============================================================================= static ConVar mat_showlowresimage( "mat_showlowresimage", "0", FCVAR_CHEAT ); //============================================================================= // HPE_END //============================================================================= static ConVar mat_fullbright( "mat_fullbright","0", FCVAR_CHEAT ); static ConVar mat_normalmaps( "mat_normalmaps", "0", FCVAR_CHEAT ); static ConVar mat_measurefillrate( "mat_measurefillrate", "0", FCVAR_CHEAT ); static ConVar mat_fillrate( "mat_fillrate", "0", FCVAR_CHEAT ); static ConVar mat_reversedepth( "mat_reversedepth", "0", FCVAR_CHEAT ); #ifdef DX_TO_GL_ABSTRACTION static ConVar mat_bufferprimitives( "mat_bufferprimitives", "0" ); // I'm not seeing any benefit speed wise for buffered primitives on GLM/POSIX (checked via TF2 timedemo) - default to zero #else static ConVar mat_bufferprimitives( "mat_bufferprimitives", "1" ); #endif static ConVar mat_drawflat( "mat_drawflat","0", FCVAR_CHEAT ); static ConVar mat_softwarelighting( "mat_softwarelighting", "0", FCVAR_ALLOWED_IN_COMPETITIVE ); static ConVar mat_proxy( "mat_proxy", "0", FCVAR_CHEAT, "", MatProxyCallback ); static ConVar mat_norendering( "mat_norendering", "0", FCVAR_CHEAT ); static ConVar mat_compressedtextures( "mat_compressedtextures", "1" ); static ConVar mat_fastspecular( "mat_fastspecular", "1", 0, "Enable/Disable specularity for visual testing. Will not reload materials and will not affect perf." ); static ConVar mat_fastnobump( "mat_fastnobump", "0", FCVAR_CHEAT ); // Binds 1-texel normal map for quick internal testing // These are not controlled by the material system, but are limited by settings in the material system static ConVar r_shadowrendertotexture( "r_shadowrendertotexture", "0", FCVAR_ARCHIVE ); static ConVar r_flashlightdepthtexture( "r_flashlightdepthtexture", "1" ); #ifndef _X360 static ConVar r_waterforceexpensive( "r_waterforceexpensive", "0", FCVAR_ARCHIVE ); #endif static ConVar r_waterforcereflectentities( "r_waterforcereflectentities", "0", FCVAR_ALLOWED_IN_COMPETITIVE ); static ConVar mat_motion_blur_enabled( "mat_motion_blur_enabled", "0", FCVAR_ARCHIVE ); uint32 g_nDebugVarsSignature = 0; //----------------------------------------------------------------------------- // This is called when the config changes //----------------------------------------------------------------------------- void CMaterialSystem::ReadConfigFromConVars( MaterialSystem_Config_t *pConfig ) { if ( !g_pCVar ) return; // video panel config items #ifndef CSS_PERF_TEST pConfig->SetFlag( MATSYS_VIDCFG_FLAGS_NO_WAIT_FOR_VSYNC, !mat_vsync.GetBool() ); #endif pConfig->SetFlag( MATSYS_VIDCFG_FLAGS_FORCE_TRILINEAR, mat_trilinear.GetBool() ); pConfig->SetFlag( MATSYS_VIDCFG_FLAGS_DISABLE_SPECULAR, !mat_specular.GetBool() ); pConfig->SetFlag( MATSYS_VIDCFG_FLAGS_DISABLE_BUMPMAP, !mat_bumpmap.GetBool() ); pConfig->SetFlag( MATSYS_VIDCFG_FLAGS_DISABLE_PHONG, !mat_phong.GetBool() ); pConfig->SetFlag( MATSYS_VIDCFG_FLAGS_ENABLE_PARALLAX_MAPPING, mat_parallaxmap.GetBool() ); pConfig->SetFlag( MATSYS_VIDCFG_FLAGS_REDUCE_FILLRATE, mat_reducefillrate.GetBool() ); pConfig->m_nForceAnisotropicLevel = max( mat_forceaniso.GetInt(), 1 ); pConfig->dxSupportLevel = MAX( ABSOLUTE_MINIMUM_DXLEVEL, mat_dxlevel.GetInt() ); pConfig->skipMipLevels = mat_picmip.GetInt(); pConfig->SetFlag( MATSYS_VIDCFG_FLAGS_FORCE_HWSYNC, mat_forcehardwaresync.GetBool() ); pConfig->m_SlopeScaleDepthBias_Decal = mat_slopescaledepthbias_decal.GetFloat(); pConfig->m_DepthBias_Decal = mat_depthbias_decal.GetFloat(); pConfig->m_SlopeScaleDepthBias_Normal = mat_slopescaledepthbias_normal.GetFloat(); pConfig->m_DepthBias_Normal = mat_depthbias_normal.GetFloat(); pConfig->m_SlopeScaleDepthBias_ShadowMap = mat_slopescaledepthbias_shadowmap.GetFloat(); pConfig->m_DepthBias_ShadowMap = mat_depthbias_shadowmap.GetFloat(); pConfig->m_fMonitorGamma = mat_monitorgamma.GetFloat(); pConfig->m_fGammaTVRangeMin = mat_monitorgamma_tv_range_min.GetFloat(); pConfig->m_fGammaTVRangeMax = mat_monitorgamma_tv_range_max.GetFloat(); pConfig->m_fGammaTVExponent = mat_monitorgamma_tv_exp.GetFloat(); pConfig->m_bGammaTVEnabled = mat_monitorgamma_tv_enabled.GetBool(); pConfig->m_nAASamples = mat_antialias.GetInt(); pConfig->m_nAAQuality = mat_aaquality.GetInt(); pConfig->bShowDiffuse = mat_diffuse.GetInt() ? true : false; // pConfig->bAllowCheats = false; // hack pConfig->bShowNormalMap = mat_normalmaps.GetInt() ? true : false; pConfig->bShowLowResImage = mat_showlowresimage.GetInt() ? true : false; pConfig->bMeasureFillRate = mat_measurefillrate.GetInt() ? true : false; pConfig->bVisualizeFillRate = mat_fillrate.GetInt() ? true : false; pConfig->bFilterLightmaps = mat_filterlightmaps.GetInt() ? true : false; pConfig->bFilterTextures = mat_filtertextures.GetInt() ? true : false; pConfig->bMipMapTextures = mat_mipmaptextures.GetInt() ? true : false; pConfig->nShowMipLevels = mat_showmiplevels.GetInt(); pConfig->bReverseDepth = mat_reversedepth.GetInt() ? true : false; pConfig->bBufferPrimitives = mat_bufferprimitives.GetInt() ? true : false; pConfig->bDrawFlat = mat_drawflat.GetInt() ? true : false; pConfig->bSoftwareLighting = mat_softwarelighting.GetInt() ? true : false; pConfig->proxiesTestMode = mat_proxy.GetInt(); pConfig->m_bSuppressRendering = mat_norendering.GetInt() != 0; pConfig->bCompressedTextures = mat_compressedtextures.GetBool(); pConfig->bShowSpecular = mat_fastspecular.GetInt() ? true : false; pConfig->nFullbright = mat_fullbright.GetInt(); pConfig->m_bFastNoBump = mat_fastnobump.GetInt() != 0; pConfig->m_bMotionBlur = mat_motion_blur_enabled.GetBool(); pConfig->m_bSupportFlashlight = mat_supportflashlight.GetInt() != 0; pConfig->m_bShadowDepthTexture = r_flashlightdepthtexture.GetBool(); pConfig->SetFlag( MATSYS_VIDCFG_FLAGS_ENABLE_HDR, HardwareConfig() && HardwareConfig()->GetHDREnabled() ); // Render-to-texture shadows are disabled for dxlevel 70 because of material issues if ( pConfig->dxSupportLevel < 80 ) { r_shadowrendertotexture.SetValue( 0 ); #ifndef _X360 r_waterforceexpensive.SetValue( 0 ); #endif r_waterforcereflectentities.SetValue( 0 ); } if ( pConfig->dxSupportLevel < 90 ) { mat_requires_rt_alloc_first.SetValue( 1 ); r_flashlightdepthtexture.SetValue( 0 ); mat_motion_blur_enabled.SetValue( 0 ); pConfig->m_bShadowDepthTexture = false; pConfig->m_bMotionBlur = false; pConfig->SetFlag( MATSYS_VIDCFG_FLAGS_ENABLE_HDR, false ); } // VR mode adapter will generally be -1 if VR mode is not disabled pConfig->m_nVRModeAdapter = mat_vrmode_adapter.GetInt(); if( pConfig->m_nVRModeAdapter != -1 ) { // we must always be windowed in the config in VR mode // so that we will start up on the main display. Once // VR overrides the adapter the only place we can go // full screen is on the HMD. pConfig->SetFlag( MATSYS_VIDCFG_FLAGS_WINDOWED, true ); } } //----------------------------------------------------------------------------- // Was the convar specified on the command-line? //----------------------------------------------------------------------------- static bool WasConVarSpecifiedOnCommandLine( const char *pConfigName ) { // mat_dxlevel cannot be used on the command-line. Use -dxlevel instead. if ( !Q_stricmp( pConfigName, "mat_dxlevel" ) ) return false; return ( g_pCVar->GetCommandLineValue( pConfigName ) != NULL); } static const char *pConvarsAllowedInDXSupport[]={ "cl_detaildist", "cl_detailfade", "cl_ejectbrass", "dsp_off", "dsp_slow_cpu", "mat_antialias", "mat_aaquality", "mat_bumpmap", "mat_colorcorrection", "mat_depthbias_decal", "mat_depthbias_normal", "mat_disable_ps_patch", "mat_forceaniso", "mat_forcehardwaresync", "mat_forcemanagedtextureintohardware", "mat_hdr_level", "mat_parallaxmap", "mat_picmip", "mat_reducefillrate", "mat_reduceparticles", "mat_slopescaledepthbias_decal", "mat_slopescaledepthbias_normal", "mat_softwarelighting", "mat_specular", "mat_trilinear", "mat_vsync", "props_break_max_pieces", "r_VehicleViewDampen", "r_decal_cullsize", "r_dopixelvisibility", "r_drawdetailprops", "r_drawflecks", "r_drawmodeldecals", "r_dynamic", "r_lightcache_zbuffercache", "r_fastzreject", "r_overlayfademax", "r_overlayfademin", "r_rootlod", "r_screenfademaxsize", "r_screenfademinsize", "r_shadowrendertotexture", "r_shadows", "r_waterforceexpensive", "r_waterforcereflectentities", "sv_alternateticks", "mat_dxlevel", "mat_fallbackEyeRefract20", "r_shader_srgb", "mat_motion_blur_enabled", "r_flashlightdepthtexture", "mat_disablehwmorph", "r_portal_stencil_depth", "cl_blobbyshadows", "r_flex", "r_drawropes", "props_break_max_pieces", "cl_ragdoll_fade_time", "cl_ragdoll_forcefade", "tf_impactwatertimeenable", "fx_drawimpactdebris", "fx_drawimpactdust", "fx_drawmetalspark", "mem_min_heapsize", "mem_max_heapsize", "mem_max_heapsize_dedicated", "snd_spatialize_roundrobin", "snd_cull_duplicates", "cl_particle_retire_cost", "mat_phong" }; //----------------------------------------------------------------------------- // Write dxsupport info to configvars //----------------------------------------------------------------------------- void CMaterialSystem::WriteConfigurationInfoToConVars( bool bOverwriteCommandLineValues ) { if ( !g_pCVar ) return; KeyValues *pKeyValues = new KeyValues( "config" ); if ( !GetRecommendedConfigurationInfo( g_config.dxSupportLevel, pKeyValues ) ) { pKeyValues->deleteThis(); return; } for( KeyValues *pKey = pKeyValues->GetFirstSubKey(); pKey; pKey = pKey->GetNextKey() ) { const char *pConfigName = pKey->GetName(); if ( Q_strnicmp( pConfigName, "convar.", 7 )) continue; pConfigName += 7; // check if legal bool bLegalVar = false; for(int i=0; i< NELEMS( pConvarsAllowedInDXSupport ) ; i++) { if (! stricmp( pConvarsAllowedInDXSupport[i], pConfigName ) ) { bLegalVar = true; break; } } if (! bLegalVar ) { Msg(" Bad convar found in dxsupport - %s\n", pConfigName ); continue; } if ( bOverwriteCommandLineValues || !WasConVarSpecifiedOnCommandLine( pConfigName ) ) { ConVar *pConVar = g_pCVar->FindVar( pConfigName ); if ( !pConVar ) { // NOTE: This is essential for dealing with convars that // are not specified in either the app that uses the materialsystem // or the materialsystem itself // Yes, this causes a memory leak. Too bad! int nLen = Q_strlen( pConfigName ) + 1; char *pString = new char[nLen]; Q_strncpy( pString, pConfigName, nLen ); // Actually, we need two memory leaks, or we lose the default string. int nDefaultLen = Q_strlen( pKey->GetString() ) + 1; char *pDefaultString = new char[nDefaultLen]; Q_strncpy( pDefaultString, pKey->GetString(), nDefaultLen ); pConVar = new ConVar( pString, pDefaultString ); } pConVar->SetValue( pKey->GetString() ); } } pKeyValues->deleteThis(); } //----------------------------------------------------------------------------- // This is called when the config changes //----------------------------------------------------------------------------- void CMaterialSystem::WriteConfigIntoConVars( const MaterialSystem_Config_t &config ) { if ( !g_pCVar ) return; mat_vsync.SetValue( config.WaitForVSync() ); mat_trilinear.SetValue( config.ForceTrilinear() ); mat_specular.SetValue( config.UseSpecular() ); mat_bumpmap.SetValue( config.UseBumpmapping() ); mat_phong.SetValue( config.UsePhong() ); mat_parallaxmap.SetValue( config.UseParallaxMapping() ); mat_reducefillrate.SetValue( config.ReduceFillrate() ); mat_forceaniso.SetValue( config.m_nForceAnisotropicLevel ); mat_dxlevel.SetValue( MAX( ABSOLUTE_MINIMUM_DXLEVEL, config.dxSupportLevel ) ); mat_picmip.SetValue( config.skipMipLevels ); mat_forcehardwaresync.SetValue( config.ForceHWSync() ); mat_slopescaledepthbias_normal.SetValue( config.m_SlopeScaleDepthBias_Normal ); mat_depthbias_normal.SetValue( config.m_DepthBias_Normal ); mat_slopescaledepthbias_decal.SetValue( config.m_SlopeScaleDepthBias_Decal ); mat_depthbias_decal.SetValue( config.m_DepthBias_Decal ); mat_slopescaledepthbias_shadowmap.SetValue( config.m_SlopeScaleDepthBias_ShadowMap ); mat_depthbias_shadowmap.SetValue( config.m_DepthBias_ShadowMap ); mat_monitorgamma.SetValue( config.m_fMonitorGamma ); mat_monitorgamma_tv_range_min.SetValue( config.m_fGammaTVRangeMin ); mat_monitorgamma_tv_range_max.SetValue( config.m_fGammaTVRangeMax ); mat_monitorgamma_tv_exp.SetValue( config.m_fGammaTVExponent ); mat_monitorgamma_tv_enabled.SetValue( config.m_bGammaTVEnabled ); mat_antialias.SetValue( config.m_nAASamples ); mat_aaquality.SetValue( config.m_nAAQuality ); mat_diffuse.SetValue( config.bShowDiffuse ? 1 : 0 ); // config.bAllowCheats = false; // hack mat_normalmaps.SetValue( config.bShowNormalMap ? 1 : 0 ); mat_showlowresimage.SetValue( config.bShowLowResImage ? 1 : 0 ); mat_measurefillrate.SetValue( config.bMeasureFillRate ? 1 : 0 ); mat_fillrate.SetValue( config.bVisualizeFillRate ? 1 : 0 ); mat_filterlightmaps.SetValue( config.bFilterLightmaps ? 1 : 0 ); mat_filtertextures.SetValue( config.bFilterTextures ? 1 : 0 ); mat_mipmaptextures.SetValue( config.bMipMapTextures ? 1 : 0 ); mat_showmiplevels.SetValue( config.nShowMipLevels ); mat_reversedepth.SetValue( config.bReverseDepth ? 1 : 0 ); mat_bufferprimitives.SetValue( config.bBufferPrimitives ? 1 : 0 ); mat_drawflat.SetValue( config.bDrawFlat ? 1 : 0 ); mat_softwarelighting.SetValue( config.bSoftwareLighting ? 1 : 0 ); mat_proxy.SetValue( config.proxiesTestMode ); mat_norendering.SetValue( config.m_bSuppressRendering ? 1 : 0 ); mat_compressedtextures.SetValue( config.bCompressedTextures ? 1 : 0 ); mat_fastspecular.SetValue( config.bShowSpecular ? 1 : 0 ); mat_fullbright.SetValue( config.nFullbright ); mat_fastnobump.SetValue( config.m_bFastNoBump ? 1 : 0 ); bool hdre = config.HDREnabled(); HardwareConfig()->SetHDREnabled( hdre ); r_flashlightdepthtexture.SetValue( config.m_bShadowDepthTexture ? 1 : 0 ); mat_motion_blur_enabled.SetValue( config.m_bMotionBlur ? 1 : 0 ); mat_supportflashlight.SetValue( config.m_bSupportFlashlight ? 1 : 0 ); } //----------------------------------------------------------------------------- // This is called constantly to catch for config changes //----------------------------------------------------------------------------- bool CMaterialSystem::OverrideConfig( const MaterialSystem_Config_t &_config, bool forceUpdate ) { Assert( m_bGeneratedConfig ); if ( memcmp( &_config, &g_config, sizeof(_config) ) == 0 ) { return false; } MaterialLock_t hLock = Lock(); MaterialSystem_Config_t config = _config; bool bRedownloadLightmaps = false; bool bRedownloadTextures = false; bool recomputeSnapshots = false; bool dxSupportLevelChanged = false; bool bReloadMaterials = false; bool bResetAnisotropy = false; bool bSetStandardVertexShaderConstants = false; bool bMonitorGammaChanged = false; bool bVideoModeChange = false; bool bResetTextureFilter = false; bool bForceAltTab = false; // internal config settings #ifndef _X360 MaterialSystem_Config_Internal_t config_internal; config_internal.r_waterforceexpensive = r_waterforceexpensive.GetInt(); #endif if ( !g_pShaderDevice->IsUsingGraphics() ) { g_config = config; #ifndef _X360 g_config_internal = config_internal; #endif // Shouldn't call this more than once. ColorSpace::SetGamma( 2.2f, 2.2f, OVERBRIGHT, g_config.bAllowCheats, false ); Unlock( hLock ); return bRedownloadLightmaps; } // set the default state since we might be changing the number of // texture units, etc. (i.e. we don't want to leave unit 2 in overbright mode // if it isn't going to be reset upon each SetDefaultState because there is // effectively only one texture unit.) g_pShaderAPI->SetDefaultState(); // toggle dx emulation level if ( config.dxSupportLevel != g_config.dxSupportLevel ) { if ( mat_debugalttab.GetBool() ) { Warning( "mat_debugalttab: Setting dxSupportLevelChanged, bResetAnisotropy, and bReloadMaterials because new dxlevel = %d and old dxlevel = %d\n", ( int )config.dxSupportLevel, g_config.dxSupportLevel ); } dxSupportLevelChanged = true; bResetAnisotropy = true; // Necessary for DXSupportLevelChanged to work g_config.dxSupportLevel = config.dxSupportLevel; // This will reset config to match whatever the dxlevel wants // and slam to convars to match g_pShaderAPI->DXSupportLevelChanged( ); WriteConfigurationInfoToConVars(); ReadConfigFromConVars( &config ); bReloadMaterials = true; } if ( config.HDREnabled() != g_config.HDREnabled() ) { if ( mat_debugalttab.GetBool() ) { Warning( "mat_debugalttab: Setting forceUpdate, bReloadMaterials, and bForceAltTab because new hdr level = %d and old hdr level = %d\n", ( int )config.HDREnabled(), g_config.HDREnabled() ); } forceUpdate = true; bReloadMaterials = true; bForceAltTab = true; } if ( config.ShadowDepthTexture() != g_config.ShadowDepthTexture() ) { if ( mat_debugalttab.GetBool() ) { Warning( "mat_debugalttab: Setting forceUpdate, bReloadMaterials and recomputeSnapshots (ShadowDepthTexture changed: %d -> %d)\n", g_config.ShadowDepthTexture() ? 1 : 0, config.ShadowDepthTexture() ? 1 : 0 ); } forceUpdate = true; bReloadMaterials = true; recomputeSnapshots = true; } if ( config.VRMode() != g_config.VRMode() || config.m_nVRModeAdapter != g_config.m_nVRModeAdapter ) { bVideoModeChange = true; } // Don't use compressed textures for the moment if we don't support them if ( HardwareConfig() && !HardwareConfig()->SupportsCompressedTextures() ) { config.bCompressedTextures = false; } if ( forceUpdate ) { if ( mat_debugalttab.GetBool() ) { Warning( "mat_debugalttab: forceUpdate is true, therefore setting recomputeSnapshots, bRedownloadLightmaps, bRedownloadTextures, bResetAnisotropy, and bSetStandardVertexShaderConstants\n" ); } GetLightmaps()->EnableLightmapFiltering( config.bFilterLightmaps ); recomputeSnapshots = true; bRedownloadLightmaps = true; bRedownloadTextures = true; bResetAnisotropy = true; bSetStandardVertexShaderConstants = true; } // toggle bump mapping if ( config.UseBumpmapping() != g_config.UseBumpmapping() || config.UsePhong() != g_config.UsePhong() ) { if( mat_debugalttab.GetBool() ) { Warning( "mat_debugalttab: forceUpdate is true, therefore setting recomputeSnapshots, bRedownloadLightmaps, bRedownloadTextures, bResetAnisotropy, and bSetStandardVertexShaderConstants\n" ); } recomputeSnapshots = true; bReloadMaterials = true; bResetAnisotropy = true; } // toggle specularity if ( config.UseSpecular() != g_config.UseSpecular() ) { if( mat_debugalttab.GetBool() ) { Warning( "mat_debugalttab: new usespecular=%d, old usespecular=%d, setting recomputeSnapshots, bReloadMaterials, and bResetAnisotropy\n", ( int )config.UseSpecular(), ( int )g_config.UseSpecular() ); } recomputeSnapshots = true; bReloadMaterials = true; bResetAnisotropy = true; } // toggle parallax mapping if ( config.UseParallaxMapping() != g_config.UseParallaxMapping() ) { if ( mat_debugalttab.GetBool() ) { Warning( "mat_debugalttab: new UseParallaxMapping=%d, old UseParallaxMapping=%d, setting bReloadMaterials\n", ( int )config.UseParallaxMapping(), ( int )g_config.UseParallaxMapping() ); } bReloadMaterials = true; } // Reload materials if we want reduced fillrate if ( config.ReduceFillrate() != g_config.ReduceFillrate() ) { if ( mat_debugalttab.GetBool() ) { Warning( "mat_debugalttab: new ReduceFillrate=%d, old ReduceFillrate=%d, setting bReloadMaterials\n", ( int )config.ReduceFillrate(), ( int )g_config.ReduceFillrate() ); } bReloadMaterials = true; } // toggle reverse depth if ( config.bReverseDepth != g_config.bReverseDepth ) { if( mat_debugalttab.GetBool() ) { Warning( "mat_debugalttab: new ReduceFillrate=%d, old ReduceFillrate=%d, setting bReloadMaterials\n", ( int )config.ReduceFillrate(), ( int )g_config.ReduceFillrate() ); } recomputeSnapshots = true; bResetAnisotropy = true; } // toggle no transparency if ( config.bNoTransparency != g_config.bNoTransparency ) { if ( mat_debugalttab.GetBool() ) { Warning( "mat_debugalttab: new bNoTransparency=%d, old bNoTransparency=%d, setting recomputeSnapshots and bResetAnisotropy\n", ( int )config.bNoTransparency, ( int )g_config.bNoTransparency ); } recomputeSnapshots = true; bResetAnisotropy = true; } // toggle lightmap filtering if ( config.bFilterLightmaps != g_config.bFilterLightmaps ) { if ( mat_debugalttab.GetBool() ) { Warning( "mat_debugalttab: new bFilterLightmaps=%d, old bFilterLightmaps=%d, setting EnableLightmapFiltering\n", ( int )config.bFilterLightmaps, ( int )g_config.bFilterLightmaps ); } GetLightmaps()->EnableLightmapFiltering( config.bFilterLightmaps ); } // toggle software lighting if ( config.bSoftwareLighting != g_config.bSoftwareLighting ) { if( mat_debugalttab.GetBool() ) { Warning( "mat_debugalttab: new bSoftwareLighting=%d, old bSoftwareLighting=%d, setting bReloadMaterials\n", ( int )config.bFilterLightmaps, ( int )g_config.bFilterLightmaps ); } bReloadMaterials = true; } #ifndef _X360 if ( config_internal.r_waterforceexpensive != g_config_internal.r_waterforceexpensive ) { if ( mat_debugalttab.GetBool() ) { Warning( "mat_debugalttab: new r_waterforceexpensive=%d, old r_waterforceexpensive=%d, setting bReloadMaterials\n", ( int )config_internal.r_waterforceexpensive, ( int )g_config_internal.r_waterforceexpensive ); } bReloadMaterials = true; } #endif // generic things that cause us to redownload lightmaps if ( config.bAllowCheats != g_config.bAllowCheats ) { if ( mat_debugalttab.GetBool() ) { Warning( "mat_debugalttab: new bAllowCheats=%d, old bAllowCheats=%d, setting bRedownloadLightmaps\n", ( int )config.bAllowCheats, ( int )g_config.bAllowCheats ); } bRedownloadLightmaps = true; } // generic things that cause us to redownload textures if ( config.bAllowCheats != g_config.bAllowCheats || config.skipMipLevels != g_config.skipMipLevels || config.nShowMipLevels != g_config.nShowMipLevels || ((config.bCompressedTextures != g_config.bCompressedTextures) && HardwareConfig()->SupportsCompressedTextures())|| config.bShowLowResImage != g_config.bShowLowResImage ) { if ( mat_debugalttab.GetBool() ) { Warning( "mat_debugalttab: setting bRedownloadTextures, recomputeSnapshots, and bResetAnisotropy\n" ); } bRedownloadTextures = true; recomputeSnapshots = true; bResetAnisotropy = true; } if ( config.ForceTrilinear() != g_config.ForceTrilinear() ) { if ( mat_debugalttab.GetBool() ) { Warning( "mat_debugalttab: new forcetrilinear: %d, old forcetrilinear: %d, setting bResetTextureFilter\n", ( int )config.ForceTrilinear(), ( int )g_config.ForceTrilinear() ); } bResetTextureFilter = true; } if ( config.m_nForceAnisotropicLevel != g_config.m_nForceAnisotropicLevel ) { if( mat_debugalttab.GetBool() ) { Warning( "mat_debugalttab: new m_nForceAnisotropicLevel: %d, old m_nForceAnisotropicLevel: %d, setting bResetAnisotropy and bResetTextureFilter\n", ( int )config.ForceTrilinear(), ( int )g_config.ForceTrilinear() ); } bResetAnisotropy = true; bResetTextureFilter = true; } if ( config.m_fMonitorGamma != g_config.m_fMonitorGamma || config.m_fGammaTVRangeMin != g_config.m_fGammaTVRangeMin || config.m_fGammaTVRangeMax != g_config.m_fGammaTVRangeMax || config.m_fGammaTVExponent != g_config.m_fGammaTVExponent || config.m_bGammaTVEnabled != g_config.m_bGammaTVEnabled ) { if( mat_debugalttab.GetBool() ) { Warning( "mat_debugalttab: new monitorgamma: %f, old monitorgamma: %f, setting bMonitorGammaChanged\n", config.m_fMonitorGamma, g_config.m_fMonitorGamma ); } bMonitorGammaChanged = true; } if ( config.m_VideoMode.m_Width != g_config.m_VideoMode.m_Width || config.m_VideoMode.m_Height != g_config.m_VideoMode.m_Height || config.m_VideoMode.m_RefreshRate != g_config.m_VideoMode.m_RefreshRate || config.m_nAASamples != g_config.m_nAASamples || config.m_nAAQuality != g_config.m_nAAQuality || config.Windowed() != g_config.Windowed() || config.Stencil() != g_config.Stencil() ) { if( mat_debugalttab.GetBool() ) { Warning( "mat_debugalttab: video mode changed for one of various reasons\n" ); } bVideoModeChange = true; } // toggle wait for vsync // In GL, we just check this and it's just a function call--no need for device shenanigans. #if !defined( DX_TO_GL_ABSTRACTION ) if ( (IsX360() || !config.Windowed()) && (config.WaitForVSync() != g_config.WaitForVSync()) ) { # if ( !defined( _X360 ) ) { if ( mat_debugalttab.GetBool() ) { Warning( "mat_debugalttab: video mode changed due to toggle of wait for vsync\n" ); } bVideoModeChange = true; } # else { g_pShaderAPI->EnableVSync_360( config.WaitForVSync() ); } # endif } #endif g_config = config; #ifndef _X360 g_config_internal = config_internal; #endif if ( dxSupportLevelChanged ) { if ( mat_debugalttab.GetBool() ) { Warning( "mat_debugalttab: dx support level changed, clearing snapshots\n" ); } // All snapshots have basically become invalid; g_pShaderAPI->ClearSnapshots(); } if ( bRedownloadTextures || bRedownloadLightmaps ) { // Get rid of this? ColorSpace::SetGamma( 2.2f, 2.2f, OVERBRIGHT, g_config.bAllowCheats, false ); } // 360 does not support various configuration changes and cannot reload materials if ( !IsX360() ) { if ( bResetAnisotropy || recomputeSnapshots || bRedownloadLightmaps || bRedownloadTextures || bResetAnisotropy || bVideoModeChange || bSetStandardVertexShaderConstants || bResetTextureFilter ) { Unlock( hLock ); ForceSingleThreaded(); hLock = Lock(); } } if ( bReloadMaterials && !IsX360() ) { if ( mat_debugalttab.GetBool() ) { Warning( "mat_debugalttab: ReloadMaterials\n" ); } ReloadMaterials(); } // 360 does not support various configuration changes and cannot reload textures // 360 has no reason to reload textures, it's unnecessary and massively expensive // 360 does not use this path as an init affect to get its textures into memory if ( bRedownloadTextures && !IsX360() ) { if ( mat_debugalttab.GetBool() ) { Warning( "mat_debugalttab: redownloading textures\n" ); } if ( g_pShaderAPI->CanDownloadTextures() ) { TextureManager()->RestoreRenderTargets(); TextureManager()->RestoreNonRenderTargetTextures(); } } else if ( bResetTextureFilter ) { if( mat_debugalttab.GetBool() ) { Warning( "mat_debugalttab: ResetTextureFilteringState\n" ); } TextureManager()->ResetTextureFilteringState(); } // Recompute all state snapshots if ( recomputeSnapshots ) { if( mat_debugalttab.GetBool() ) { Warning( "mat_debugalttab: RecomputeAllStateSnapshots\n" ); } RecomputeAllStateSnapshots(); } if ( bResetAnisotropy ) { if( mat_debugalttab.GetBool() ) { Warning( "mat_debugalttab: SetAnisotropicLevel\n" ); } g_pShaderAPI->SetAnisotropicLevel( config.m_nForceAnisotropicLevel ); } if ( bSetStandardVertexShaderConstants ) { if ( mat_debugalttab.GetBool() ) { Warning( "mat_debugalttab: SetStandardVertexShaderConstants\n" ); } g_pShaderAPI->SetStandardVertexShaderConstants( OVERBRIGHT ); } if ( bMonitorGammaChanged ) { if( mat_debugalttab.GetBool() ) { Warning( "mat_debugalttab: SetHardwareGammaRamp\n" ); } g_pShaderDevice->SetHardwareGammaRamp( config.m_fMonitorGamma, config.m_fGammaTVRangeMin, config.m_fGammaTVRangeMax, config.m_fGammaTVExponent, config.m_bGammaTVEnabled ); } if ( bVideoModeChange ) { if ( mat_debugalttab.GetBool() ) { Warning( "mat_debugalttab: ChangeVideoMode\n" ); } ShaderDeviceInfo_t info; ConvertModeStruct( &info, config ); g_pShaderAPI->ChangeVideoMode( info ); #if defined( USE_SDL ) uint width = info.m_DisplayMode.m_nWidth; uint height = info.m_DisplayMode.m_nHeight; g_pLauncherMgr->RenderedSize( width, height, true ); // true = set #endif } if ( bForceAltTab ) { // Simulate an Alt-Tab // g_pShaderAPI->ReleaseResources(); // g_pShaderAPI->ReacquireResources(); } Unlock( hLock ); if ( bVideoModeChange ) { ForceSingleThreaded(); } return bRedownloadLightmaps; } //----------------------------------------------------------------------------- // This is called when the config changes //----------------------------------------------------------------------------- bool CMaterialSystem::UpdateConfig( bool forceUpdate ) { int nUpdateFlags = 0; if ( g_pCVar && g_pCVar->HasQueuedMaterialThreadConVarSets() ) { ForceSingleThreaded(); nUpdateFlags = g_pCVar->ProcessQueuedMaterialThreadConVarSets(); } MaterialSystem_Config_t config = g_config; ReadConfigFromConVars( &config ); return OverrideConfig( config, forceUpdate ); } void CMaterialSystem::ReleaseResources() { if( mat_debugalttab.GetBool() ) { Warning( "mat_debugalttab: CMaterialSystem::ReleaseResources\n" ); } g_pShaderAPI->FlushBufferedPrimitives(); g_pShaderDevice->ReleaseResources(); } void CMaterialSystem::ReacquireResources() { if( mat_debugalttab.GetBool() ) { Warning( "mat_debugalttab: CMaterialSystem::ReacquireResources\n" ); } g_pShaderDevice->ReacquireResources(); } //----------------------------------------------------------------------------- // //----------------------------------------------------------------------------- bool CMaterialSystem::OnDrawMesh( IMesh *pMesh, int firstIndex, int numIndices ) { if ( IsInStubMode() ) { return false; } return GetRenderContextInternal()->OnDrawMesh( pMesh, firstIndex, numIndices ); } bool CMaterialSystem::OnDrawMesh( IMesh *pMesh, CPrimList *pLists, int nLists ) { if ( IsInStubMode() ) { return false; } return GetRenderContextInternal()->OnDrawMesh( pMesh, pLists, nLists ); } void CMaterialSystem::OnThreadEvent( uint32 threadEvent ) { m_threadEvents.AddToTail( threadEvent ); } ShaderAPITextureHandle_t CMaterialSystem::GetShaderAPITextureBindHandle( ITexture *pTexture, int nFrame, int nTextureChannel ) { return ShaderSystem()->GetShaderAPITextureBindHandle( pTexture, nFrame, nTextureChannel ); } //----------------------------------------------------------------------------- // Creates a procedural texture //----------------------------------------------------------------------------- ITexture *CMaterialSystem::CreateProceduralTexture( const char *pTextureName, const char *pTextureGroupName, int w, int h, ImageFormat fmt, int nFlags ) { ITextureInternal* pTex = TextureManager()->CreateProceduralTexture( pTextureName, pTextureGroupName, w, h, 1, fmt, nFlags ); return pTex; } //----------------------------------------------------------------------------- // Create new materials (currently only used by the editor!) //----------------------------------------------------------------------------- IMaterial *CMaterialSystem::CreateMaterial( const char *pMaterialName, KeyValues *pVMTKeyValues ) { // For not, just create a material with no default settings IMaterialInternal* pMaterial = IMaterialInternal::CreateMaterial( pMaterialName, TEXTURE_GROUP_OTHER, pVMTKeyValues ); pMaterial->IncrementReferenceCount(); AddMaterialToMaterialList( pMaterial ); return pMaterial->GetQueueFriendlyVersion(); } //----------------------------------------------------------------------------- // Finds or creates a procedural material //----------------------------------------------------------------------------- IMaterial *CMaterialSystem::FindProceduralMaterial( const char *pMaterialName, const char *pTextureGroupName, KeyValues *pVMTKeyValues ) { // We need lower-case symbols for this to work int nLen = Q_strlen( pMaterialName ) + 1; char *pTemp = (char*)stackalloc( nLen ); Q_strncpy( pTemp, pMaterialName, nLen ); Q_strlower( pTemp ); Q_FixSlashes( pTemp, '/' ); // 'true' causes the search to find procedural materials IMaterialInternal *pMaterial = m_MaterialDict.FindMaterial( pTemp, true ); if ( pMaterial ) { pVMTKeyValues->deleteThis(); } else { pMaterial = IMaterialInternal::CreateMaterial( pMaterialName, pTextureGroupName, pVMTKeyValues ); AddMaterialToMaterialList( static_cast( pMaterial ) ); } return pMaterial->GetQueueFriendlyVersion(); } //----------------------------------------------------------------------------- // Search by name //----------------------------------------------------------------------------- bool CMaterialSystem::IsMaterialLoaded( char const *pMaterialName ) { // We need lower-case symbols for this to work int nLen = Q_strlen( pMaterialName ) + 1; char *pFixedNameTemp = (char*)stackalloc( nLen ); char *pTemp = (char*)stackalloc( nLen ); Q_strncpy( pFixedNameTemp, pMaterialName, nLen ); Q_strlower( pFixedNameTemp ); #ifdef POSIX // strip extensions needs correct slashing for the OS, so fix it up early for Posix Q_FixSlashes( pFixedNameTemp, '/' ); #endif Q_StripExtension( pFixedNameTemp, pTemp, nLen ); #ifndef POSIX Q_FixSlashes( pTemp, '/' ); #endif Assert( nLen >= Q_strlen( pTemp ) + 1 ); return m_MaterialDict.FindMaterial( pTemp, false ) != NULL; // 'false' causes the search to find only file-created materials } //----------------------------------------------------------------------------- // Search by name //----------------------------------------------------------------------------- IMaterial* CMaterialSystem::FindMaterial( char const *pMaterialName, const char *pTextureGroupName, bool bComplain, const char *pComplainPrefix ) { return FindMaterialEx( pMaterialName, pTextureGroupName, MATERIAL_FINDCONTEXT_NONE, bComplain, pComplainPrefix ); } //----------------------------------------------------------------------------- // Search by name //----------------------------------------------------------------------------- IMaterial* CMaterialSystem::FindMaterialEx( char const* pMaterialName, const char *pTextureGroupName, int nContext, bool bComplain, const char *pComplainPrefix ) { // We need lower-case symbols for this to work int nLen = Q_strlen( pMaterialName ) + 1; char *pFixedNameTemp = (char*)stackalloc( nLen ); char *pTemp = (char*)stackalloc( nLen ); Q_strncpy( pFixedNameTemp, pMaterialName, nLen ); Q_strlower( pFixedNameTemp ); #ifdef POSIX // strip extensions needs correct slashing for the OS, so fix it up early for Posix Q_FixSlashes( pFixedNameTemp, '/' ); #endif Q_StripExtension( pFixedNameTemp, pTemp, nLen ); #ifndef POSIX Q_FixSlashes( pTemp, '/' ); #endif Assert( nLen >= Q_strlen( pTemp ) + 1 ); IMaterialInternal *pExistingMaterial = m_MaterialDict.FindMaterial( pTemp, false ); // 'false' causes the search to find only file-created materials if ( pExistingMaterial ) return pExistingMaterial->GetQueueFriendlyVersion(); // It hasn't been seen yet, so let's check to see if it's in the filesystem. nLen = Q_strlen( "materials/" ) + Q_strlen( pTemp ) + Q_strlen( ".vmt" ) + 1; char *vmtName = (char *)stackalloc( nLen ); // Check to see if this is a UNC-specified material name bool bIsUNC = pTemp[0] == '/' && pTemp[1] == '/' && pTemp[2] != '/'; if ( !bIsUNC ) { Q_strncpy( vmtName, "materials/", nLen ); Q_strncat( vmtName, pTemp, nLen, COPY_ALL_CHARACTERS ); V_FixDoubleSlashes( vmtName ); } else { Q_strncpy( vmtName, pTemp, nLen ); } //Q_strncat( vmtName, ".vmt", nLen, COPY_ALL_CHARACTERS ); Assert( nLen >= (int)Q_strlen( vmtName ) + 1 ); CUtlVector includes; KeyValues *pKeyValues = new KeyValues("vmt"); KeyValues *pPatchKeyValues = new KeyValues( "vmt_patches" ); if ( !LoadVMTFile( *pKeyValues, *pPatchKeyValues, vmtName, true, &includes ) ) { pKeyValues->deleteThis(); pKeyValues = NULL; pPatchKeyValues->deleteThis(); pPatchKeyValues = NULL; } else { char *matNameWithExtension; nLen = Q_strlen( pTemp ) + Q_strlen( ".vmt" ) + 1; matNameWithExtension = (char *)stackalloc( nLen ); Q_strncpy( matNameWithExtension, pTemp, nLen ); Q_strncat( matNameWithExtension, ".vmt", nLen, COPY_ALL_CHARACTERS ); IMaterialInternal *pMat = NULL; if ( !Q_stricmp( pKeyValues->GetName(), "subrect" ) ) { pMat = m_MaterialDict.AddMaterialSubRect( matNameWithExtension, pTextureGroupName, pKeyValues, pPatchKeyValues ); } else { pMat = m_MaterialDict.AddMaterial( matNameWithExtension, pTextureGroupName ); if ( g_pShaderDevice->IsUsingGraphics() ) { if ( !bIsUNC ) { m_pForcedTextureLoadPathID = "GAME"; } pMat->PrecacheVars( pKeyValues, pPatchKeyValues, &includes, nContext ); m_pForcedTextureLoadPathID = NULL; } } pKeyValues->deleteThis(); pPatchKeyValues->deleteThis(); return pMat->GetQueueFriendlyVersion(); } if ( bComplain ) { Assert( pTemp ); // convert to lowercase nLen = Q_strlen(pTemp) + 1 ; char *name = (char*)stackalloc( nLen ); Q_strncpy( name, pTemp, nLen ); Q_strlower( name ); if ( m_MaterialDict.NoteMissing( name ) ) { if ( pComplainPrefix ) { DevWarning( "%s", pComplainPrefix ); } DevWarning( "material \"%s\" not found.\n", name ); } } return g_pErrorMaterial->GetRealTimeVersion(); } void CMaterialSystem::SetAsyncTextureLoadCache( void* h ) { Assert( !h || !m_hAsyncLoadFileCache ); m_hAsyncLoadFileCache = ( FileCacheHandle_t ) h; } static char const *TextureAliases[] = { // this table is only here for backwards compatibility where a render target change was made, // and we wish to redirect an existing old client.dll for hl2 to reference this texture. It's // not meant as a general texture aliasing system. "_rt_FullFrameFB1", "_rt_FullScreen" }; ITexture *CMaterialSystem::FindTexture( char const *pTextureName, const char *pTextureGroupName, bool bComplain /* = false */, int nAdditionalCreationFlags /* = 0 */ ) { if ( m_hAsyncLoadFileCache && !TextureManager()->IsTextureLoaded( pTextureName ) ) { bool bIsUNCName = ( pTextureName[0] == '/' && pTextureName[1] == '/' && pTextureName[2] != '/' ); if ( !bIsUNCName ) { const char* pPathID = "GAME"; char buf[MAX_PATH]; V_snprintf( buf, MAX_PATH, "materials/%s", pTextureName ); V_SetExtension( buf, ".vtf", sizeof( buf ) ); const char *pbuf = buf; g_pFullFileSystem->AddFilesToFileCache( m_hAsyncLoadFileCache, &pbuf, 1, pPathID ); return TextureManager()->ErrorTexture(); } } ITextureInternal *pTexture = TextureManager()->FindOrLoadTexture( pTextureName, pTextureGroupName, nAdditionalCreationFlags ); Assert( pTexture ); if ( pTexture->IsError() ) { if ( IsPC() ) { for ( int i=0; iIsTextureLoaded( pTextureName ); } void CMaterialSystem::AddTextureAlias( const char *pAlias, const char *pRealName ) { TextureManager()->AddTextureAlias( pAlias, pRealName ); } void CMaterialSystem::RemoveTextureAlias( const char *pAlias ) { TextureManager()->RemoveTextureAlias( pAlias ); } void CMaterialSystem::SetExcludedTextures( const char *pScriptName ) { TextureManager()->SetExcludedTextures( pScriptName ); } void CMaterialSystem::UpdateExcludedTextures( void ) { TextureManager()->UpdateExcludedTextures(); // Have to re-setup the representative textures since they may have been removed out from under us by the queued loader. for (MaterialHandle_t i = FirstMaterial(); i != InvalidMaterial(); i = NextMaterial(i) ) { GetMaterialInternal(i)->FindRepresentativeTexture(); GetMaterialInternal(i)->PrecacheMappingDimensions(); } } //----------------------------------------------------------------------------- // Recomputes state snapshots for all materials //----------------------------------------------------------------------------- void CMaterialSystem::RecomputeAllStateSnapshots() { g_pShaderAPI->ClearSnapshots(); for (MaterialHandle_t i = FirstMaterial(); i != InvalidMaterial(); i = NextMaterial(i) ) { GetMaterialInternal(i)->RecomputeStateSnapshots(); } g_pShaderAPI->ResetRenderState(); } //----------------------------------------------------------------------------- // Suspend texture streaming operations, for abormal periods such as loading //----------------------------------------------------------------------------- void CMaterialSystem::SuspendTextureStreaming() { TextureManager()->SuspendTextureStreaming(); } //----------------------------------------------------------------------------- // Inverse of SuspendTextureStreaming //----------------------------------------------------------------------------- void CMaterialSystem::ResumeTextureStreaming() { TextureManager()->ResumeTextureStreaming(); } //----------------------------------------------------------------------------- // Uncache all materials //----------------------------------------------------------------------------- void CMaterialSystem::UncacheAllMaterials() { MaterialLock_t hLock = Lock(); Flush( true ); m_bReplacementFilesValid = false; for ( MaterialHandle_t i = FirstMaterial(); i != InvalidMaterial(); i = NextMaterial( i ) ) { Assert( GetMaterialInternal(i)->GetReferenceCount() >= 0 ); GetMaterialInternal(i)->Uncache(); } TextureManager()->RemoveUnusedTextures(); Unlock( hLock ); } //----------------------------------------------------------------------------- // Uncache unused materials //----------------------------------------------------------------------------- void CMaterialSystem::UncacheUnusedMaterials( bool bRecomputeStateSnapshots ) { tmZone( TELEMETRY_LEVEL0, TMZF_NONE, "%s", __FUNCTION__ ); MaterialLock_t hLock = Lock(); Flush( true ); // We need two loops to make sure we don't reset the snapshots if nothing got removed, // otherwise the snapshot recomputation is expensive and avoided at load time bool bDidUncacheMaterial = false; for ( MaterialHandle_t i = FirstMaterial(); i != InvalidMaterial(); i = NextMaterial(i) ) { IMaterialInternal *pMatInternal = GetMaterialInternal( i ); Assert( pMatInternal->GetReferenceCount() >= 0 ); if ( pMatInternal->GetReferenceCount() <= 0 ) { bDidUncacheMaterial = true; pMatInternal->Uncache(); } } if ( IsX360() && bRecomputeStateSnapshots ) { // Always recompute snapshots because the queued loading process skips it during pre-purge, // allowing it to happen just once, here. bDidUncacheMaterial = true; } if ( bDidUncacheMaterial && bRecomputeStateSnapshots ) { // Clear the state snapshots since we are going to rebuild all of them. g_pShaderAPI->ClearSnapshots(); g_pShaderAPI->ClearVertexAndPixelShaderRefCounts(); for ( MaterialHandle_t i = FirstMaterial(); i != InvalidMaterial(); i = NextMaterial(i) ) { IMaterialInternal *pMatInternal = GetMaterialInternal(i); if ( pMatInternal->GetReferenceCount() > 0 ) { // Recompute the state snapshots for the materials that we are keeping // since we blew all of them away above. pMatInternal->RecomputeStateSnapshots(); } } g_pShaderAPI->PurgeUnusedVertexAndPixelShaders(); } if ( bRecomputeStateSnapshots ) { // kick out all per material context datas for( MaterialHandle_t i = m_MaterialDict.FirstMaterial(); i != m_MaterialDict.InvalidMaterial(); i = m_MaterialDict.NextMaterial( i ) ) { GetMaterialInternal(i)->ClearContextData(); } } TextureManager()->RemoveUnusedTextures(); Unlock( hLock ); } //----------------------------------------------------------------------------- // Release temporary HW memory... //----------------------------------------------------------------------------- void CMaterialSystem::ResetTempHWMemory( bool bExitingLevel ) { g_pShaderAPI->DestroyVertexBuffers( bExitingLevel ); TextureManager()->ReleaseTempRenderTargetBits(); } //----------------------------------------------------------------------------- // Cache used materials //----------------------------------------------------------------------------- void CMaterialSystem::CacheUsedMaterials( ) { g_pShaderAPI->EvictManagedResources(); size_t count = 0; for (MaterialHandle_t i = FirstMaterial(); i != InvalidMaterial(); i = NextMaterial(i) ) { // Some (mac) drivers (amd) seem to keep extra resources around on uploads until the next frame swap. This // injects pointless synthetic swaps (between already-static load frames) if ( mat_texture_reload_frame_swap_workaround.GetBool() ) { if ( count++ % 20 == 0 ) { Flush(true); SwapBuffers(); // Not the right thing to call } } IMaterialInternal* pMat = GetMaterialInternal(i); Assert( pMat->GetReferenceCount() >= 0 ); if( pMat->GetReferenceCount() > 0 ) { pMat->Precache(); } } if ( mat_forcemanagedtextureintohardware.GetBool() ) { TextureManager()->ForceAllTexturesIntoHardware(); } } //----------------------------------------------------------------------------- // Reloads textures + materials //----------------------------------------------------------------------------- void CMaterialSystem::ReloadTextures( void ) { // Add by jay in changelist 621420. ForceSingleThreaded(); // 360 should not have gotten here Assert( !IsX360() ); KeyValuesSystem()->InvalidateCache(); TextureManager()->RestoreRenderTargets(); TextureManager()->RestoreNonRenderTargetTextures(); } void CMaterialSystem::ReloadMaterials( const char *pSubString ) { bool bDeviceReady = g_pShaderAPI->CanDownloadTextures(); if ( !bDeviceReady ) { //$ TODO: Merge m_bDeferredMaterialReload from cs:go? Msg( "%s bDeviceReady false\n", __FUNCTION__ ); } // Add by jay in changelist 621420. ForceSingleThreaded(); KeyValuesSystem()->InvalidateCache(); bool bVertexFormatChanged = false; if( pSubString == NULL ) { bVertexFormatChanged = true; UncacheAllMaterials(); CacheUsedMaterials(); } else { Flush( false ); char const chMultiDelim = '*'; CUtlVector< char > arrSearchSubString; CUtlVector< char const * > arrSearchItems; if ( strchr( pSubString, chMultiDelim ) ) { arrSearchSubString.SetCount( strlen( pSubString ) + 1 ); strcpy( arrSearchSubString.Base(), pSubString ); for ( char * pch = arrSearchSubString.Base(); pch; ) { char *pchEnd = strchr( pch, chMultiDelim ); pchEnd ? *( pchEnd ++ ) = 0 : 0; arrSearchItems.AddToTail( pch ); pch = pchEnd; } } for (MaterialHandle_t i = FirstMaterial(); i != InvalidMaterial(); i = NextMaterial(i) ) { if( GetMaterialInternal(i)->GetReferenceCount() <= 0 ) continue; char const *szMatName = GetMaterialInternal(i)->GetName(); if ( arrSearchItems.Count() > 1 ) { bool bMatched = false; for ( int k = 0; !bMatched && ( k < arrSearchItems.Count() ); ++ k ) if( Q_stristr( szMatName, arrSearchItems[k] ) ) bMatched = true; if ( !bMatched ) continue; } else { if( !Q_stristr( szMatName, pSubString ) ) continue; } if ( !GetMaterialInternal(i)->IsPrecached() ) { if ( GetMaterialInternal(i)->IsPrecachedVars() ) { GetMaterialInternal(i)->Uncache( ); } } else { VertexFormat_t oldVertexFormat = GetMaterialInternal(i)->GetVertexFormat(); GetMaterialInternal(i)->Uncache(); GetMaterialInternal(i)->Precache(); GetMaterialInternal(i)->ReloadTextures(); if( GetMaterialInternal(i)->GetVertexFormat() != oldVertexFormat ) { bVertexFormatChanged = true; } } } } if( bVertexFormatChanged && bDeviceReady ) { // Reloading materials could cause a vertex format change, so // we need to release and restore ReleaseShaderObjects(); RestoreShaderObjects( NULL, MATERIAL_RESTORE_VERTEX_FORMAT_CHANGED ); } } //----------------------------------------------------------------------------- // Allocates the standard textures used by the material system //----------------------------------------------------------------------------- void CMaterialSystem::AllocateStandardTextures() { if ( m_StandardTexturesAllocated ) return; m_StandardTexturesAllocated = true; float nominal_lightmap_value = 1.0; if ( HardwareConfig()->GetHDRType() == HDR_TYPE_INTEGER ) nominal_lightmap_value = 1.0/16.0; unsigned char texel[4]; texel[3] = 255; int tcFlags = TEXTURE_CREATE_MANAGED; int tcFlagsSRGB = TEXTURE_CREATE_MANAGED | TEXTURE_CREATE_SRGB; if ( IsX360() ) { tcFlags |= TEXTURE_CREATE_CANCONVERTFORMAT; tcFlagsSRGB |= TEXTURE_CREATE_CANCONVERTFORMAT; } // allocate a white, single texel texture for the fullbright lightmap // note: make sure and redo this when changing gamma, etc. // don't mipmap lightmaps m_FullbrightLightmapTextureHandle = g_pShaderAPI->CreateTexture( 1, 1, 1, IMAGE_FORMAT_BGRX8888, 1, 1, tcFlags, "[FULLBRIGHT_LIGHTMAP_TEXID]", TEXTURE_GROUP_LIGHTMAP ); g_pShaderAPI->ModifyTexture( m_FullbrightLightmapTextureHandle ); g_pShaderAPI->TexMinFilter( SHADER_TEXFILTERMODE_LINEAR ); g_pShaderAPI->TexMagFilter( SHADER_TEXFILTERMODE_LINEAR ); float tmpVect[3] = { nominal_lightmap_value, nominal_lightmap_value, nominal_lightmap_value }; ColorSpace::LinearToLightmap( texel, tmpVect ); g_pShaderAPI->TexImage2D( 0, 0, IMAGE_FORMAT_BGRX8888, 0, 1, 1, IMAGE_FORMAT_BGRX8888, false, texel ); // allocate a black single texel texture #if !defined( _X360 ) m_BlackTextureHandle = g_pShaderAPI->CreateTexture( 1, 1, 1, IMAGE_FORMAT_BGRX8888, 1, 1, tcFlagsSRGB, "[BLACK_TEXID]", TEXTURE_GROUP_OTHER ); g_pShaderAPI->ModifyTexture( m_BlackTextureHandle ); g_pShaderAPI->TexMinFilter( SHADER_TEXFILTERMODE_LINEAR ); g_pShaderAPI->TexMagFilter( SHADER_TEXFILTERMODE_LINEAR ); texel[0] = texel[1] = texel[2] = 0; g_pShaderAPI->TexImage2D( 0, 0, IMAGE_FORMAT_BGRX8888, 0, 1, 1, IMAGE_FORMAT_BGRX8888, false, texel ); #else m_BlackTextureHandle = ((ITextureInternal*)FindTexture( "black", TEXTURE_GROUP_OTHER, true ))->GetTextureHandle( 0 ); #endif g_pShaderAPI->SetStandardTextureHandle( TEXTURE_BLACK, m_BlackTextureHandle ); // allocate a fully white single texel texture #if !defined( _X360 ) m_WhiteTextureHandle = g_pShaderAPI->CreateTexture( 1, 1, 1, IMAGE_FORMAT_BGRX8888, 1, 1, tcFlagsSRGB, "[WHITE_TEXID]", TEXTURE_GROUP_OTHER ); g_pShaderAPI->ModifyTexture( m_WhiteTextureHandle ); g_pShaderAPI->TexMinFilter( SHADER_TEXFILTERMODE_LINEAR ); g_pShaderAPI->TexMagFilter( SHADER_TEXFILTERMODE_LINEAR ); texel[0] = texel[1] = texel[2] = 255; g_pShaderAPI->TexImage2D( 0, 0, IMAGE_FORMAT_BGRX8888, 0, 1, 1, IMAGE_FORMAT_BGRX8888, false, texel ); #else m_WhiteTextureHandle = ((ITextureInternal*)FindTexture( "white", TEXTURE_GROUP_OTHER, true ))->GetTextureHandle( 0 ); #endif g_pShaderAPI->SetStandardTextureHandle( TEXTURE_WHITE, m_WhiteTextureHandle ); // allocate a grey single texel texture with an alpha of zero (for mat_fullbright 2) #if !defined( _X360 ) m_GreyTextureHandle = g_pShaderAPI->CreateTexture( 1, 1, 1, IMAGE_FORMAT_BGRX8888, 1, 1, tcFlagsSRGB, "[GREY_TEXID]", TEXTURE_GROUP_OTHER ); g_pShaderAPI->ModifyTexture( m_GreyTextureHandle ); g_pShaderAPI->TexMinFilter( SHADER_TEXFILTERMODE_LINEAR ); g_pShaderAPI->TexMagFilter( SHADER_TEXFILTERMODE_LINEAR ); texel[0] = texel[1] = texel[2] = 128; texel[3] = 255; // needs to be 255 so that mat_fullbright 2 stuff isn't translucent. g_pShaderAPI->TexImage2D( 0, 0, IMAGE_FORMAT_BGRX8888, 0, 1, 1, IMAGE_FORMAT_BGRX8888, false, texel ); #else m_GreyTextureHandle = ((ITextureInternal*)FindTexture( "grey", TEXTURE_GROUP_OTHER, true ))->GetTextureHandle( 0 ); #endif g_pShaderAPI->SetStandardTextureHandle( TEXTURE_GREY, m_GreyTextureHandle ); // allocate a grey single texel texture with an alpha of zero (for mat_fullbright 2) #if !defined( _X360 ) m_GreyAlphaZeroTextureHandle = g_pShaderAPI->CreateTexture( 1, 1, 1, IMAGE_FORMAT_RGBA8888, 1, 1, tcFlagsSRGB, "[GREYALPHAZERO_TEXID]", TEXTURE_GROUP_OTHER ); g_pShaderAPI->ModifyTexture( m_GreyAlphaZeroTextureHandle ); g_pShaderAPI->TexMinFilter( SHADER_TEXFILTERMODE_LINEAR ); g_pShaderAPI->TexMagFilter( SHADER_TEXFILTERMODE_LINEAR ); texel[0] = texel[1] = texel[2] = 128; texel[3] = 0; // needs to be 0 so that self-illum doens't affect mat_fullbright 2 g_pShaderAPI->TexImage2D( 0, 0, IMAGE_FORMAT_RGBA8888, 0, 1, 1, IMAGE_FORMAT_RGBA8888, false, texel ); texel[3] = 255; // set back to default value so we don't affect the rest of this code.' #else m_GreyAlphaZeroTextureHandle = ((ITextureInternal*)FindTexture( "greyalphazero", TEXTURE_GROUP_OTHER, true ))->GetTextureHandle( 0 ); #endif g_pShaderAPI->SetStandardTextureHandle( TEXTURE_GREY_ALPHA_ZERO, m_GreyAlphaZeroTextureHandle ); // allocate a single texel flat normal texture lightmap m_FlatNormalTextureHandle = g_pShaderAPI->CreateTexture( 1, 1, 1, IMAGE_FORMAT_BGRX8888, 1, 1, tcFlags, "[FLAT_NORMAL_TEXTURE]", TEXTURE_GROUP_OTHER ); g_pShaderAPI->ModifyTexture( m_FlatNormalTextureHandle ); g_pShaderAPI->TexMinFilter( SHADER_TEXFILTERMODE_LINEAR ); g_pShaderAPI->TexMagFilter( SHADER_TEXFILTERMODE_LINEAR ); texel[0] = 255; // B texel[1] = 127; // G texel[2] = 127; // R g_pShaderAPI->TexImage2D( 0, 0, IMAGE_FORMAT_BGRX8888, 0, 1, 1, IMAGE_FORMAT_BGRX8888, false, texel ); g_pShaderAPI->SetStandardTextureHandle( TEXTURE_NORMALMAP_FLAT, m_FlatNormalTextureHandle ); // allocate a single texel fullbright 1 lightmap for use with bump textures m_FullbrightBumpedLightmapTextureHandle = g_pShaderAPI->CreateTexture( 1, 1, 1, IMAGE_FORMAT_BGRX8888, 1, 1, tcFlags, "[FULLBRIGHT_BUMPED_LIGHTMAP_TEXID]", TEXTURE_GROUP_LIGHTMAP ); g_pShaderAPI->ModifyTexture( m_FullbrightBumpedLightmapTextureHandle ); g_pShaderAPI->TexMinFilter( SHADER_TEXFILTERMODE_LINEAR ); g_pShaderAPI->TexMagFilter( SHADER_TEXFILTERMODE_LINEAR ); float linearColor[3] = { nominal_lightmap_value, nominal_lightmap_value, nominal_lightmap_value }; unsigned char dummy[3]; ColorSpace::LinearToBumpedLightmap( linearColor, linearColor, linearColor, linearColor, dummy, texel, dummy, dummy ); g_pShaderAPI->TexImage2D( 0, 0, IMAGE_FORMAT_BGRX8888, 0, 1, 1, IMAGE_FORMAT_BGRX8888, false, texel ); g_pShaderAPI->SetStandardTextureHandle( TEXTURE_LIGHTMAP_BUMPED_FULLBRIGHT, m_FullbrightBumpedLightmapTextureHandle ); { int iGammaLookupFlags = tcFlags; ImageFormat gammalookupfmt; gammalookupfmt = IMAGE_FORMAT_I8; // generate the linear->gamma conversion table texture. { const int LINEAR_TO_GAMMA_TABLE_WIDTH = 512; m_LinearToGammaTableTextureHandle = g_pShaderAPI->CreateTexture( LINEAR_TO_GAMMA_TABLE_WIDTH, 1, 1, gammalookupfmt, 1, 1, iGammaLookupFlags, "[LINEAR_TO_GAMMA_LOOKUP_SRGBON_TEXID]", TEXTURE_GROUP_PIXEL_SHADERS ); g_pShaderAPI->ModifyTexture( m_LinearToGammaTableTextureHandle ); g_pShaderAPI->TexMinFilter( SHADER_TEXFILTERMODE_LINEAR ); g_pShaderAPI->TexMagFilter( SHADER_TEXFILTERMODE_LINEAR ); g_pShaderAPI->TexWrap( SHADER_TEXCOORD_S, SHADER_TEXWRAPMODE_CLAMP ); g_pShaderAPI->TexWrap( SHADER_TEXCOORD_T, SHADER_TEXWRAPMODE_CLAMP ); g_pShaderAPI->TexWrap( SHADER_TEXCOORD_U, SHADER_TEXWRAPMODE_CLAMP ); float pixelData[LINEAR_TO_GAMMA_TABLE_WIDTH]; //sometimes used as float, sometimes as uint8, sizeof(float) > sizeof(uint8) for( int i = 0; i != LINEAR_TO_GAMMA_TABLE_WIDTH; ++i ) { float fLookupResult = ((float)i) / ((float)(LINEAR_TO_GAMMA_TABLE_WIDTH - 1)); fLookupResult = g_pShaderAPI->LinearToGamma_HardwareSpecific( fLookupResult ); //do an extra srgb conversion because we'll be converting back on texture read fLookupResult = g_pShaderAPI->LinearToGamma_HardwareSpecific( fLookupResult ); //that's right, linear->gamma->gamma2x so that that gamma->linear srgb read still ends up in gamma int iColor = RoundFloatToInt( fLookupResult * 255.0f ); if( iColor > 255 ) iColor = 255; ((uint8 *)pixelData)[i] = (uint8)iColor; } g_pShaderAPI->TexImage2D( 0, 0, gammalookupfmt, 0, LINEAR_TO_GAMMA_TABLE_WIDTH, 1, gammalookupfmt, false, (void *)pixelData ); } // generate the identity conversion table texture. { const int LINEAR_TO_GAMMA_IDENTITY_TABLE_WIDTH = 256; m_LinearToGammaIdentityTableTextureHandle = g_pShaderAPI->CreateTexture( LINEAR_TO_GAMMA_IDENTITY_TABLE_WIDTH, 1, 1, gammalookupfmt, 1, 1, tcFlags, "[LINEAR_TO_GAMMA_LOOKUP_SRGBOFF_TEXID]", TEXTURE_GROUP_PIXEL_SHADERS ); g_pShaderAPI->ModifyTexture( m_LinearToGammaIdentityTableTextureHandle ); g_pShaderAPI->TexMinFilter( SHADER_TEXFILTERMODE_LINEAR ); g_pShaderAPI->TexMagFilter( SHADER_TEXFILTERMODE_LINEAR ); g_pShaderAPI->TexWrap( SHADER_TEXCOORD_S, SHADER_TEXWRAPMODE_CLAMP ); g_pShaderAPI->TexWrap( SHADER_TEXCOORD_T, SHADER_TEXWRAPMODE_CLAMP ); g_pShaderAPI->TexWrap( SHADER_TEXCOORD_U, SHADER_TEXWRAPMODE_CLAMP ); float pixelData[LINEAR_TO_GAMMA_IDENTITY_TABLE_WIDTH]; //sometimes used as float, sometimes as uint8, sizeof(float) > sizeof(uint8) for( int i = 0; i != LINEAR_TO_GAMMA_IDENTITY_TABLE_WIDTH; ++i ) { float fLookupResult = ((float)i) / ((float)(LINEAR_TO_GAMMA_IDENTITY_TABLE_WIDTH - 1)); //do an extra srgb conversion because we'll be converting back on texture read fLookupResult = g_pShaderAPI->LinearToGamma_HardwareSpecific( fLookupResult ); int iColor = RoundFloatToInt( fLookupResult * 255.0f ); if ( iColor > 255 ) iColor = 255; ((uint8 *)pixelData)[i] = (uint8)iColor; } g_pShaderAPI->TexImage2D( 0, 0, gammalookupfmt, 0, LINEAR_TO_GAMMA_IDENTITY_TABLE_WIDTH, 1, gammalookupfmt, false, (void *)pixelData ); } } //create the maximum depth texture { m_MaxDepthTextureHandle = g_pShaderAPI->CreateTexture( 1, 1, 1, IMAGE_FORMAT_RGBA8888, 1, 1, tcFlags, "[MAXDEPTH_TEXID]", TEXTURE_GROUP_OTHER ); g_pShaderAPI->ModifyTexture( m_MaxDepthTextureHandle ); g_pShaderAPI->TexMinFilter( SHADER_TEXFILTERMODE_LINEAR ); g_pShaderAPI->TexMagFilter( SHADER_TEXFILTERMODE_LINEAR ); //360 gets depth out of the red channel (which doubles as depth in D24S8) and may be 0/1 depending on REVERSE_DEPTH_ON_X360 //PC gets depth out of the alpha channel texel[0] = texel[1] = texel[2] = ReverseDepthOnX360() ? 0 : 255; texel[3] = 255; g_pShaderAPI->TexImage2D( 0, 0, IMAGE_FORMAT_RGBA8888, 0, 1, 1, IMAGE_FORMAT_RGBA8888, false, texel ); } //only the shaderapi can handle switching between textures correctly, so pass off the textures to it. g_pShaderAPI->SetLinearToGammaConversionTextures( m_LinearToGammaTableTextureHandle, m_LinearToGammaIdentityTableTextureHandle ); } void CMaterialSystem::ReleaseStandardTextures() { if ( m_StandardTexturesAllocated ) { if ( IsPC() ) { g_pShaderAPI->DeleteTexture( m_BlackTextureHandle ); g_pShaderAPI->DeleteTexture( m_WhiteTextureHandle ); g_pShaderAPI->DeleteTexture( m_GreyTextureHandle ); g_pShaderAPI->DeleteTexture( m_GreyAlphaZeroTextureHandle ); } g_pShaderAPI->DeleteTexture( m_FullbrightLightmapTextureHandle ); g_pShaderAPI->DeleteTexture( m_FlatNormalTextureHandle ); g_pShaderAPI->DeleteTexture( m_FullbrightBumpedLightmapTextureHandle ); g_pShaderAPI->DeleteTexture( m_LinearToGammaTableTextureHandle ); g_pShaderAPI->DeleteTexture( m_LinearToGammaIdentityTableTextureHandle ); g_pShaderAPI->SetLinearToGammaConversionTextures( INVALID_SHADERAPI_TEXTURE_HANDLE, INVALID_SHADERAPI_TEXTURE_HANDLE ); g_pShaderAPI->DeleteTexture( m_MaxDepthTextureHandle ); m_StandardTexturesAllocated = false; } } //----------------------------------------------------------------------------- // //----------------------------------------------------------------------------- void CMaterialSystem::BeginFrame( float frameTime ) { // Safety measure (calls should only come from the main thread, also check correct pairing) if ( !ThreadInMainThread() || IsInFrame() ) return; // check debug vars. we will use these to setup g_nDebugVarsSignature so that materials will // rebuild their draw lists when debug modes changed. g_nDebugVarsSignature = ( (mat_specular.GetInt() != 0 ) + ( mat_normalmaps.GetInt() << 1 ) + ( mat_fullbright.GetInt() << 2 ) + (mat_fastnobump.GetInt() << 4 ) ) << 24; Assert( m_bGeneratedConfig ); VPROF_BUDGET( "CMaterialSystem::BeginFrame", VPROF_BUDGETGROUP_SWAP_BUFFERS ); tmZoneFiltered( TELEMETRY_LEVEL0, 50, TMZF_NONE, "%s", __FUNCTION__ ); IMatRenderContextInternal *pRenderContext = GetRenderContextInternal(); if ( g_config.ForceHWSync() && (IsPC() || m_ThreadMode != MATERIAL_QUEUED_THREADED) ) { tmZoneFiltered( TELEMETRY_LEVEL0, 50, TMZF_NONE, "ForceHardwareSync" ); pRenderContext->ForceHardwareSync(); } pRenderContext->MarkRenderDataUnused( true ); pRenderContext->BeginFrame(); pRenderContext->SetFrameTime( frameTime ); pRenderContext->SetToneMappingScaleLinear( Vector( 1,1,1) ); Assert( !m_bInFrame ); m_bInFrame = true; } bool CMaterialSystem::IsInFrame( ) const { return m_bInFrame; } #ifdef RAD_TELEMETRY_ENABLED static const char *GetMatString( enum MaterialThreadMode_t ThreadMode ) { switch( ThreadMode ) { case MATERIAL_SINGLE_THREADED: return "single"; case MATERIAL_QUEUED_SINGLE_THREADED: return "queued_single"; case MATERIAL_QUEUED_THREADED: return "queued_threaded"; default: return "???"; } } #endif ConVar mat_queue_mode( "mat_queue_mode", "-1", FCVAR_ARCHIVE, "The queue/thread mode the material system should use: -1=default, 0=synchronous single thread" #ifdef MAT_QUEUE_MODE_PROFILE ", 1=queued single thread" #endif ", 2=queued multithreaded" ); ConVar mat_queue_report( "mat_queue_report", "0", FCVAR_ARCHIVE, "Report thread stalls. Positive number will filter by stalls >= time in ms. -1 reports all locks." ); void CMaterialSystem::ThreadExecuteQueuedContext( CMatQueuedRenderContext *pContext ) { #ifdef RAD_TELEMETRY_ENABLED tmZone( TELEMETRY_LEVEL0, TMZF_NONE, "%s-%s", __FUNCTION__, GetMatString( m_ThreadMode ) ); CTelemetrySpikeDetector Spike( "ThreadExecuteQueuedContext", 1 ); #endif Assert( m_bThreadHasOwnership ); m_nRenderThreadID = ThreadGetCurrentId(); IMatRenderContextInternal* pSavedRenderContext = m_pRenderContext.Get(); m_pRenderContext.Set( &m_HardwareRenderContext ); pContext->EndQueue( true ); m_pRenderContext.Set( pSavedRenderContext ); m_nRenderThreadID = 0xFFFFFFFF; } IThreadPool *CMaterialSystem::CreateMatQueueThreadPool() { if( IsX360() ) { return g_pThreadPool; } else if( !m_pMatQueueThreadPool ) { ThreadPoolStartParams_t startParams; startParams.nThreads = 1; startParams.nStackSize = 256*1024; startParams.fDistribute = TRS_TRUE; // The rendering thread has the GL context and the main thread is coming in and // "helping" finish jobs - that breaks OpenGL, which requires TLS. This flag states // that only the threadpool threads should execute these jobs. startParams.bExecOnThreadPoolThreadsOnly = true; m_pMatQueueThreadPool = CreateThreadPool(); m_pMatQueueThreadPool->Start( startParams, "MatQueue" ); } return m_pMatQueueThreadPool; } void CMaterialSystem::DestroyMatQueueThreadPool() { if( m_pMatQueueThreadPool ) { m_pMatQueueThreadPool->Stop(); delete m_pMatQueueThreadPool; m_pMatQueueThreadPool = NULL; } } //----------------------------------------------------------------------------------------------------- // //----------------------------------------------------------------------------------------------------- class CThreadAcquire : public CJob { virtual JobStatus_t DoExecute() { g_pShaderAPI->AcquireThreadOwnership(); return JOB_OK; } }; void CMaterialSystem::EndFrame( void ) { // Safety measure (calls should only come from the main thread, also check correct pairing) if ( !ThreadInMainThread() || !IsInFrame() ) return; Assert( m_bGeneratedConfig ); VPROF_BUDGET( "CMaterialSystem::EndFrame", VPROF_BUDGETGROUP_SWAP_BUFFERS ); GetRenderContextInternal()->EndFrame(); TextureManager()->Update(); while ( !m_scheduledComposites.IsEmpty() ) { // We hold a ref, so if there's only one count left, it's us. Let it go and move on. if ( m_scheduledComposites[ 0 ]->GetRefCount() == 1 ) { m_scheduledComposites[ 0 ]->Release(); m_scheduledComposites.Remove( 0 ); continue; } m_scheduledComposites[ 0 ]->Resolve(); m_pendingComposites.AddToTail( m_scheduledComposites[ 0 ] ); m_scheduledComposites.Remove( 0 ); // Only do one per frame, because these can actually be fairly expensive. break; } FOR_EACH_VEC( m_pendingComposites, i ) { CTextureCompositor* comp = m_pendingComposites[ i ]; // We hold a ref, so if there's only one count left, it's us. Let it go and move on. if ( comp->GetRefCount() == 1 ) { comp->Release(); m_pendingComposites.Remove( i ); // Back up one --i; continue; } comp->Update(); if ( comp->GetResolveStatus() == ECRS_Complete || comp->GetResolveStatus() == ECRS_Error ) { comp->Release(); m_pendingComposites.Remove( i ); // Stop after the first one reports that it was completed, these can take awhile and // we don't want to hammer anyone's framerate. break; } } //------------------------------------------------------------- int iConVarThreadMode = mat_queue_mode.GetInt(); // For this testing release, -2 is equivalent to 0 (off). When we release, we'll make -2 equivalent to -1 (on) if ( iConVarThreadMode == -2 ) { iConVarThreadMode = MATERIAL_QUEUED_THREADED; } #ifndef MAT_QUEUE_MODE_PROFILE if ( iConVarThreadMode == MATERIAL_QUEUED_SINGLE_THREADED ) { iConVarThreadMode = MATERIAL_SINGLE_THREADED; } #endif MaterialThreadMode_t nextThreadMode = ( iConVarThreadMode >= 0 ) ? (MaterialThreadMode_t)iConVarThreadMode : m_IdealThreadMode; // note: This is a hack because there is no explicit query for the device being deactivated due to device lost. // however, that is all the current implementation of CanDownloadTextures actually does. bool bDeviceReady = g_pShaderAPI->CanDownloadTextures(); if ( !bDeviceReady || !m_bAllowQueuedRendering ) { nextThreadMode = MATERIAL_SINGLE_THREADED; } if ( m_bForcedSingleThreaded || m_bThreadingNotAvailable ) { nextThreadMode = MATERIAL_SINGLE_THREADED; m_bForcedSingleThreaded = false; } switch ( m_ThreadMode ) { case MATERIAL_SINGLE_THREADED: OnRenderingAsyncComplete(); break; case MATERIAL_QUEUED_THREADED: { VPROF_BUDGET( "Mat_ThreadedEndframe", "Mat_ThreadedEndframe" ); if ( !m_bThreadHasOwnership ) { ThreadAcquire( true ); } if ( m_pActiveAsyncJob && !m_pActiveAsyncJob->IsFinished() ) { m_pActiveAsyncJob->WaitForFinish(); if ( !IsPC() && g_config.ForceHWSync() ) { g_pShaderAPI->ForceHardwareSync(); } } SafeRelease( m_pActiveAsyncJob ); OnRenderingAsyncComplete(); CMatQueuedRenderContext *pPrevContext = &m_QueuedRenderContexts[m_iCurQueuedContext]; m_iCurQueuedContext = ( ( m_iCurQueuedContext + 1 ) % ARRAYSIZE( m_QueuedRenderContexts) ); m_QueuedRenderContexts[m_iCurQueuedContext].BeginQueue( pPrevContext ); m_pRenderContext.Set( &m_QueuedRenderContexts[m_iCurQueuedContext] ); m_pActiveAsyncJob = new CFunctorJob( CreateFunctor( this, &CMaterialSystem::ThreadExecuteQueuedContext, pPrevContext ), "ThreadExecuteQueuedContext" ); if ( IsX360() ) { if ( m_nServiceThread >= 0 ) { m_pActiveAsyncJob->SetServiceThread( m_nServiceThread ); } } IThreadPool *pThreadPool = CreateMatQueueThreadPool(); pThreadPool->AddJob( m_pActiveAsyncJob ); break; } case MATERIAL_QUEUED_SINGLE_THREADED: OnRenderingAsyncComplete(); break; #ifdef MAT_QUEUE_MODE_PROFILE { VPROF_BUDGET( "Mat_ThreadedEndframe", "Mat_QueuedEndframe" ); g_pShaderAPI->SetDisallowAccess( false ); m_pRenderContext.Set( &m_HardwareRenderContext ); m_QueuedRenderContexts[m_iCurQueuedContext].CallQueued(); m_pRenderContext.Set( &m_QueuedRenderContexts[m_iCurQueuedContext] ); g_pShaderAPI->SetDisallowAccess( true ); break; } #endif } bool bRelease = false; if ( !bDeviceReady ) { if ( nextThreadMode != MATERIAL_SINGLE_THREADED ) { Assert( nextThreadMode == MATERIAL_SINGLE_THREADED ); bRelease = true; nextThreadMode = MATERIAL_SINGLE_THREADED; if( mat_debugalttab.GetBool() ) { Warning("Handling alt-tab in queued mode!\n"); } } } if ( m_threadEvents.Count() ) { nextThreadMode = MATERIAL_SINGLE_THREADED; } if ( m_ThreadMode != nextThreadMode ) { // Shut down the current mode & set new mode switch ( m_ThreadMode ) { case MATERIAL_SINGLE_THREADED: break; case MATERIAL_QUEUED_THREADED: { if ( m_pActiveAsyncJob ) { m_pActiveAsyncJob->WaitForFinish(); SafeRelease( m_pActiveAsyncJob ); } // probably have a queued context set here, need hardware to flush the queue if the job isn't active m_HardwareRenderContext.InitializeFrom(&m_QueuedRenderContexts[m_iCurQueuedContext]); m_pRenderContext.Set( &m_HardwareRenderContext ); m_QueuedRenderContexts[m_iCurQueuedContext].EndQueue( true ); ThreadRelease(); } break; #ifdef MAT_QUEUE_MODE_PROFILE case MATERIAL_QUEUED_SINGLE_THREADED: { g_pShaderAPI->SetDisallowAccess( false ); // We have a queued context set here, need hardware to flush the queue if the job isn't active m_pRenderContext.Set( &m_HardwareRenderContext ); m_QueuedRenderContexts[m_iCurQueuedContext].EndQueue( true ); break; } #endif } m_ThreadMode = nextThreadMode; Assert( g_MatSysMutex.GetOwnerId() == 0 ); g_pShaderAPI->EnableShaderShaderMutex( m_ThreadMode != MATERIAL_SINGLE_THREADED ); // use mutex even for queued to allow "disalow access" to function properly g_pShaderAPI->EnableBuffer2FramesAhead( true ); switch ( m_ThreadMode ) { case MATERIAL_SINGLE_THREADED: m_pRenderContext.Set( &m_HardwareRenderContext ); for ( int i = 0; i < ARRAYSIZE( m_QueuedRenderContexts ); i++ ) { Assert( m_QueuedRenderContexts[i].IsInitialized() ); m_QueuedRenderContexts[i].EndQueue( true ); } break; #ifdef MAT_QUEUE_MODE_PROFILE case MATERIAL_QUEUED_SINGLE_THREADED: #endif case MATERIAL_QUEUED_THREADED: { m_iCurQueuedContext = 0; m_QueuedRenderContexts[m_iCurQueuedContext].BeginQueue( &m_HardwareRenderContext ); m_pRenderContext.Set( &m_QueuedRenderContexts[m_iCurQueuedContext] ); #ifdef MAT_QUEUE_MODE_PROFILE if ( m_ThreadMode == MATERIAL_QUEUED_SINGLE_THREADED ) { g_pShaderAPI->SetDisallowAccess( true ); } else #endif { g_pShaderAPI->ReleaseThreadOwnership(); CJob *pActiveAsyncJob = new CThreadAcquire(); IThreadPool *pThreadPool = CreateMatQueueThreadPool(); pThreadPool->AddJob( pActiveAsyncJob ); SafeRelease( pActiveAsyncJob ); m_bThreadHasOwnership = true; m_ThreadOwnershipID = ThreadGetCurrentId(); } } break; } } if ( m_ThreadMode == MATERIAL_SINGLE_THREADED ) { for ( int i = 0; i < m_threadEvents.Count(); i++ ) { g_pShaderDevice->HandleThreadEvent(m_threadEvents[i]); } m_threadEvents.RemoveAll(); } Assert( m_bInFrame ); m_bInFrame = false; } void CMaterialSystem::SetInStubMode( bool bInStubMode ) { m_bInStubMode = bInStubMode; } bool CMaterialSystem::IsInStubMode() { return m_bInStubMode; } void CMaterialSystem::Flush( bool flushHardware ) { GetRenderContextInternal()->Flush( flushHardware ); } //----------------------------------------------------------------------------- // Flushes managed textures from the texture cacher //----------------------------------------------------------------------------- void CMaterialSystem::EvictManagedResources() { g_pShaderAPI->EvictManagedResources(); } int __cdecl MaterialNameCompareFunc( const void *elem1, const void *elem2 ) { IMaterialInternal *pMaterialA = g_MaterialSystem.GetMaterialInternal( *(MaterialHandle_t *)elem1 ); IMaterialInternal *pMaterialB = g_MaterialSystem.GetMaterialInternal( *(MaterialHandle_t *)elem2 ); // case insensitive to group similar named materials return stricmp( pMaterialA->GetName(), pMaterialB->GetName() ); } void CMaterialSystem::DebugPrintUsedMaterials( const char *pSearchSubString, bool bVerbose ) { MaterialHandle_t h; int i; int nNumCached; int nRefCount; int nSortedMaterials; int nNumErrors; // build a mapping to sort the material names MaterialHandle_t *pSorted = (MaterialHandle_t*)stackalloc( GetNumMaterials() * sizeof(MaterialHandle_t) ); nSortedMaterials = 0; for (h = FirstMaterial(); h != InvalidMaterial(); h = NextMaterial(h) ) { pSorted[nSortedMaterials++] = h; } qsort( pSorted, nSortedMaterials, sizeof(MaterialHandle_t), MaterialNameCompareFunc ); nNumCached = 0; nNumErrors = 0; for (i = 0; i < nSortedMaterials; i++) { // iterate using sort mapping IMaterialInternal *pMaterial = GetMaterialInternal(pSorted[i]); nRefCount = pMaterial->GetReferenceCount(); if ( nRefCount < 0 ) { nNumErrors++; } else if (!nRefCount) { if (pMaterial->IsPrecached() || pMaterial->IsPrecachedVars()) { nNumErrors++; } } else { // nonzero reference count // tally the valid ones nNumCached++; if( pSearchSubString ) { if( !Q_stristr( pMaterial->GetName(), pSearchSubString ) && (!pMaterial->GetShader() || !Q_stristr( pMaterial->GetShader()->GetName(), pSearchSubString )) ) { continue; } } DevMsg( "%s (shader: %s) refCount: %d.\n", pMaterial->GetName(), pMaterial->GetShader() ? pMaterial->GetShader()->GetName() : "unknown\n", nRefCount ); if( !bVerbose ) { continue; } if( pMaterial->IsPrecached() ) { if( pMaterial->GetShader() ) { for( int j = 0; j < pMaterial->GetShader()->GetNumParams(); j++ ) { IMaterialVar *var; var = pMaterial->GetShaderParams()[j]; if( var ) { switch( var->GetType() ) { case MATERIAL_VAR_TYPE_TEXTURE: { ITextureInternal *texture = static_cast( var->GetTextureValue() ); if( !texture ) { DevWarning( "Programming error: CMaterialSystem::DebugPrintUsedMaterialsCallback: NULL texture\n" ); continue; } if( IsTextureInternalEnvCubemap( texture ) ) { DevMsg( " \"%s\" \"env_cubemap\"\n", var->GetName() ); } else { DevMsg( " \"%s\" \"%s\"\n", var->GetName(), texture->GetName() ); DevMsg( " %dx%d refCount: %d numframes: %d\n", texture->GetActualWidth(), texture->GetActualHeight(), texture->GetReferenceCount(), texture->GetNumAnimationFrames() ); } } break; case MATERIAL_VAR_TYPE_UNDEFINED: break; default: DevMsg( " \"%s\" \"%s\"\n", var->GetName(), var->GetStringValue() ); break; } } } } } } } // list the critical errors after, otherwise the console log scrolls them away if (nNumErrors) { for (i = 0; i < nSortedMaterials; i++) { // iterate using sort mapping IMaterialInternal *pMaterial = GetMaterialInternal(pSorted[i]); nRefCount = pMaterial->GetReferenceCount(); if ( nRefCount < 0 ) { // reference counts should not be negative DevWarning( "DebugPrintUsedMaterials: refCount (%d) < 0 for material: \"%s\"\n", nRefCount, pMaterial->GetName() ); } else if (!nRefCount) { // ensure that it stayed uncached after the post loading uncache // this is effectively a coding bug thats needs to be fixed // a material is being precached without incrementing its reference if (pMaterial->IsPrecached() || pMaterial->IsPrecachedVars()) { DevWarning( "DebugPrintUsedMaterials: material: \"%s\" didn't unache\n", pMaterial->GetName() ); } } } DevWarning( "%d Errors\n", nNumErrors ); } if (!pSearchSubString) { DevMsg( "%d Cached, %d Total Materials\n", nNumCached, GetNumMaterials() ); } } void CMaterialSystem::DebugPrintUsedTextures( void ) { TextureManager()->DebugPrintUsedTextures(); } #if defined( _X360 ) void CMaterialSystem::ListUsedMaterials( void ) { int numMaterials = GetNumMaterials(); xMaterialList_t* pMaterialList = (xMaterialList_t *)stackalloc( numMaterials * sizeof( xMaterialList_t ) ); numMaterials = 0; for ( MaterialHandle_t hMaterial = FirstMaterial(); hMaterial != InvalidMaterial(); hMaterial = NextMaterial( hMaterial ) ) { IMaterialInternal *pMaterial = GetMaterialInternal( hMaterial ); pMaterialList[numMaterials].pName = pMaterial->GetName(); pMaterialList[numMaterials].pShaderName = pMaterial->GetShader() ? pMaterial->GetShader()->GetName() : "???"; pMaterialList[numMaterials].refCount = pMaterial->GetReferenceCount(); numMaterials++; } XBX_rMaterialList( numMaterials, pMaterialList ); } #endif void CMaterialSystem::ToggleSuppressMaterial( char const* pMaterialName ) { /* // This version suppresses all but the material IMaterial *pMaterial = GetFirstMaterial(); while (pMaterial) { if (stricmp(pMaterial->GetName(), pMaterialName)) { IMaterialInternal* pMatInt = static_cast(pMaterial); pMatInt->ToggleSuppression(); } pMaterial = GetNextMaterial(); } */ // Note: if we use this function a lot, we'll want to do something else, like have them // pass in a texture group or reuse whatever texture group the material already had. // As it is, this is rarely used, so if it's not in TEXTURE_GROUP_OTHER, it'll go in // TEXTURE_GROUP_SHARED. IMaterial* pMaterial = FindMaterial( pMaterialName, TEXTURE_GROUP_OTHER, true, NULL ); if ( !IsErrorMaterial( pMaterial ) ) { IMaterialInternal* pMatInt = static_cast(pMaterial); pMatInt = pMatInt->GetRealTimeVersion(); //always work with the realtime material internally pMatInt->ToggleSuppression(); } } void CMaterialSystem::ToggleDebugMaterial( char const* pMaterialName ) { // Note: if we use this function a lot, we'll want to do something else, like have them // pass in a texture group or reuse whatever texture group the material already had. // As it is, this is rarely used, so if it's not in TEXTURE_GROUP_OTHER, it'll go in // TEXTURE_GROUP_SHARED. IMaterial* pMaterial = FindMaterial( pMaterialName, TEXTURE_GROUP_OTHER, false, NULL ); if ( !IsErrorMaterial( pMaterial ) ) { IMaterialInternal* pMatInt = static_cast(pMaterial); pMatInt = pMatInt->GetRealTimeVersion(); //always work with the realtime material internally pMatInt->ToggleDebugTrace(); } else { Warning("Unknown material %s\n", pMaterialName ); } } //----------------------------------------------------------------------------- // Used to iterate over all shaders for editing purposes //----------------------------------------------------------------------------- int CMaterialSystem::ShaderCount() const { return ShaderSystem()->ShaderCount(); } int CMaterialSystem::GetShaders( int nFirstShader, int nMaxCount, IShader **ppShaderList ) const { return ShaderSystem()->GetShaders( nFirstShader, nMaxCount, ppShaderList ); } //----------------------------------------------------------------------------- // FIXME: Is there a better way of doing this? // Returns shader flag names for editors to be able to edit them //----------------------------------------------------------------------------- int CMaterialSystem::ShaderFlagCount() const { return ShaderSystem()->ShaderStateCount( ); } const char *CMaterialSystem::ShaderFlagName( int nIndex ) const { return ShaderSystem()->ShaderStateString( nIndex ); } //----------------------------------------------------------------------------- // Returns the currently active shader fallback for a particular shader //----------------------------------------------------------------------------- void CMaterialSystem::GetShaderFallback( const char *pShaderName, char *pFallbackShader, int nFallbackLength ) { // FIXME: This is pretty much a hack. We need a better way for the // editor to get ahold of shader fallbacks int nCount = ShaderCount(); IShader** ppShaderList = (IShader**)_alloca( nCount * sizeof(IShader) ); GetShaders( 0, nCount, ppShaderList ); do { int i; for ( i = 0; i < nCount; ++i ) { if ( !Q_stricmp( pShaderName, ppShaderList[i]->GetName() ) ) break; } // Didn't find a match! if ( i == nCount ) { Q_strncpy( pFallbackShader, "wireframe", nFallbackLength ); return; } // Found a match // FIXME: Theoretically, getting fallbacks should require a param list // In practice, it looks rare or maybe even neved done const char *pFallback = ppShaderList[i]->GetFallbackShader( NULL ); if ( !pFallback ) { Q_strncpy( pFallbackShader, pShaderName, nFallbackLength ); return; } else { pShaderName = pFallback; } } while (true); } //----------------------------------------------------------------------------- // Triggers OpenGL shader preloading at game startup //----------------------------------------------------------------------------- #ifdef DX_TO_GL_ABSTRACTION void CMaterialSystem::DoStartupShaderPreloading( void ) { GetRenderContextInternal()->DoStartupShaderPreloading(); } #endif void CMaterialSystem::SwapBuffers( void ) { VPROF_BUDGET( "CMaterialSystem::SwapBuffers", VPROF_BUDGETGROUP_SWAP_BUFFERS ); GetRenderContextInternal()->SwapBuffers(); g_FrameNum++; } bool CMaterialSystem::InEditorMode() const { Assert( m_bGeneratedConfig ); return g_config.bEditMode && CanUseEditorMaterials(); } void CMaterialSystem::NoteAnisotropicLevel( int currentLevel ) { Assert( m_bGeneratedConfig ); g_config.m_nForceAnisotropicLevel = currentLevel; } // Get the current config for this video card (as last set by control panel or the default if not) const MaterialSystem_Config_t &CMaterialSystem::GetCurrentConfigForVideoCard() const { Assert( m_bGeneratedConfig ); return g_config; } // Does the device support the given MSAA level? bool CMaterialSystem::SupportsMSAAMode( int nNumSamples ) { return g_pShaderAPI->SupportsMSAAMode( nNumSamples ); } void CMaterialSystem::ReloadFilesInList( IFileList *pFilesToReload ) { if ( !IsPC() ) return; // We have to flush the materials in 2 steps because they have recursive dependencies. The problem case // is if you have two materials, A and B, that depend on C. You tell A to reload and it also reloads C. Then // the filesystem thinks C doesn't need to be reloaded anymore. So when you get to B, it decides not to reload // either since C doesn't need to be reloaded. To fix this, we ask all materials if they want to reload in // one stage, then in the next stage we actually reload the appropriate ones. MaterialHandle_t hNext; for ( MaterialHandle_t h=m_MaterialDict.FirstMaterial(); h != m_MaterialDict.InvalidMaterial(); h=hNext ) { hNext = m_MaterialDict.NextMaterial( h ); IMaterialInternal *pMat = m_MaterialDict.GetMaterialInternal( h ); pMat->DecideShouldReloadFromWhitelist( pFilesToReload ); } // Now reload the materials that wanted to be reloaded. for ( MaterialHandle_t h=m_MaterialDict.FirstMaterial(); h != m_MaterialDict.InvalidMaterial(); h=hNext ) { hNext = m_MaterialDict.NextMaterial( h ); IMaterialInternal *pMat = m_MaterialDict.GetMaterialInternal( h ); pMat->ReloadFromWhitelistIfMarked(); } // Flush out necessary textures. TextureManager()->ReloadFilesInList( pFilesToReload ); } // Does the device support the given CSAA level? bool CMaterialSystem::SupportsCSAAMode( int nNumSamples, int nQualityLevel ) { return g_pShaderAPI->SupportsCSAAMode( nNumSamples, nQualityLevel ); } // Does the device support shadow depth texturing? bool CMaterialSystem::SupportsShadowDepthTextures( void ) { return g_pShaderAPI->SupportsShadowDepthTextures(); } // Does the device support Fetch4 bool CMaterialSystem::SupportsFetch4( void ) { return g_pShaderAPI->SupportsFetch4(); } // Vendor-dependent shadow depth texture format ImageFormat CMaterialSystem::GetShadowDepthTextureFormat( void ) { return g_pShaderAPI->GetShadowDepthTextureFormat(); } // Vendor-dependent slim texture format ImageFormat CMaterialSystem::GetNullTextureFormat( void ) { return g_pShaderAPI->GetNullTextureFormat(); } void CMaterialSystem::SetShadowDepthBiasFactors( float fShadowSlopeScaleDepthBias, float fShadowDepthBias ) { g_pShaderAPI->SetShadowDepthBiasFactors( fShadowSlopeScaleDepthBias, fShadowDepthBias ); } bool CMaterialSystem::SupportsHDRMode( HDRType_t nHDRMode ) { return HardwareConfig()->SupportsHDRMode( nHDRMode ); } bool CMaterialSystem::UsesSRGBCorrectBlending( void ) const { return HardwareConfig()->UsesSRGBCorrectBlending(); } // Get video card identitier const MaterialSystemHardwareIdentifier_t &CMaterialSystem::GetVideoCardIdentifier( void ) const { static MaterialSystemHardwareIdentifier_t foo; Assert( 0 ); return foo; } void CMaterialSystem::AddModeChangeCallBack( ModeChangeCallbackFunc_t func ) { g_pShaderDeviceMgr->AddModeChangeCallback( func ); } void CMaterialSystem::RemoveModeChangeCallBack( ModeChangeCallbackFunc_t func ) { g_pShaderDeviceMgr->RemoveModeChangeCallback( func ); } //----------------------------------------------------------------------------- // Gets configuration information associated with the display card, and optionally for a particular DX level. // It will return a list of ConVars and values to set. //----------------------------------------------------------------------------- bool CMaterialSystem::GetRecommendedConfigurationInfo( int nDXLevel, KeyValues *pKeyValues ) { MaterialLock_t hLock = Lock(); bool bResult = g_pShaderDeviceMgr->GetRecommendedConfigurationInfo( m_nAdapter, nDXLevel, pKeyValues ); Unlock( hLock ); return bResult; } //----------------------------------------------------------------------------- // For dealing with device lost in cases where SwapBuffers isn't called all the time (Hammer) //----------------------------------------------------------------------------- void CMaterialSystem::HandleDeviceLost() { if ( IsX360() ) return; g_pShaderAPI->HandleDeviceLost(); } bool CMaterialSystem::UsingFastClipping( void ) { return (HardwareConfig()->UseFastClipping() || (HardwareConfig()->MaxUserClipPlanes() < 1)); }; int CMaterialSystem::StencilBufferBits( void ) { return HardwareConfig()->StencilBufferBits(); } ITexture* CMaterialSystem::CreateRenderTargetTexture( int w, int h, RenderTargetSizeMode_t sizeMode, // Controls how size is generated (and regenerated on video mode change). ImageFormat format, MaterialRenderTargetDepth_t depth ) { return CreateNamedRenderTargetTextureEx( NULL, w, h, sizeMode, format, depth, TEXTUREFLAGS_CLAMPS|TEXTUREFLAGS_CLAMPT, 0 ); } ITexture* CMaterialSystem::CreateNamedRenderTargetTexture( const char *pRTName, int w, int h, RenderTargetSizeMode_t sizeMode, // Controls how size is generated (and regenerated on video mode change). ImageFormat format, MaterialRenderTargetDepth_t depth, bool bClampTexCoords, bool bAutoMipMap ) { unsigned int textureFlags = 0; if ( bClampTexCoords ) { textureFlags |= TEXTUREFLAGS_CLAMPS | TEXTUREFLAGS_CLAMPT; } unsigned int renderTargetFlags = 0; if ( bAutoMipMap ) { renderTargetFlags |= CREATERENDERTARGETFLAGS_AUTOMIPMAP; } return CreateNamedRenderTargetTextureEx( pRTName, w, h, sizeMode, format, depth, textureFlags, renderTargetFlags ); } ITexture* CMaterialSystem::CreateNamedRenderTargetTextureEx( const char *pRTName, int w, int h, RenderTargetSizeMode_t sizeMode, // Controls how size is generated (and regenerated on video mode change). ImageFormat format, MaterialRenderTargetDepth_t depth, unsigned int textureFlags, unsigned int renderTargetFlags ) { RenderTargetType_t rtType; bool gl_canMixTargetSizes = (HardwareConfig() && HardwareConfig()->SupportsGLMixedSizeTargets()); // On GL, the depth buffer for a render target must be the same size (until we pick up mixed-sized attachments in 10.6.3) if ( (!gl_canMixTargetSizes && IsPosix()) || IsEmulatingGL() ) { if ( depth != MATERIAL_RT_DEPTH_SEPARATE && depth != MATERIAL_RT_DEPTH_NONE ) { int fbWidth, fbHeight; g_pShaderAPI->GetBackBufferDimensions( fbWidth, fbHeight ); if ( sizeMode != RT_SIZE_FULL_FRAME_BUFFER ) { if ( w != fbWidth || h != fbHeight ) { depth = MATERIAL_RT_DEPTH_SEPARATE; } } } } // Determine RT type based on depth buffer requirements switch ( depth ) { case MATERIAL_RT_DEPTH_SEPARATE: // using own depth buffer rtType = RENDER_TARGET_WITH_DEPTH; break; case MATERIAL_RT_DEPTH_NONE: // no depth buffer rtType = RENDER_TARGET_NO_DEPTH; break; case MATERIAL_RT_DEPTH_ONLY: // only depth buffer rtType = RENDER_TARGET_ONLY_DEPTH; break; case MATERIAL_RT_DEPTH_SHARED: default: // using shared depth buffer rtType = RENDER_TARGET; break; } ITextureInternal* pTex = TextureManager()->CreateRenderTargetTexture( pRTName, w, h, sizeMode, format, rtType, textureFlags, renderTargetFlags ); pTex->IncrementReferenceCount(); #if defined( _X360 ) if ( !( renderTargetFlags & CREATERENDERTARGETFLAGS_NOEDRAM ) ) { // create the EDRAM surface that is bound to the RT Texture pTex->CreateRenderTargetSurface( 0, 0, IMAGE_FORMAT_UNKNOWN, true ); } #endif // If we're not in a BeginRenderTargetAllocation-EndRenderTargetAllocation block // because we're being called by a legacy path (i.e. a mod), force an Alt-Tab after every // RT allocation to ensure that all RTs get priority during allocation if ( !m_bAllocatingRenderTargets ) { EndRenderTargetAllocation(); } return pTex; } //----------------------------------------------------------------------------------------------------- // New version which must be called inside BeginRenderTargetAllocation-EndRenderTargetAllocation block //----------------------------------------------------------------------------------------------------- ITexture *CMaterialSystem::CreateNamedRenderTargetTextureEx2( const char *pRTName, int w, int h, RenderTargetSizeMode_t sizeMode, // Controls how size is generated (and regenerated on video mode change). ImageFormat format, MaterialRenderTargetDepth_t depth, unsigned int textureFlags, unsigned int renderTargetFlags ) { // Only proceed if we are between BeginRenderTargetAllocation and EndRenderTargetAllocation if ( !m_bAllocatingRenderTargets ) { Warning( "Tried to create render target outside of CMaterialSystem::BeginRenderTargetAllocation/EndRenderTargetAllocation block\n" ); return NULL; } ITexture* pTexture = CreateNamedRenderTargetTextureEx( pRTName, w, h, sizeMode, format, depth, textureFlags, renderTargetFlags ); pTexture->DecrementReferenceCount(); // Follow the same convention as CTextureManager::LoadTexture (return refcount of 0). return pTexture; } class CTextureBitsRegenerator : public ITextureRegenerator { public: CTextureBitsRegenerator( int w, int h, int mips, ImageFormat fmt, int srcBufferSize, byte* srcBits ) : m_nWidth( w ) , m_nHeight( h ) , m_nMipmaps( mips ) , m_ImageFormat( fmt ) { Assert( srcBits ); Assert( srcBufferSize > 0 ); Assert( m_nMipmaps != 0 ); // If these fail, we'll crash later, so look to before here for the problem. Assert( ImageLoader::GetMemRequired( w, h, 1, fmt, m_nMipmaps > 1 ? true : false ) <= srcBufferSize ); Assert( m_nMipmaps == 1 || m_nMipmaps == ImageLoader::GetNumMipMapLevels( m_nWidth, m_nHeight, 1 ) ); m_ImageData.EnsureCapacity( srcBufferSize ); Q_memcpy( m_ImageData.Base(), srcBits, srcBufferSize ); } virtual void RegenerateTextureBits( ITexture *pTexture, IVTFTexture *pVTFTexture, Rect_t *pRect ) { Assert( pVTFTexture->FrameCount() == 1 ); Assert( pVTFTexture->FaceCount() == 1 ); int destWidth, destHeight, destDepth; pVTFTexture->ComputeMipLevelDimensions( 0, &destWidth, &destHeight, &destDepth ); Assert( destDepth == 1 ); Assert( destWidth <= m_nWidth && destHeight <= m_nHeight ); unsigned char* pDest = pVTFTexture->ImageData(); ImageFormat destFmt = pVTFTexture->Format(); if ( destFmt == m_ImageFormat && destWidth == m_nWidth && destHeight == m_nHeight ) { Q_memcpy( pDest, m_ImageData.Base(), m_ImageData.NumAllocated() ); } else { int srcResX = m_nWidth; int srcResY = m_nHeight; int srcOffset = 0; int dstOffset = 0; int mip = 0; // Skip the mips we're not including. while ( mip < m_nMipmaps && ( srcResX > destWidth || srcResY > destHeight ) ) { srcOffset += ImageLoader::GetMemRequired( srcResX, srcResY, 1, m_ImageFormat, false ); srcResX = Max( 1, ( srcResX >> 1 ) ); srcResY = Max( 1, ( srcResY >> 1 ) ); mip++; } // Assert we're where we expect to be now. Assert( srcResX == destWidth && srcResY == destHeight ); for ( ; mip < m_nMipmaps; ++mip ) { // Convert this mipmap level. ImageLoader::ConvertImageFormat( m_ImageData.Base() + srcOffset, m_ImageFormat, pDest + dstOffset, destFmt, srcResX, srcResY ); // Then update offsets for the next mipmap level. srcOffset += ImageLoader::GetMemRequired( srcResX, srcResY, 1, m_ImageFormat, false ); dstOffset += ImageLoader::GetMemRequired( srcResX, srcResY, 1, destFmt, false ); srcResX = Max( 1, ( srcResX >> 1 ) ); srcResY = Max( 1, ( srcResY >> 1 ) ); } } } virtual void Release() { delete this; } private: int m_nWidth; int m_nHeight; int m_nMipmaps; ImageFormat m_ImageFormat; CUtlMemory m_ImageData; }; ITexture* CMaterialSystem::CreateTextureFromBits(int w, int h, int mips, ImageFormat fmt, int srcBufferSize, byte* srcBits) { int flags = TEXTUREFLAGS_SINGLECOPY | ( mips > 1 ? TEXTUREFLAGS_ALL_MIPS : TEXTUREFLAGS_NOMIP ) ; return CreateNamedTextureFromBitsEx( "frombits", TEXTURE_GROUP_OTHER, w, h, mips, fmt, srcBufferSize, srcBits, flags ); } void CMaterialSystem::OverrideRenderTargetAllocation( bool rtAlloc ) { m_bAllocatingRenderTargets = rtAlloc; } ITextureCompositor* CMaterialSystem::NewTextureCompositor( int w, int h, const char* pCompositeName, int nTeamNum, uint64 randomSeed, KeyValues* stageDesc, uint32 texCompositeCreateFlags ) { return CreateTextureCompositor( w, h, pCompositeName, nTeamNum, randomSeed, stageDesc, texCompositeCreateFlags ); } void CMaterialSystem::ScheduleTextureComposite( CTextureCompositor* _texCompositor ) { Assert( _texCompositor != NULL ); _texCompositor->AddRef(); m_scheduledComposites.AddToTail( _texCompositor ); } void CMaterialSystem::AsyncFindTexture( const char* pFilename, const char *pTextureGroupName, IAsyncTextureOperationReceiver* pRecipient, void* pExtraArgs, bool bComplain, int nAdditionalCreationFlags ) { Assert( pFilename != NULL ); Assert( pTextureGroupName != NULL ); Assert( pRecipient != NULL ); // Bump the ref count on the recipient before handing it off. This ensures the receiver won't go away before we have completed our work. pRecipient->AddRef(); TextureManager()->AsyncFindOrLoadTexture( pFilename, pTextureGroupName, pRecipient, pExtraArgs, bComplain, nAdditionalCreationFlags ); } // creates a texture suitable for use with materials from a raw stream of bits. // The bits will be retained by the material system and can be freed upon return. ITexture *CMaterialSystem::CreateNamedTextureFromBitsEx( const char* pName, const char *pTextureGroupName, int w, int h, int mips, ImageFormat fmt, int srcBufferSize, byte* srcBits, int nFlags ) { Assert( srcBits ); CTextureBitsRegenerator* regen = new CTextureBitsRegenerator( w, h, mips, fmt, srcBufferSize, srcBits ); ITextureInternal* tex = TextureManager()->CreateProceduralTexture( pName, pTextureGroupName, w, h, 1, fmt, nFlags, regen ); return tex; } bool CMaterialSystem::AddTextureCompositorTemplate( const char* pName, KeyValues* pTmplDesc, int /* nTexCompositeTemplateFlags */ ) { // Flags are currently unused, but added for futureproofing. return TextureManager()->AddTextureCompositorTemplate( pName, pTmplDesc ); } bool CMaterialSystem::VerifyTextureCompositorTemplates() { return TextureManager()->VerifyTextureCompositorTemplates(); } void CMaterialSystem::BeginRenderTargetAllocation( void ) { g_pShaderAPI->FlushBufferedPrimitives(); m_bAllocatingRenderTargets = true; } void CMaterialSystem::EndRenderTargetAllocation( void ) { // Any GPU newer than 2005 doesn't need to do this, and it eats up ~40% of our level load time! const bool cbRequiresRenderTargetAllocationFirst = mat_requires_rt_alloc_first.GetBool(); g_pShaderAPI->FlushBufferedPrimitives(); m_bAllocatingRenderTargets = false; if ( IsPC() && cbRequiresRenderTargetAllocationFirst && g_pShaderAPI->CanDownloadTextures() ) { // Simulate an Alt-Tab...will cause RTs to be allocated first g_pShaderDevice->ReleaseResources(); g_pShaderDevice->ReacquireResources(); } TextureManager()->CacheExternalStandardRenderTargets(); } void CMaterialSystem::SetRenderTargetFrameBufferSizeOverrides( int nWidth, int nHeight ) { m_nRenderTargetFrameBufferWidthOverride = nWidth; m_nRenderTargetFrameBufferHeightOverride = nHeight; } void CMaterialSystem::GetRenderTargetFrameBufferDimensions( int & nWidth, int & nHeight ) { if( m_nRenderTargetFrameBufferHeightOverride && m_nRenderTargetFrameBufferWidthOverride ) { nWidth = m_nRenderTargetFrameBufferWidthOverride; nHeight = m_nRenderTargetFrameBufferHeightOverride; } else { GetBackBufferDimensions( nWidth, nHeight ); } } //----------------------------------------------------------------------------------------------------- // //----------------------------------------------------------------------------------------------------- void CMaterialSystem::UpdateLightmap( int lightmapPageID, int lightmapSize[2], int offsetIntoLightmapPage[2], float *pFloatImage, float *pFloatImageBump1, float *pFloatImageBump2, float *pFloatImageBump3 ) { CMatCallQueue *pCallQueue = GetRenderCallQueue(); if ( !pCallQueue ) { m_Lightmaps.UpdateLightmap( lightmapPageID, lightmapSize, offsetIntoLightmapPage, pFloatImage, pFloatImageBump1, pFloatImageBump2, pFloatImageBump3 ); } else { ExecuteOnce( DebuggerBreakIfDebugging() ); } } //----------------------------------------------------------------------------------------------------- // 360 TTF Font Support //----------------------------------------------------------------------------------------------------- #if defined( _X360 ) HXUIFONT CMaterialSystem::OpenTrueTypeFont( const char *pFontname, int tall, int style ) { MaterialLock_t hLock = Lock(); HXUIFONT result = g_pShaderAPI->OpenTrueTypeFont( pFontname, tall, style ); Unlock( hLock ); return result; } void CMaterialSystem::CloseTrueTypeFont( HXUIFONT hFont ) { MaterialLock_t hLock = Lock(); g_pShaderAPI->CloseTrueTypeFont( hFont ); Unlock( hLock ); } bool CMaterialSystem::GetTrueTypeFontMetrics( HXUIFONT hFont, XUIFontMetrics *pFontMetrics, XUICharMetrics charMetrics[256] ) { MaterialLock_t hLock = Lock(); bool result = g_pShaderAPI->GetTrueTypeFontMetrics( hFont, pFontMetrics, charMetrics ); Unlock( hLock ); return result; } bool CMaterialSystem::GetTrueTypeGlyphs( HXUIFONT hFont, int numChars, wchar_t *pWch, int *pOffsetX, int *pOffsetY, int *pWidth, int *pHeight, unsigned char *pRGBA, int *pRGBAOffset ) { MaterialLock_t hLock = Lock(); bool result = g_pShaderAPI->GetTrueTypeGlyphs( hFont, numChars, pWch, pOffsetX, pOffsetY, pWidth, pHeight, pRGBA, pRGBAOffset ); Unlock( hLock ); return result; } #endif //----------------------------------------------------------------------------------------------------- // 360 Back Buffer access. Due to hardware, RT data must be blitted from EDRAM // and converted. //----------------------------------------------------------------------------------------------------- #if defined( _X360 ) void CMaterialSystem::ReadBackBuffer( Rect_t *pSrcRect, Rect_t *pDstRect, unsigned char *pDstData, ImageFormat dstFormat, int dstStride ) { Assert( pSrcRect && pDstRect && pDstData ); int fbWidth, fbHeight; g_pShaderAPI->GetBackBufferDimensions( fbWidth, fbHeight ); if ( pDstRect->width > fbWidth || pDstRect->height > fbHeight ) { Assert( 0 ); return; } // intermediate results will be placed at (0,0) Rect_t rect; rect.x = 0; rect.y = 0; rect.width = pDstRect->width; rect.height = pDstRect->height; ITexture *pTempRT; bool bStretch = ( pSrcRect->width != pDstRect->width || pSrcRect->height != pDstRect->height ); if ( !bStretch ) { // hijack an unused RT (no surface required) for 1:1 resolve work, fastest path pTempRT = FindTexture( "_rt_FullFrameFB", TEXTURE_GROUP_RENDER_TARGET ); } else { // hijack an unused RT (with surface abilities) for stretch work, slower path pTempRT = FindTexture( "_rt_WaterReflection", TEXTURE_GROUP_RENDER_TARGET ); } Assert( !pTempRT->IsError() && pDstRect->width <= pTempRT->GetActualWidth() && pDstRect->height <= pTempRT->GetActualHeight() ); GetRenderContextInternal()->CopyRenderTargetToTextureEx( pTempRT, 0, pSrcRect, &rect ); // access the RT bits CPixelWriter writer; g_pShaderAPI->ModifyTexture( ((ITextureInternal*)pTempRT)->GetTextureHandle( 0 ) ); if ( !g_pShaderAPI->TexLock( 0, 0, 0, 0, pTempRT->GetActualWidth(), pTempRT->GetActualHeight(), writer ) ) return; // this will be adequate for non-block formats int srcStride = pTempRT->GetActualWidth() * ImageLoader::SizeInBytes( pTempRT->GetImageFormat() ); // untile intermediate RT in place to achieve linear access XGUntileTextureLevel( pTempRT->GetActualWidth(), pTempRT->GetActualHeight(), 0, XGGetGpuFormat( ImageLoader::ImageFormatToD3DFormat( pTempRT->GetImageFormat() ) ), 0, (char*)writer.GetPixelMemory(), srcStride, NULL, writer.GetPixelMemory(), NULL ); // swap back to x86 order as expected by image conversion ImageLoader::ByteSwapImageData( (unsigned char*)writer.GetPixelMemory(), srcStride*pTempRT->GetActualHeight(), pTempRT->GetImageFormat() ); // convert to callers format Assert( dstFormat == IMAGE_FORMAT_RGB888 ); ImageLoader::ConvertImageFormat( (unsigned char*)writer.GetPixelMemory(), pTempRT->GetImageFormat(), pDstData, dstFormat, pDstRect->width, pDstRect->height, srcStride, dstStride ); g_pShaderAPI->TexUnlock(); } #endif #if defined( _X360 ) void CMaterialSystem::PersistDisplay() { g_pShaderAPI->PersistDisplay(); } #endif #if defined( _X360 ) void *CMaterialSystem::GetD3DDevice() { return g_pShaderAPI->GetD3DDevice(); } #endif #if defined( _X360 ) bool CMaterialSystem::OwnGPUResources( bool bEnable ) { return g_pShaderAPI->OwnGPUResources( bEnable ); } #endif //----------------------------------------------------------------------------------------------------- // //----------------------------------------------------------------------------------------------------- class CThreadRelease : public CJob { virtual JobStatus_t DoExecute() { g_pShaderAPI->ReleaseThreadOwnership(); return JOB_OK; } }; void CMaterialSystem::ThreadRelease( ) { if ( !m_bThreadHasOwnership ) { return; } double flStartTime, flEndThreadRelease, flEndTime; int do_report = mat_queue_report.GetInt(); if ( do_report ) { flStartTime = Plat_FloatTime(); } CJob *pActiveAsyncJob = new CThreadRelease(); IThreadPool *pThreadPool = CreateMatQueueThreadPool(); pThreadPool->AddJob( pActiveAsyncJob ); pActiveAsyncJob->WaitForFinish(); SafeRelease( pActiveAsyncJob ); if ( do_report ) { flEndThreadRelease = Plat_FloatTime(); } g_pShaderAPI->AcquireThreadOwnership(); m_bThreadHasOwnership = false; m_ThreadOwnershipID = 0; if ( do_report ) { flEndTime = Plat_FloatTime(); double flResult = ( flEndTime - flStartTime ) * 1000.0; if ( do_report == -1 || flResult > mat_queue_report.GetFloat() ) { Color red( 200, 20, 20, 255 ); ConColorMsg( red, "CMaterialSystem::ThreadRelease: %0.2fms = Release:%0.2fms + Acquire:%0.2fms\n", flResult, ( flEndThreadRelease - flStartTime ) * 1000.0, ( flEndTime - flEndThreadRelease ) * 1000.0 ); } } } void CMaterialSystem::ThreadAcquire( bool bForce ) { if ( !bForce ) { return; } double flStartTime, flEndTime; int do_report = mat_queue_report.GetInt(); if ( do_report ) { flStartTime = Plat_FloatTime(); } g_pShaderAPI->ReleaseThreadOwnership(); CJob *pActiveAsyncJob = new CThreadAcquire(); IThreadPool *pThreadPool = CreateMatQueueThreadPool(); pThreadPool->AddJob( pActiveAsyncJob ); // while we could wait for this job to finish, there's no reason too // pActiveAsyncJob->WaitForFinish(); SafeRelease( pActiveAsyncJob ); m_bThreadHasOwnership = true; m_ThreadOwnershipID = ThreadGetCurrentId(); if ( do_report ) { flEndTime = Plat_FloatTime(); double flResult = ( flEndTime - flStartTime ) * 1000.0; if ( do_report == -1 || flResult > mat_queue_report.GetFloat() ) { Color red( 200, 20, 20, 255 ); ConColorMsg( red, "CMaterialSystem::ThreadAcquire: %0.2fms\n", flResult ); } } } //----------------------------------------------------------------------------------------------------- // //----------------------------------------------------------------------------------------------------- MaterialLock_t CMaterialSystem::Lock() { double flStartTime; int do_report = mat_queue_report.GetInt(); if ( do_report ) { flStartTime = Plat_FloatTime(); } IMatRenderContextInternal *pCurContext = GetRenderContextInternal(); #if 1 // Rick's optimization: not sure this is needed anymore if ( pCurContext != &m_HardwareRenderContext && m_pActiveAsyncJob ) { m_pActiveAsyncJob->WaitForFinish(); // threadsafety note: not releasing or nulling pointer. } if ( m_ThreadMode != MATERIAL_SINGLE_THREADED ) { TelemetrySetLockName( TELEMETRY_LEVEL0, (char const *)&g_MatSysMutex, "MatSysMutex" ); tmTryLock( TELEMETRY_LEVEL0, (char const *)&g_MatSysMutex, "CMaterialSystem" ); g_MatSysMutex.Lock(); tmEndTryLock( TELEMETRY_LEVEL0, (char const *)&g_MatSysMutex, TMLR_SUCCESS ); tmSetLockState( TELEMETRY_LEVEL0, (char const *)&g_MatSysMutex, TMLS_LOCKED, "CMaterialSystem" ); } #endif MaterialLock_t hMaterialLock = (MaterialLock_t)pCurContext; m_pRenderContext.Set( &m_HardwareRenderContext ); if ( m_ThreadMode != MATERIAL_SINGLE_THREADED ) { g_pShaderAPI->SetDisallowAccess( false ); if ( pCurContext->GetCallQueueInternal() ) { ThreadRelease(); } } g_pShaderAPI->ShaderLock(); if ( do_report ) { double flEndTime = Plat_FloatTime(); double flResult = ( flEndTime - flStartTime ) * 1000.0; if ( do_report == -1 || flResult > mat_queue_report.GetFloat() ) { Color red( 200, 20, 20, 255 ); ConColorMsg( red, "*CMaterialSystem::Lock: %0.2fms\n", flResult ); } } return hMaterialLock; } //----------------------------------------------------------------------------------------------------- // //----------------------------------------------------------------------------------------------------- void CMaterialSystem::Unlock( MaterialLock_t hMaterialLock ) { double flStartTime; int do_report = mat_queue_report.GetInt(); if ( do_report ) { flStartTime = Plat_FloatTime(); } IMatRenderContextInternal *pRenderContext = (IMatRenderContextInternal *)hMaterialLock; m_pRenderContext.Set( pRenderContext ); g_pShaderAPI->ShaderUnlock(); #ifdef MAT_QUEUE_MODE_PROFILE if ( m_ThreadMode == MATERIAL_QUEUED_SINGLE_THREADED ) { g_pShaderAPI->SetDisallowAccess( true ); } else #endif if ( m_ThreadMode == MATERIAL_QUEUED_THREADED ) { if ( pRenderContext->GetCallQueueInternal() ) { ThreadAcquire(); } } #if 1 // Rick's optimization: not sure this is needed anymore if ( m_ThreadMode != MATERIAL_SINGLE_THREADED ) { g_MatSysMutex.Unlock(); tmSetLockState( TELEMETRY_LEVEL0, (char const *)&g_MatSysMutex, TMLS_RELEASED, "CMaterialSystem" ); } #endif if ( do_report ) { double flEndTime = Plat_FloatTime(); double flResult = ( flEndTime - flStartTime ) * 1000.0; if ( do_report || flResult > mat_queue_report.GetFloat() ) { Color red( 200, 20, 20, 255 ); ConColorMsg( red, "*CMaterialSystem::Unlock: %0.2fms\n", flResult ); } } } //----------------------------------------------------------------------------------------------------- // //----------------------------------------------------------------------------------------------------- CMatCallQueue *CMaterialSystem::GetRenderCallQueue() { IMatRenderContextInternal *pRenderContext = m_pRenderContext.Get(); return pRenderContext ? pRenderContext->GetCallQueueInternal() : NULL; } void CMaterialSystem::UnbindMaterial( IMaterial *pMaterial ) { Assert( (pMaterial == NULL) || ((IMaterialInternal *)pMaterial)->IsRealTimeVersion() ); if ( m_HardwareRenderContext.GetCurrentMaterial() == pMaterial ) { m_HardwareRenderContext.Bind( g_pErrorMaterial, NULL ); } } class CReplacementProxy : public IMaterialProxy { public: CReplacementProxy( void ); virtual ~CReplacementProxy( void ); virtual bool Init( IMaterial *pMaterial, KeyValues *pKeyValues ); virtual void OnBind( void * ); virtual void Release( ); virtual IMaterial * GetMaterial( ); private: IMaterial *m_pReplaceMaterial; }; #define REPLACEMENT_NAME "_replacement" //----------------------------------------------------------------------------- // Purpose: //----------------------------------------------------------------------------- CReplacementProxy::CReplacementProxy( void ) : m_pReplaceMaterial ( NULL ) { } //----------------------------------------------------------------------------- // Purpose: //----------------------------------------------------------------------------- CReplacementProxy::~CReplacementProxy( void ) { } //----------------------------------------------------------------------------- // Purpose: Get pointer to the color value // Input : *pMaterial - //----------------------------------------------------------------------------- bool CReplacementProxy::Init( IMaterial *pMaterial, KeyValues *pKeyValues ) { const char *pszFileName = pMaterial->GetName(); char szNewName[ MAX_PATH ]; V_sprintf_safe( szNewName, "%s" REPLACEMENT_NAME, pszFileName ); m_pReplaceMaterial = materials->CreateMaterial( szNewName, pKeyValues ); return true; } //----------------------------------------------------------------------------- // Purpose: // Input : //----------------------------------------------------------------------------- void CReplacementProxy::OnBind( void * ) { } void CReplacementProxy::Release( ) { m_pReplaceMaterial->DecrementReferenceCount(); // Since we have a material-holding-a-material situation here, we need to nuke these if unreferenced to prevent the // engine needing to double-call UncacheUnusedMaterials to actually get rid of all materials. m_pReplaceMaterial->DeleteIfUnreferenced(); m_pReplaceMaterial = NULL; } IMaterial *CReplacementProxy::GetMaterial() { static ConVarRef localplayer_visionflags( "localplayer_visionflags" ); bool bVisionOverride = ( localplayer_visionflags.IsValid() && ( localplayer_visionflags.GetInt() & ( 0x01 ) ) ); // Pyro-vision Goggles if ( bVisionOverride ) { return m_pReplaceMaterial; } return NULL; } EXPOSE_INTERFACE( CReplacementProxy, IMaterialProxy, "replace_proxy" IMATERIAL_PROXY_INTERFACE_VERSION ); static const char *pszReplacementForceCopy[] = { "$nocull", NULL }; void CMaterialSystem::LoadReplacementMaterials() { const char* cLocation = "materials"; if ( CommandLine()->FindParm( "-matscan") ) { ScanDirForReplacements( cLocation ); } else { InitReplacementsFromFile( cLocation ); } } void CMaterialSystem::ScanDirForReplacements( const char *pszPathName ) { char szBaseName[ MAX_PATH ]; V_sprintf_safe( szBaseName, "%s/replacements.vmt", pszPathName ); if ( g_pFullFileSystem->FileExists( szBaseName ) ) { KeyValues *pKV = g_pFullFileSystem->LoadKeyValues( IFileSystem::TYPE_VMT, szBaseName ); if ( pKV ) { V_sprintf_safe( szBaseName, "%s/", pszPathName ); m_Replacements.Insert( szBaseName, pKV ); } } V_sprintf_safe( szBaseName, "%s/*", pszPathName ); FileFindHandle_t FindHandle; const char *pFindFileName = g_pFullFileSystem->FindFirst( szBaseName, &FindHandle ); while ( pFindFileName && pFindFileName[ 0 ] != '\0' ) { if ( g_pFullFileSystem->FindIsDirectory( FindHandle ) ) { if ( strcmp( pFindFileName, "." ) != 0 && strcmp( pFindFileName, ".." ) != 0 ) { char szNextBaseName[ MAX_PATH ]; V_sprintf_safe( szNextBaseName, "%s/%s", pszPathName, pFindFileName ); ScanDirForReplacements( szNextBaseName ); } } pFindFileName = g_pFullFileSystem->FindNext( FindHandle ); } g_pFullFileSystem->FindClose( FindHandle ); } void CMaterialSystem::InitReplacementsFromFile( const char *pszPathName ) { CUtlVector replacementFiles; char szBaseName[MAX_PATH]; V_sprintf_safe( szBaseName, "%s/replacements.txt", pszPathName ); int replacementCount = ReadListFromFile( &replacementFiles, szBaseName ); for ( int i = 0; i < replacementCount; ++i ) { V_snprintf( szBaseName, sizeof(szBaseName), "%s/%s/replacements.vmt", pszPathName, replacementFiles[i] ); if ( g_pFullFileSystem->FileExists(szBaseName) ) { KeyValues *pKV = g_pFullFileSystem->LoadKeyValues( IFileSystem::TYPE_VMT, szBaseName ); if (pKV) { V_sprintf_safe( szBaseName, "%s/%s/", pszPathName, replacementFiles[i] ); m_Replacements.Insert( szBaseName, pKV ); } } } replacementFiles.PurgeAndDeleteElements(); } void CMaterialSystem::PreloadReplacements( ) { int nIndex = m_Replacements.First(); while( m_Replacements.IsValidIndex( nIndex ) ) { m_Replacements.Element( nIndex )->deleteThis(); nIndex = m_Replacements.Next( nIndex ); } m_Replacements.Purge(); COM_TimestampedLog( "LoadReplacementMaterials(): Begin" ); LoadReplacementMaterials(); COM_TimestampedLog( "LoadReplacementMaterials(): End" ); m_bReplacementFilesValid = true; } IMaterialProxy *CMaterialSystem::DetermineProxyReplacements( IMaterial *pMaterial, KeyValues *pFallbackKeyValues ) { CReplacementProxy *pReplacementProxy = NULL; if ( !g_pMaterialSystemHardwareConfig->SupportsPixelShaders_2_0() ) { return NULL; } if ( !m_bReplacementFilesValid ) { PreloadReplacements(); } const char *pszMaterialName = pMaterial->GetName(); char szCheckPath[ MAX_PATH ], szCheckName[ MAX_PATH ], szLastPath[ MAX_PATH ]; const char *pszShadername = pFallbackKeyValues->GetName(); V_strcpy_safe( szLastPath, pszMaterialName ); int nLength = strlen( szLastPath ) - strlen( REPLACEMENT_NAME ); if ( nLength > 0 && strcmpi( &szLastPath[ nLength ], REPLACEMENT_NAME ) == 0 ) { return NULL; } while( 1 ) { const char *pszRemoveSlashes; V_ExtractFilePath( szLastPath, szCheckPath, sizeof( szCheckPath ) ); pszRemoveSlashes = szCheckPath; while ( ( *pszRemoveSlashes ) != 0 && ( ( *pszRemoveSlashes ) == '/' || ( *pszRemoveSlashes ) == '\\' ) ) { pszRemoveSlashes++; } V_sprintf_safe( szCheckName, "materials/%s", pszRemoveSlashes ); int nIndex = m_Replacements.Find( szCheckName ); if ( m_Replacements.IsValidIndex( nIndex ) ) { KeyValues *pKV = m_Replacements.Element( nIndex ); KeyValues *pTemplatesKV = pKV->FindKey( "templates" ); KeyValues *pPatternsKV = pKV->FindKey( "patterns" ); const char *pszFileName = V_GetFileName( pszMaterialName ); if ( !pTemplatesKV || !pPatternsKV ) { Warning( "Replacements: Invalid KV file %s\n", szCheckName ); } else { for ( KeyValues *pSubKey = pPatternsKV->GetFirstSubKey(); pSubKey; pSubKey = pSubKey->GetNextKey() ) { const char *pszReplacementName = pSubKey->GetName(); // Msg( " Sub: %s\n", pSubKey->GetName() ); if ( strnicmp( pszFileName, pszReplacementName, strlen( pszReplacementName ) ) == 0 ) { // We found a replacement! const char *pszTemplateName = pSubKey->GetString( "template", NULL ); KeyValues *pReplacementMaterial = NULL; if ( pszTemplateName && pTemplatesKV ) { KeyValues *pTemplateKV = pTemplatesKV->FindKey( pszTemplateName ); if ( pTemplateKV ) { pTemplateKV = pTemplateKV->FindKey( pszShadername ); if ( pTemplateKV && pTemplateKV->GetFirstSubKey() ) { pReplacementMaterial = pTemplateKV->GetFirstSubKey()->MakeCopy(); } } } else { if ( pSubKey->GetFirstSubKey() ) { pReplacementMaterial = pSubKey->GetFirstSubKey()->MakeCopy(); } } if ( !pReplacementMaterial ) { break; } if ( pReplacementMaterial->GetInt( "$copyall" ) == 1 ) { for( KeyValues *pCopyKV = pFallbackKeyValues->GetFirstSubKey(); pCopyKV; pCopyKV = pCopyKV->GetNextKey() ) { const char *pszCopyValue = pReplacementMaterial->GetString( pCopyKV->GetName(), NULL ); if ( !pszCopyValue ) { pReplacementMaterial->SetString( pCopyKV->GetName(), pCopyKV->GetString() ); } } } else { int nReplaceIndex = 0; while( pszReplacementForceCopy[nReplaceIndex] ) { const char *pszCopyValue = pFallbackKeyValues->GetString( pszReplacementForceCopy[nReplaceIndex], NULL ); if ( pszCopyValue ) { pReplacementMaterial->SetString( pszReplacementForceCopy[nReplaceIndex], pszCopyValue ); } nReplaceIndex++; } } for( KeyValues *pSearchKV = pReplacementMaterial->GetFirstSubKey(); pSearchKV; pSearchKV = pSearchKV->GetNextKey() ) { const char *pszValue = pSearchKV->GetString(); if ( pszValue[ 0 ] == '$' ) { const char *pszCopyValue = pFallbackKeyValues->GetString( pszValue, NULL ); if ( pszCopyValue ) { pSearchKV->SetStringValue( pszCopyValue ); } else { pSearchKV->SetStringValue( "" ); } } } pReplacementProxy = new CReplacementProxy(); pReplacementProxy->Init( pMaterial, pReplacementMaterial ); break; } } } if ( pReplacementProxy == NULL ) { // Msg( "Failed to find: %s\n", GetName() ); } break; } if ( szCheckPath[ 0 ] == 0 ) { break; } strcpy( szLastPath, szCheckPath ); } return pReplacementProxy; } //----------------------------------------------------------------------------- // //----------------------------------------------------------------------------- void CMaterialSystem::CompactMemory() { for ( int i = 0; i < ARRAYSIZE(m_QueuedRenderContexts); i++) { m_QueuedRenderContexts[i].CompactMemory(); } } void CMaterialSystem::OnRenderingAsyncComplete() { Assert( m_pActiveAsyncJob == NULL ); // Update the texture manager, which may cause some textures to become available for compositing. // Because updating textures may cause textures to swap out their active texture handles, this can only be done // while the async job is not running. bool bThreadHadOwnership = m_bThreadHasOwnership; TextureManager()->UpdatePostAsync(); if ( bThreadHadOwnership && !m_bThreadHasOwnership ) ThreadAcquire( true ); } //----------------------------------------------------------------------------- // Material + texture related commands //----------------------------------------------------------------------------- void CMaterialSystem::DebugPrintUsedMaterials( const CCommand &args ) { if( args.ArgC() == 1 ) { DebugPrintUsedMaterials( NULL, false ); } else { DebugPrintUsedMaterials( args[ 1 ], false ); } } void CMaterialSystem::DebugPrintUsedMaterialsVerbose( const CCommand &args ) { if( args.ArgC() == 1 ) { DebugPrintUsedMaterials( NULL, true ); } else { DebugPrintUsedMaterials( args[ 1 ], true ); } } void CMaterialSystem::DebugPrintUsedTextures( const CCommand &args ) { DebugPrintUsedTextures(); } #if defined( _X360 ) void CMaterialSystem::ListUsedMaterials( const CCommand &args ) { ListUsedMaterials(); } #endif // !_X360 void CMaterialSystem::ReloadAllMaterials( const CCommand &args ) { ReloadMaterials( NULL ); } void CMaterialSystem::ReloadMaterials( const CCommand &args ) { if( args.ArgC() != 2 ) { ConWarning( "Usage: mat_reloadmaterial material_name_substring\n" " or mat_reloadmaterial substring1*substring2*...*substringN\n" ); return; } ReloadMaterials( args[ 1 ] ); } void CMaterialSystem::ReloadTextures( const CCommand &args ) { ReloadTextures(); } CON_COMMAND( mat_hdr_enabled, "Report if HDR is enabled for debugging" ) { if( HardwareConfig() && HardwareConfig()->GetHDREnabled() ) { Warning( "HDR Enabled\n" ); } else { Warning( "HDR Disabled\n" ); } } static int ReadListFromFile(CUtlVector* outReplacementMaterials, const char *pszPathName) { Assert(outReplacementMaterials != NULL); Assert(pszPathName != NULL); CUtlBuffer fileContents; if ( !g_pFullFileSystem->ReadFile( pszPathName, NULL, fileContents ) ) return 0; const char* seps[] = { "\r", "\r\n", "\n" }; V_SplitString2( (char*)fileContents.Base(), seps, ARRAYSIZE(seps), *outReplacementMaterials ); return outReplacementMaterials->Size(); }