//========= Copyright Valve Corporation, All rights reserved. ============// // // Purpose: // //============================================================================= #include "pch_materialsystem.h" #define MATSYS_INTERNAL #include #include "cmatrendercontext.h" #include "tier2/renderutils.h" #include "cmaterialsystem.h" #include "occlusionquerymgr.h" #include "texturemanager.h" #include "IHardwareConfigInternal.h" #include "ctype.h" #include "tier1/fmtstr.h" #include "togl/rendermechanism.h" // NOTE: This must be the last file included!!! #include "tier0/memdbgon.h" //----------------------------------------------------------------------------- // FIXME: right now, always keeping shader API in sync, because debug overlays don't seem to work 100% with the delayed matrix loading #define FORCE_MATRIX_SYNC 1 #ifdef VALIDATE_MATRICES #define ShouldValidateMatrices() true #else #define ShouldValidateMatrices() false #endif #ifdef VALIDATE_MATRICES #define AllowLazyMatrixSync() false #define ForceSync() ((void)(0)) #elif defined(FORCE_MATRIX_SYNC) #define AllowLazyMatrixSync() false #define ForceSync() ForceSyncMatrix( m_MatrixMode ) #else #define AllowLazyMatrixSync() true #define ForceSync() ((void)(0)) #endif #ifdef _X360 static bool s_bDirtyDisk = false; #endif void ValidateMatrices( const VMatrix &m1, const VMatrix &m2, float eps = .001 ) { if ( !ShouldValidateMatrices() ) return; for ( int i = 0; i < 16; i++ ) { AssertFloatEquals( m1.Base()[i], m1.Base()[i], eps ); } } //----------------------------------------------------------------------------- // The dirty disk error report function (NOTE: Could be called from any thread!) //----------------------------------------------------------------------------- #ifdef _X360 unsigned ThreadedDirtyDiskErrorDisplay( void *pParam ) { XShowDirtyDiscErrorUI( XBX_GetPrimaryUserId() ); } #endif void SpinPresent() { while ( true ) { g_pShaderAPI->ClearColor3ub( 0, 0, 0 ); g_pShaderAPI->ClearBuffers( true, true, true, -1, -1 ); g_pShaderDevice->Present(); } } void ReportDirtyDisk() { #ifdef _X360 s_bDirtyDisk = true; ThreadHandle_t h = CreateSimpleThread( ThreadedDirtyDiskErrorDisplay, NULL ); ThreadSetPriority( h, THREAD_PRIORITY_HIGHEST ); // If this is being called from the render thread, immediately swap if ( ( ThreadGetCurrentId() == MaterialSystem()->GetRenderThreadId() ) || ( ThreadInMainThread() && g_pMaterialSystem->GetThreadMode() != MATERIAL_QUEUED_THREADED ) ) { SpinPresent(); } #endif } //----------------------------------------------------------------------------- // Install dirty disk error reporting function (call after SetMode) //----------------------------------------------------------------------------- void SetupDirtyDiskReportFunc() { g_pFullFileSystem->InstallDirtyDiskReportFunc( ReportDirtyDisk ); } //----------------------------------------------------------------------------- // Globals //----------------------------------------------------------------------------- CMemoryStack CMatRenderContextBase::sm_RenderData[2]; int CMatRenderContextBase::sm_nRenderLockCount = 0; int CMatRenderContextBase::sm_nRenderStack = 0; int CMatRenderContextBase::sm_nInitializeCount = 0; //----------------------------------------------------------------------------- // Constructor //----------------------------------------------------------------------------- CMatRenderContextBase::CMatRenderContextBase() : m_pMaterialSystem( NULL ), m_RenderTargetStack( 16, 32 ), m_MatrixMode( NUM_MATRIX_MODES ) { int i; m_bDirtyViewState = true; // Put a special element at the top of the RT stack (indicating back buffer is current top of stack) // NULL indicates back buffer, -1 indicates full-size viewport #if !defined( _X360 ) RenderTargetStackElement_t initialElement = { {NULL, NULL, NULL, NULL}, NULL, 0, 0, -1, -1 }; #else RenderTargetStackElement_t initialElement = { {NULL}, NULL, 0, 0, -1, -1 }; #endif m_RenderTargetStack.Push( initialElement ); for ( i = 0; i < MAX_FB_TEXTURES; i++ ) { m_pCurrentFrameBufferCopyTexture[i] = NULL; } m_pCurrentMaterial = NULL; m_pCurrentProxyData = NULL; m_pUserDefinedLightmap = NULL; m_HeightClipMode = MATERIAL_HEIGHTCLIPMODE_DISABLE; m_HeightClipZ = 0.0f; m_bEnableClipping = true; m_bFlashlightEnable = false; m_bFullFrameDepthIsValid = false; for ( i = 0; i < NUM_MATRIX_MODES; i++ ) { m_MatrixStacks[i].Push(); m_MatrixStacks[i].Top().matrix.Identity(); m_MatrixStacks[i].Top().flags |= ( MSF_DIRTY| MSF_IDENTITY ); } m_pCurMatrixItem = &m_MatrixStacks[0].Top(); m_Viewport.Init( 0, 0, 0, 0 ); m_LastSetToneMapScale=Vector(1,1,1); m_CurToneMapScale=1.0; m_GoalToneMapScale = 1.0f; } //----------------------------------------------------------------------------- // Init, shutdown //----------------------------------------------------------------------------- InitReturnVal_t CMatRenderContextBase::Init( ) { MEM_ALLOC_CREDIT(); if ( !sm_nInitializeCount ) { int nSize = 2200 * 1024; int nCommitSize = 32 * 1024; #ifdef SWDS nSize = nCommitSize = 1024; #endif const char *gamedir = CommandLine()->ParmValue("-game", CommandLine()->ParmValue( "-defaultgamedir", "hl2" ) ); if ( gamedir && !Q_stricmp( "garrysmod", gamedir ) ) { nSize = 4400 * 1024; } sm_RenderData[0].Init( nSize, nCommitSize, 0, 32 ); sm_RenderData[1].Init( nSize, nCommitSize, 0, 32 ); sm_nRenderStack = 0; sm_nRenderLockCount = 0; } ++sm_nInitializeCount; return INIT_OK; } void CMatRenderContextBase::Shutdown( ) { Assert( sm_nInitializeCount >= 0 ); if ( --sm_nInitializeCount == 0 ) { sm_RenderData[0].Term(); sm_RenderData[1].Term(); } } void CMatRenderContextBase::CompactMemory() { if ( sm_nRenderLockCount ) { DevWarning( "CMatRenderContext: Trying to compact with render data still locked!\n" ); sm_nRenderLockCount = 0; } sm_RenderData[0].FreeAll(); sm_RenderData[1].FreeAll(); } void CMatRenderContextBase::MarkRenderDataUnused( bool bFrameBegin ) { if ( sm_nRenderLockCount ) { DevWarning( "CMatRenderContext: Trying to clear render data with render data still locked (%d)!\n", sm_nRenderLockCount ); sm_nRenderLockCount = 0; } // JAY: DO NOT MERGE FROM TF2 - L4D HAS CHANGED THE UNDERLYING INTERFACE IN A WAY THAT DOESN'T REQUIRE THIS #if 0 // Switch stacks if ( bFrameBegin ) { sm_nRenderStack = 1 - sm_nRenderStack; } // Clear the new stack #ifdef _DEBUG memset( sm_RenderData[sm_nRenderStack].GetBase(), 0xFF, RenderDataSizeUsed() ); #endif sm_RenderData[ sm_nRenderStack ].FreeAll( false ); #else // Just for TF2, don't free the stack until the end of frame. TF2 Allocates render data and holds it over the lock // period because we haven't revised the studiorender interface yet to change patterns. // Switch stacks if ( bFrameBegin ) { sm_nRenderStack = 1 - sm_nRenderStack; // Clear the new stack #ifdef _DEBUG memset( sm_RenderData[sm_nRenderStack].GetBase(), 0xFF, RenderDataSizeUsed() ); #endif sm_RenderData[ sm_nRenderStack ].FreeAll( false ); } #endif } int CMatRenderContextBase::RenderDataSizeUsed() const { return sm_RenderData[sm_nRenderStack].GetUsed(); } bool CMatRenderContextBase::IsRenderData( const void *pData ) const { intp nData = (intp)pData; intp nBaseAddress = (intp)sm_RenderData[sm_nRenderStack].GetBase(); intp nLastAddress = nBaseAddress + RenderDataSizeUsed(); return ( nData == 0 ) || ( nData >= nBaseAddress && nData < nLastAddress ); } //----------------------------------------------------------------------------- // debug logging - empty in base class //----------------------------------------------------------------------------- void CMatRenderContextBase::PrintfVA( char *fmt, va_list vargs ) { } void CMatRenderContextBase::Printf( const char *fmt, ... ) { } float CMatRenderContextBase::Knob( char *knobname, float *setvalue ) { return 0.0f; } //----------------------------------------------------------------------------- // //----------------------------------------------------------------------------- #define g_pShaderAPI Cannot_use_ShaderAPI_in_CMatRenderContextBase void CMatRenderContextBase::InitializeFrom( CMatRenderContextBase *pInitialState ) { int i; m_pCurrentMaterial = pInitialState->m_pCurrentMaterial; m_pCurrentProxyData = pInitialState->m_pCurrentProxyData; m_lightmapPageID = pInitialState->m_lightmapPageID; m_pUserDefinedLightmap = pInitialState->m_pUserDefinedLightmap; m_pLocalCubemapTexture = pInitialState->m_pLocalCubemapTexture; memcpy( m_pCurrentFrameBufferCopyTexture, pInitialState->m_pCurrentFrameBufferCopyTexture, MAX_FB_TEXTURES * sizeof(ITexture *) ); m_bEnableClipping = pInitialState->m_bEnableClipping; m_HeightClipMode = pInitialState->m_HeightClipMode; m_HeightClipZ = pInitialState->m_HeightClipZ; m_pBoundMorph = pInitialState->m_pBoundMorph; // not reference counted? m_RenderTargetStack.Clear(); m_RenderTargetStack.EnsureCapacity( pInitialState->m_RenderTargetStack.Count() ); for ( i = 0; i < pInitialState->m_RenderTargetStack.Count(); i++ ) { m_RenderTargetStack.Push( pInitialState->m_RenderTargetStack[i] ); } m_MatrixMode = pInitialState->m_MatrixMode; for ( i = 0; i < NUM_MATRIX_MODES; i++ ) { m_MatrixStacks[i].CopyFrom( pInitialState->m_MatrixStacks[i] ); } m_bFlashlightEnable = pInitialState->m_bFlashlightEnable; m_FrameTime = pInitialState->m_FrameTime; m_GoalToneMapScale = pInitialState->m_GoalToneMapScale; m_CurToneMapScale = pInitialState->m_CurToneMapScale; m_LastSetToneMapScale = pInitialState->m_LastSetToneMapScale; } void CMatRenderContextBase::Bind( IMaterial *iMaterial, void *proxyData ) { IMaterialInternal *material = static_cast( iMaterial ); if ( !material ) { Warning( "Programming error: CMatRenderContext::Bind: NULL material\n" ); material = static_cast( g_pErrorMaterial ); } material = material->GetRealTimeVersion(); //always work with the real time versions of materials internally if ( GetCurrentMaterialInternal() != material ) { if( !material->IsPrecached() ) { DevWarning( "Binding uncached material \"%s\", artificially incrementing refcount\n", material->GetName() ); material->ArtificialAddRef(); material->Precache(); } SetCurrentMaterialInternal(material); } SetCurrentProxy( proxyData ); } void CMatRenderContextBase::BindLightmapPage( int lightmapPageID ) { m_lightmapPageID = lightmapPageID; } void CMatRenderContextBase::SetRenderTargetEx( int nRenderTargetID, ITexture *pNewTarget ) { // Verify valid top of RT stack Assert ( m_RenderTargetStack.Count() > 0 ); // Reset the top of stack to the new target with old viewport RenderTargetStackElement_t newTOS = m_RenderTargetStack.Top(); newTOS.m_pRenderTargets[nRenderTargetID] = pNewTarget; m_RenderTargetStack.Pop( ); m_RenderTargetStack.Push( newTOS ); } void CMatRenderContextBase::BindLocalCubemap( ITexture *pTexture ) { if( pTexture ) { m_pLocalCubemapTexture = pTexture; } else { m_pLocalCubemapTexture = TextureManager()->ErrorTexture(); } } ITexture *CMatRenderContextBase::GetRenderTarget( void ) { if (m_RenderTargetStack.Count() > 0) { return m_RenderTargetStack.Top().m_pRenderTargets[0]; } else { return NULL; // should this be something else, since NULL indicates back buffer? } } ITexture *CMatRenderContextBase::GetRenderTargetEx( int nRenderTargetID ) { // Verify valid top of stack Assert ( m_RenderTargetStack.Count() > 0 ); // Top of render target stack ITexture *pTexture = m_RenderTargetStack.Top().m_pRenderTargets[ nRenderTargetID ]; return pTexture; } void CMatRenderContextBase::SetFrameBufferCopyTexture( ITexture *pTexture, int textureIndex ) { if( textureIndex < 0 || textureIndex > MAX_FB_TEXTURES ) { Assert( 0 ); return; } // FIXME: Do I need to increment/decrement ref counts here, or assume that the app is going to do it? m_pCurrentFrameBufferCopyTexture[textureIndex] = pTexture; } ITexture *CMatRenderContextBase::GetFrameBufferCopyTexture( int textureIndex ) { if( textureIndex < 0 || textureIndex > MAX_FB_TEXTURES ) { Assert( 0 ); return NULL; // FIXME! This should return the error texture. } return m_pCurrentFrameBufferCopyTexture[textureIndex]; } void CMatRenderContextBase::MatrixMode( MaterialMatrixMode_t mode ) { Assert( m_MatrixStacks[mode].Count() ); m_MatrixMode = mode; m_pCurMatrixItem = &m_MatrixStacks[mode].Top(); } void CMatRenderContextBase::CurrentMatrixChanged() { if ( m_MatrixMode == MATERIAL_VIEW ) { m_bDirtyViewState = true; m_bDirtyViewProjState = true; } else if ( m_MatrixMode == MATERIAL_PROJECTION ) { m_bDirtyViewProjState = true; } } void CMatRenderContextBase::PushMatrix() { CUtlStack &curStack = m_MatrixStacks[ m_MatrixMode ]; Assert( curStack.Count() ); int iNew = curStack.Push(); curStack[ iNew ] = curStack[ iNew - 1 ]; m_pCurMatrixItem = &curStack.Top(); CurrentMatrixChanged(); } void CMatRenderContextBase::PopMatrix() { Assert( m_MatrixStacks[m_MatrixMode].Count() > 1 ); m_MatrixStacks[ m_MatrixMode ].Pop(); m_pCurMatrixItem = &m_MatrixStacks[m_MatrixMode].Top(); CurrentMatrixChanged(); } void CMatRenderContextBase::LoadMatrix( const VMatrix& matrix ) { m_pCurMatrixItem->matrix = matrix; m_pCurMatrixItem->flags = MSF_DIRTY; // clearing identity implicitly CurrentMatrixChanged(); } void CMatRenderContextBase::LoadMatrix( const matrix3x4_t& matrix ) { m_pCurMatrixItem->matrix = matrix; m_pCurMatrixItem->flags = MSF_DIRTY; // clearing identity implicitly CurrentMatrixChanged(); } void CMatRenderContextBase::MultMatrix( const VMatrix& matrix ) { VMatrix result; MatrixMultiply( matrix, m_pCurMatrixItem->matrix, result ); m_pCurMatrixItem->matrix = result; m_pCurMatrixItem->flags = MSF_DIRTY; // clearing identity implicitly CurrentMatrixChanged(); } void CMatRenderContextBase::MultMatrix( const matrix3x4_t& matrix ) { CMatRenderContextBase::MultMatrix( VMatrix( matrix ) ); } void CMatRenderContextBase::MultMatrixLocal( const VMatrix& matrix ) { VMatrix result; MatrixMultiply( m_pCurMatrixItem->matrix, matrix, result ); m_pCurMatrixItem->matrix = result; m_pCurMatrixItem->flags = MSF_DIRTY; // clearing identity implicitly CurrentMatrixChanged(); } void CMatRenderContextBase::MultMatrixLocal( const matrix3x4_t& matrix ) { CMatRenderContextBase::MultMatrixLocal( VMatrix( matrix ) ); } void CMatRenderContextBase::LoadIdentity() { // FIXME: possibly track is identity so can call shader API LoadIdentity() later instead of LoadMatrix()? m_pCurMatrixItem->matrix.Identity(); m_pCurMatrixItem->flags = ( MSF_DIRTY | MSF_IDENTITY ); CurrentMatrixChanged(); } void CMatRenderContextBase::Ortho( double left, double top, double right, double bottom, double zNear, double zFar ) { MatrixOrtho( m_pCurMatrixItem->matrix, left, top, right, bottom, zNear, zFar ); m_pCurMatrixItem->flags = MSF_DIRTY; } void CMatRenderContextBase::PerspectiveX( double flFovX, double flAspect, double flZNear, double flZFar ) { MatrixPerspectiveX( m_pCurMatrixItem->matrix, flFovX, flAspect, flZNear, flZFar ); m_pCurMatrixItem->flags = MSF_DIRTY; } void CMatRenderContextBase::PerspectiveOffCenterX( double flFovX, double flAspect, double flZNear, double flZFar, double bottom, double top, double left, double right ) { MatrixPerspectiveOffCenterX( m_pCurMatrixItem->matrix, flFovX, flAspect, flZNear, flZFar, bottom, top, left, right ); m_pCurMatrixItem->flags = MSF_DIRTY; } void CMatRenderContextBase::PickMatrix( int x, int y, int nWidth, int nHeight ) { int vx, vy, vwidth, vheight; GetViewport( vx, vy, vwidth, vheight ); // Compute the location of the pick region in projection space... float px = 2.0 * (float)(x - vx) / (float)vwidth - 1; float py = 2.0 * (float)(y - vy)/ (float)vheight - 1; float pw = 2.0 * (float)nWidth / (float)vwidth; float ph = 2.0 * (float)nHeight / (float)vheight; // we need to translate (px, py) to the origin // and scale so (pw,ph) -> (2, 2) VMatrix mat; MatrixSetIdentity( mat ); mat.m[0][0] = 2.0 / pw; mat.m[1][1] = 2.0 / ph; mat.m[0][3] = -2.0 * px / pw; mat.m[1][3] = -2.0 * py / ph; CMatRenderContextBase::MultMatrixLocal( mat ); } void CMatRenderContextBase::Rotate( float flAngle, float x, float y, float z ) { MatrixRotate( m_pCurMatrixItem->matrix, Vector( x, y, z ), flAngle ); m_pCurMatrixItem->flags = MSF_DIRTY; } void CMatRenderContextBase::Translate( float x, float y, float z ) { MatrixTranslate( m_pCurMatrixItem->matrix, Vector( x, y, z ) ); m_pCurMatrixItem->flags = MSF_DIRTY; } void CMatRenderContextBase::Scale( float x, float y, float z ) { VMatrix mat; MatrixBuildScale( mat, x, y, z ); CMatRenderContextBase::MultMatrixLocal( mat ); } void CMatRenderContextBase::GetMatrix( MaterialMatrixMode_t matrixMode, VMatrix *pMatrix ) { CUtlStack &stack = m_MatrixStacks[ matrixMode ]; if ( !stack.Count() ) { pMatrix->Identity(); return; } *pMatrix = stack.Top().matrix; } void CMatRenderContextBase::GetMatrix( MaterialMatrixMode_t matrixMode, matrix3x4_t *pMatrix ) { CUtlStack &stack = m_MatrixStacks[ matrixMode ]; if ( !stack.Count() ) { SetIdentityMatrix( *pMatrix ); return; } *pMatrix = stack.Top().matrix.As3x4(); } void CMatRenderContextBase::RecomputeViewState() { if ( !m_bDirtyViewState ) return; m_bDirtyViewState = false; // FIXME: Cache this off to make it less expensive? matrix3x4_t viewMatrix; GetMatrix( MATERIAL_VIEW, &viewMatrix ); m_vecViewOrigin.x = -( viewMatrix[0][3] * viewMatrix[0][0] + viewMatrix[1][3] * viewMatrix[1][0] + viewMatrix[2][3] * viewMatrix[2][0] ); m_vecViewOrigin.y = -( viewMatrix[0][3] * viewMatrix[0][1] + viewMatrix[1][3] * viewMatrix[1][1] + viewMatrix[2][3] * viewMatrix[2][1] ); m_vecViewOrigin.z = -( viewMatrix[0][3] * viewMatrix[0][2] + viewMatrix[1][3] * viewMatrix[1][2] + viewMatrix[2][3] * viewMatrix[2][2] ); // FIXME Implement computation of m_vecViewForward, etc m_vecViewForward.Init(); m_vecViewRight.Init(); // FIXME: Is this correct? m_vecViewUp.Init( viewMatrix[1][0], viewMatrix[1][1], viewMatrix[1][2] ); } void CMatRenderContextBase::GetWorldSpaceCameraPosition( Vector *pCameraPos ) { RecomputeViewState(); VectorCopy( m_vecViewOrigin, *pCameraPos ); } void CMatRenderContextBase::GetWorldSpaceCameraVectors( Vector *pVecForward, Vector *pVecRight, Vector *pVecUp ) { RecomputeViewState(); // FIXME Implement computation of m_vecViewForward Assert( 0 ); if ( pVecForward ) { VectorCopy( m_vecViewForward, *pVecForward ); } if ( pVecRight ) { VectorCopy( m_vecViewRight, *pVecRight ); } if ( pVecUp ) { VectorCopy( m_vecViewUp, *pVecUp ); } } void *CMatRenderContextBase::LockRenderData( int nSizeInBytes ) { MEM_ALLOC_CREDIT(); void *pDest = sm_RenderData[ sm_nRenderStack ].Alloc( nSizeInBytes, false ); if ( !pDest ) { ExecuteNTimes( 10, Warning("MaterialSystem: Out of memory in render data!\n") ); } AddRefRenderData(); return pDest; } void CMatRenderContextBase::UnlockRenderData( void *pData ) { ReleaseRenderData(); } void CMatRenderContextBase::AddRefRenderData() { ++sm_nRenderLockCount; } void CMatRenderContextBase::ReleaseRenderData() { --sm_nRenderLockCount; Assert( sm_nRenderLockCount >= 0 ); if ( sm_nRenderLockCount == 0 ) { OnRenderDataUnreferenced(); } } void CMatRenderContextBase::SyncMatrices() { } void CMatRenderContextBase::SyncMatrix( MaterialMatrixMode_t mode ) { } void CMatRenderContextBase::SetHeightClipMode( enum MaterialHeightClipMode_t heightClipMode ) { if( m_HeightClipMode != heightClipMode ) { m_HeightClipMode = heightClipMode; UpdateHeightClipUserClipPlane(); /*if ( HardwareConfig()->MaxUserClipPlanes() >= 1 && !HardwareConfig()->UseFastClipping()) { UpdateHeightClipUserClipPlane(); } else { g_pShaderAPI->SetHeightClipMode( heightClipMode ); }*/ } } void CMatRenderContextBase::SetHeightClipZ( float z ) { if( z != m_HeightClipZ ) { m_HeightClipZ = z; UpdateHeightClipUserClipPlane(); } // FIXME! : Need to move user clip plane support back to pre-dx9 cards (all of the pixel shaders // have texkill in them. . blich.) /*if ( HardwareConfig()->MaxUserClipPlanes() >= 1 && !HardwareConfig()->UseFastClipping() ) { UpdateHeightClipUserClipPlane(); } else { g_pShaderAPI->SetHeightClipZ( z ); }*/ } bool CMatRenderContextBase::EnableClipping( bool bEnable ) { if( bEnable != m_bEnableClipping ) { m_bEnableClipping = bEnable; ApplyCustomClipPlanes(); return !bEnable; } return bEnable; } void CMatRenderContextBase::Viewport( int x, int y, int width, int height ) { // Verify valid top of RT stack Assert ( m_RenderTargetStack.Count() > 0 ); // Reset the top of stack to the new viewport RenderTargetStackElement_t newTOS; memcpy(&newTOS,&(m_RenderTargetStack.Top()),sizeof(newTOS)); newTOS.m_nViewX = x; newTOS.m_nViewY = y; newTOS.m_nViewW = width; newTOS.m_nViewH = height; m_RenderTargetStack.Pop( ); m_RenderTargetStack.Push( newTOS ); } //----------------------------------------------------------------------------- // This version will push the current rendertarget + current viewport onto the stack //----------------------------------------------------------------------------- void CMatRenderContextBase::PushRenderTargetAndViewport( ) { // Necessary to push the stack top onto itself; realloc could happen otherwise m_RenderTargetStack.EnsureCapacity( m_RenderTargetStack.Count() + 1 ); m_RenderTargetStack.Push( m_RenderTargetStack.Top() ); CommitRenderTargetAndViewport(); } //----------------------------------------------------------------------------- // Pushes a render target on the render target stack. Without a specific // viewport also being pushed, this function uses dummy values which indicate // that the viewport should span the the full render target and pushes // the RenderTargetStackElement_t onto the stack // // The push and pop methods also implicitly set the render target to the new top of stack // // NULL for pTexture indicates rendering to the back buffer //----------------------------------------------------------------------------- void CMatRenderContextBase::PushRenderTargetAndViewport( ITexture *pTexture ) { // Just blindly push the data on the stack with flags indicating full bounds #if !defined( _X360 ) RenderTargetStackElement_t element = { {pTexture, NULL, NULL, NULL}, 0, 0, -1, -1 }; #else RenderTargetStackElement_t element = { {pTexture}, 0, 0, -1, -1 }; #endif m_RenderTargetStack.Push( element ); CommitRenderTargetAndViewport(); } //----------------------------------------------------------------------------- // Pushes a render target on the render target stack and sets the viewport // // NULL for pTexture indicates rendering to the back buffer // // The push and pop methods also implicitly set the render target to the new top of stack //----------------------------------------------------------------------------- void CMatRenderContextBase::PushRenderTargetAndViewport( ITexture *pTexture, int nViewX, int nViewY, int nViewW, int nViewH ) { CMatRenderContextBase::PushRenderTargetAndViewport( pTexture, NULL, nViewX, nViewY, nViewW, nViewH ); } //----------------------------------------------------------------------------- // Pushes a render target on the render target stack and sets the viewport // The push and pop methods also implicitly set the render target to the new top of stack //----------------------------------------------------------------------------- void CMatRenderContextBase::PushRenderTargetAndViewport( ITexture *pTexture, ITexture *pDepthTexture, int nViewX, int nViewY, int nViewW, int nViewH ) { // Just blindly push the data on the stack #if !defined( _X360 ) RenderTargetStackElement_t element = { {pTexture, NULL, NULL, NULL}, pDepthTexture, nViewX, nViewY, nViewW, nViewH }; #else RenderTargetStackElement_t element = { {pTexture}, pDepthTexture, nViewX, nViewY, nViewW, nViewH }; #endif m_RenderTargetStack.Push( element ); CommitRenderTargetAndViewport(); } //----------------------------------------------------------------------------- // Pops from the render target stack // Also implicitly sets the render target to the new top of stack //----------------------------------------------------------------------------- void CMatRenderContextBase::PopRenderTargetAndViewport( void ) { // Check for underflow if ( m_RenderTargetStack.Count() == 0 ) { Assert( !"CMatRenderContext::PopRenderTargetAndViewport: Stack is empty!!!" ); return; } // Changelist #266217 added this to main/src/materialsystem. Flush(); // Remove the top of stack m_RenderTargetStack.Pop( ); CommitRenderTargetAndViewport(); } void CMatRenderContextBase::RecomputeViewProjState() { if ( m_bDirtyViewProjState ) { VMatrix viewMatrix, projMatrix; // FIXME: Should consider caching this upon change for projection or view matrix. GetMatrix( MATERIAL_VIEW, &viewMatrix ); GetMatrix( MATERIAL_PROJECTION, &projMatrix ); m_viewProjMatrix = projMatrix * viewMatrix; m_bDirtyViewProjState = false; } } //----------------------------------------------------------------------------- // This returns the diameter of the sphere in pixels based on // the current model, view, + projection matrices and viewport. //----------------------------------------------------------------------------- float CMatRenderContextBase::ComputePixelDiameterOfSphere( const Vector& vecAbsOrigin, float flRadius ) { RecomputeViewState(); RecomputeViewProjState(); // This is sort of faked, but it's faster that way // FIXME: Also, there's a much faster way to do this with similar triangles // but I want to make sure it exactly matches the current matrices, so // for now, I do it this conservative way Vector4D testPoint1, testPoint2; VectorMA( vecAbsOrigin, flRadius, m_vecViewUp, testPoint1.AsVector3D() ); VectorMA( vecAbsOrigin, -flRadius, m_vecViewUp, testPoint2.AsVector3D() ); testPoint1.w = testPoint2.w = 1.0f; Vector4D clipPos1, clipPos2; Vector4DMultiply( m_viewProjMatrix, testPoint1, clipPos1 ); Vector4DMultiply( m_viewProjMatrix, testPoint2, clipPos2 ); if (clipPos1.w >= 0.001f) { clipPos1.y /= clipPos1.w; } else { clipPos1.y *= 1000; } if (clipPos2.w >= 0.001f) { clipPos2.y /= clipPos2.w; } else { clipPos2.y *= 1000; } int vx, vy, vwidth, vheight; GetViewport( vx, vy, vwidth, vheight ); // The divide-by-two here is because y goes from -1 to 1 in projection space return vheight * fabs( clipPos2.y - clipPos1.y ) / 2.0f; } ConVar mat_accelerate_adjust_exposure_down( "mat_accelerate_adjust_exposure_down", "3.0", FCVAR_CHEAT ); ConVar mat_hdr_manual_tonemap_rate( "mat_hdr_manual_tonemap_rate", "1.0" ); ConVar mat_hdr_tonemapscale( "mat_hdr_tonemapscale", "1.0", FCVAR_CHEAT ); ConVar mat_tonemap_algorithm( "mat_tonemap_algorithm", "1", FCVAR_CHEAT, "0 = Original Algorithm 1 = New Algorithm" ); void CMatRenderContextBase::TurnOnToneMapping(void) { if ( ( HardwareConfig()->GetHDRType() != HDR_TYPE_NONE ) && ( m_FrameTime > 0.0f ) ) { float elapsed_time = m_FrameTime; float goalScale = m_GoalToneMapScale; float rate = mat_hdr_manual_tonemap_rate.GetFloat(); if ( mat_tonemap_algorithm.GetInt() == 1 ) { rate *= 2.0f; // Default 2x for the new tone mapping algorithm so it feels the same as the original } if ( rate == 0.0f ) // Zero indicates instantaneous tonemap scaling { m_CurToneMapScale = goalScale; } else { if ( goalScale < m_CurToneMapScale ) { float acc_exposure_adjust = mat_accelerate_adjust_exposure_down.GetFloat(); // Adjust at up to 4x rate when over-exposed. rate = min( ( acc_exposure_adjust * rate ), FLerp( rate, ( acc_exposure_adjust * rate ), 0.0f, 1.5f, ( m_CurToneMapScale - goalScale ) ) ); } float flRateTimesTime = rate * elapsed_time; if ( mat_tonemap_algorithm.GetInt() == 1 ) { // For the new tone mapping algorithm, limit the rate based on the number of bins to // help reduce the tone map scalar "riding the wave" of the histogram re-building //Warning( "flRateTimesTime = %.4f", flRateTimesTime ); flRateTimesTime = min( flRateTimesTime, ( 1.0f / 16.0f ) * 0.25f ); // 16 is number of HDR sample bins defined in viewpostprocess.cpp //Warning( " --> %.4f\n", flRateTimesTime ); } float alpha = max( 0.0f, min( 1.0f, flRateTimesTime ) ); m_CurToneMapScale = ( goalScale * alpha ) + ( m_CurToneMapScale * ( 1.0f - alpha ) ); if ( !IsFinite( m_CurToneMapScale ) ) { Assert( 0 ); m_CurToneMapScale = goalScale; } } SetToneMappingScaleLinear( Vector( m_CurToneMapScale, m_CurToneMapScale, m_CurToneMapScale ) ); m_LastSetToneMapScale = Vector( m_CurToneMapScale, m_CurToneMapScale, m_CurToneMapScale ); } } void CMatRenderContextBase::ResetToneMappingScale(float sc) { m_CurToneMapScale = sc; SetToneMappingScaleLinear( Vector( m_CurToneMapScale, m_CurToneMapScale, m_CurToneMapScale ) ); m_LastSetToneMapScale = Vector( m_CurToneMapScale, m_CurToneMapScale, m_CurToneMapScale ); // mat_hdr_tonemapscale.SetValue(1.0f); m_GoalToneMapScale = 1; } void CMatRenderContextBase::SetGoalToneMappingScale( float monoscale) { Assert( IsFinite( monoscale ) ); if( IsFinite( monoscale ) ) { m_GoalToneMapScale = monoscale; } } Vector CMatRenderContextBase::GetToneMappingScaleLinear( void ) { if ( HardwareConfig()->GetHDRType() == HDR_TYPE_NONE ) return Vector( 1.0f, 1.0f, 1.0f ); else return m_LastSetToneMapScale; } void CMatRenderContextBase::OnAsyncCreateTextureFromRenderTarget( ITexture* pSrcRt, const char** ppDstName, IAsyncTextureOperationReceiver* pRecipient ) { Assert( pSrcRt != NULL ); Assert( pRecipient != NULL ); Assert( ppDstName != NULL && *ppDstName != NULL); // Bump the ref count on the recipient before handing it off. This ensures the receiver won't go away before we have completed our work. pSrcRt->AddRef(); pRecipient->AddRef(); // Also, need to allocate a copy of the string and use that one s.t. the caller doesn't have to worry about it. char* pDstNameCopy = new char[ V_strlen( *ppDstName ) + 1 ]; V_strcpy( pDstNameCopy, *ppDstName ); ( *ppDstName ) = pDstNameCopy; } // Map and unmap a texture. The pRecipient->OnAsyncMapComplete is called when complete. void CMatRenderContextBase::OnAsyncMap( ITextureInternal* pTexToMap, IAsyncTextureOperationReceiver* pRecipient, void* pExtraArgs ) { Assert( pTexToMap != NULL ); Assert( pRecipient != NULL ); pTexToMap->AddRef(); pRecipient->AddRef(); } void CMatRenderContextBase::OnAsyncUnmap( ITextureInternal* pTexToUnmap ) { Assert( pTexToUnmap != NULL ); pTexToUnmap->AddRef(); } void CMatRenderContextBase::OnAsyncCopyRenderTargetToStagingTexture( ITexture* pDst, ITexture* pSrc, IAsyncTextureOperationReceiver* pRecipient ) { Assert( pDst != NULL ); Assert( pSrc != NULL ); Assert( pRecipient != NULL ); pDst->AddRef(); pSrc->AddRef(); pRecipient->AddRef(); } #undef g_pShaderAPI //----------------------------------------------------------------------------- // //----------------------------------------------------------------------------- CMatRenderContext::CMatRenderContext() { g_FrameNum = 0; m_pBatchIndices = NULL; m_pBatchMesh = NULL; m_pCurrentIndexBuffer = NULL; m_pMorphRenderContext = NULL; m_NonInteractiveMode = MATERIAL_NON_INTERACTIVE_MODE_NONE; } InitReturnVal_t CMatRenderContext::Init( CMaterialSystem *pMaterialSystem ) { InitReturnVal_t nRetVal = BaseClass::Init(); if ( nRetVal != INIT_OK ) return nRetVal; m_pMaterialSystem = pMaterialSystem; m_pBoundMorph = NULL; // Create some lovely textures m_pLocalCubemapTexture = TextureManager()->ErrorTexture(); m_pMorphRenderContext = g_pMorphMgr->AllocateRenderContext(); return INIT_OK; } void CMatRenderContext::Shutdown( ) { if ( m_pUserDefinedLightmap ) { m_pUserDefinedLightmap->DecrementReferenceCount(); m_pUserDefinedLightmap = NULL; } if ( m_pMorphRenderContext ) { g_pMorphMgr->FreeRenderContext( m_pMorphRenderContext ); m_pMorphRenderContext = NULL; } BaseClass::Shutdown(); } void CMatRenderContext::OnReleaseShaderObjects() { // alt-tab unbinds the morph m_pBoundMorph = NULL; } #ifdef DX_TO_GL_ABSTRACTION void CMatRenderContext::DoStartupShaderPreloading( void ) { g_pShaderDevice->DoStartupShaderPreloading(); } #endif void CMatRenderContext::TextureManagerUpdate() { TextureManager()->Update(); } inline IMaterialInternal *CMatRenderContext::GetMaterialInternal( MaterialHandle_t h ) const { return GetMaterialSystem()->GetMaterialInternal( h ); } inline IMaterialInternal *CMatRenderContext::GetDrawFlatMaterial() { return GetMaterialSystem()->GetDrawFlatMaterial(); } inline IMaterialInternal *CMatRenderContext::GetBufferClearObeyStencil( int i ) { return GetMaterialSystem()->GetBufferClearObeyStencil(i ); } inline ShaderAPITextureHandle_t CMatRenderContext::GetFullbrightLightmapTextureHandle() const { return GetMaterialSystem()->GetFullbrightLightmapTextureHandle(); } inline ShaderAPITextureHandle_t CMatRenderContext::GetFullbrightBumpedLightmapTextureHandle() const { return GetMaterialSystem()->GetFullbrightBumpedLightmapTextureHandle(); } inline ShaderAPITextureHandle_t CMatRenderContext::GetBlackTextureHandle() const { return GetMaterialSystem()->GetBlackTextureHandle(); } inline ShaderAPITextureHandle_t CMatRenderContext::GetFlatNormalTextureHandle() const { return GetMaterialSystem()->GetFlatNormalTextureHandle(); } inline ShaderAPITextureHandle_t CMatRenderContext::GetGreyTextureHandle() const { return GetMaterialSystem()->GetGreyTextureHandle(); } inline ShaderAPITextureHandle_t CMatRenderContext::GetGreyAlphaZeroTextureHandle() const { return GetMaterialSystem()->GetGreyAlphaZeroTextureHandle(); } inline ShaderAPITextureHandle_t CMatRenderContext::GetWhiteTextureHandle() const { return GetMaterialSystem()->GetWhiteTextureHandle(); } inline const CMatLightmaps *CMatRenderContext::GetLightmaps() const { return GetMaterialSystem()->GetLightmaps(); } inline CMatLightmaps *CMatRenderContext::GetLightmaps() { return GetMaterialSystem()->GetLightmaps(); } inline ShaderAPITextureHandle_t CMatRenderContext::GetMaxDepthTextureHandle() const { return GetMaterialSystem()->GetMaxDepthTextureHandle(); } void CMatRenderContext::BeginRender() { #if 1 // Rick's optimization: not sure this is needed anymore if ( GetMaterialSystem()->GetThreadMode() != MATERIAL_SINGLE_THREADED ) { VPROF_INCREMENT_GROUP_COUNTER( "render/CMatBeginRender", COUNTER_GROUP_TELEMETRY, 1 ); TelemetrySetLockName( TELEMETRY_LEVEL1, (char const *)&g_MatSysMutex, "MatSysMutex" ); tmTryLock( TELEMETRY_LEVEL1, (char const *)&g_MatSysMutex, "BeginRender" ); g_MatSysMutex.Lock(); tmEndTryLock( TELEMETRY_LEVEL1, (char const *)&g_MatSysMutex, TMLR_SUCCESS ); tmSetLockState( TELEMETRY_LEVEL1, (char const *)&g_MatSysMutex, TMLS_LOCKED, "BeginRender" ); } #endif } void CMatRenderContext::EndRender() { #if 1 // Rick's optimization: not sure this is needed anymore if ( GetMaterialSystem()->GetThreadMode() != MATERIAL_SINGLE_THREADED ) { g_MatSysMutex.Unlock(); tmSetLockState( TELEMETRY_LEVEL1, (char const *)&g_MatSysMutex, TMLS_RELEASED, "EndRender" ); } #endif } void CMatRenderContext::Flush( bool flushHardware ) { VPROF( "CMatRenderContextBase::Flush" ); g_pShaderAPI->FlushBufferedPrimitives(); if ( IsPC() && flushHardware ) { g_pShaderAPI->FlushBufferedPrimitives(); } } bool CMatRenderContext::TestMatrixSync( MaterialMatrixMode_t mode ) { if ( !ShouldValidateMatrices() ) { return true; } VMatrix transposeMatrix, matrix; g_pShaderAPI->GetMatrix( mode, (float*)transposeMatrix.m ); MatrixTranspose( transposeMatrix, matrix ); ValidateMatrices( matrix, m_MatrixStacks[mode].Top().matrix ); return true; } void CMatRenderContext::MatrixMode( MaterialMatrixMode_t mode ) { CMatRenderContextBase::MatrixMode( mode ); g_pShaderAPI->MatrixMode( mode ); if ( ShouldValidateMatrices() ) { TestMatrixSync( mode ); } } void CMatRenderContext::PushMatrix() { if ( ShouldValidateMatrices() ) { TestMatrixSync( m_MatrixMode ); } CMatRenderContextBase::PushMatrix(); g_pShaderAPI->PushMatrix(); if ( ShouldValidateMatrices() ) { TestMatrixSync( m_MatrixMode ); } } void CMatRenderContext::PopMatrix() { if ( ShouldValidateMatrices() ) { TestMatrixSync( m_MatrixMode ); } CMatRenderContextBase::PopMatrix(); g_pShaderAPI->PopMatrix(); if ( ShouldValidateMatrices() ) { TestMatrixSync( m_MatrixMode ); } } void CMatRenderContext::LoadMatrix( const VMatrix& matrix ) { CMatRenderContextBase::LoadMatrix( matrix ); ForceSync(); if ( ShouldValidateMatrices() ) { VMatrix transposeMatrix; MatrixTranspose( matrix, transposeMatrix ); g_pShaderAPI->LoadMatrix( transposeMatrix.Base() ); TestMatrixSync( m_MatrixMode ); } } void CMatRenderContext::LoadMatrix( const matrix3x4_t& matrix ) { CMatRenderContextBase::LoadMatrix( matrix ); ForceSync(); if ( ShouldValidateMatrices() ) { VMatrix transposeMatrix; MatrixTranspose( VMatrix(matrix), transposeMatrix ); g_pShaderAPI->LoadMatrix( transposeMatrix.Base() ); TestMatrixSync( m_MatrixMode ); } } void CMatRenderContext::MultMatrix( const VMatrix& matrix ) { CMatRenderContextBase::MultMatrix( matrix ); ForceSync(); if ( ShouldValidateMatrices() ) { VMatrix transposeMatrix; MatrixTranspose( matrix, transposeMatrix ); g_pShaderAPI->MultMatrix( transposeMatrix.Base() ); TestMatrixSync( m_MatrixMode ); } } void CMatRenderContext::MultMatrix( const matrix3x4_t& matrix ) { CMatRenderContextBase::MultMatrix( VMatrix( matrix ) ); ForceSync(); if ( ShouldValidateMatrices() ) { VMatrix transposeMatrix; MatrixTranspose( VMatrix(matrix), transposeMatrix ); g_pShaderAPI->MultMatrix( transposeMatrix.Base() ); TestMatrixSync( m_MatrixMode ); } } void CMatRenderContext::MultMatrixLocal( const VMatrix& matrix ) { CMatRenderContextBase::MultMatrixLocal( matrix ); ForceSync(); if ( ShouldValidateMatrices() ) { VMatrix transposeMatrix; MatrixTranspose( matrix, transposeMatrix ); g_pShaderAPI->MultMatrixLocal( transposeMatrix.Base() ); TestMatrixSync( m_MatrixMode ); } } void CMatRenderContext::MultMatrixLocal( const matrix3x4_t& matrix ) { CMatRenderContextBase::MultMatrixLocal( VMatrix( matrix ) ); ForceSync(); if ( ShouldValidateMatrices() ) { VMatrix transposeMatrix; MatrixTranspose( VMatrix(matrix), transposeMatrix ); g_pShaderAPI->MultMatrixLocal( transposeMatrix.Base() ); TestMatrixSync( m_MatrixMode ); } } void CMatRenderContext::LoadIdentity() { CMatRenderContextBase::LoadIdentity(); ForceSync(); if ( ShouldValidateMatrices() ) { g_pShaderAPI->LoadIdentity(); TestMatrixSync( m_MatrixMode ); } } void CMatRenderContext::Ortho( double left, double top, double right, double bottom, double zNear, double zFar ) { CMatRenderContextBase::Ortho( left, top, right, bottom, zNear, zFar ); ForceSync(); if ( ShouldValidateMatrices() ) { g_pShaderAPI->Ortho( left, top, right, bottom, zNear, zFar ); TestMatrixSync( m_MatrixMode ); } } void CMatRenderContext::PerspectiveX( double flFovX, double flAspect, double flZNear, double flZFar ) { CMatRenderContextBase::PerspectiveX( flFovX, flAspect, flZNear, flZFar ); ForceSync(); if ( ShouldValidateMatrices() ) { g_pShaderAPI->PerspectiveX( flFovX, flAspect, flZNear, flZFar ); TestMatrixSync( m_MatrixMode ); } } void CMatRenderContext::PerspectiveOffCenterX( double flFovX, double flAspect, double flZNear, double flZFar, double bottom, double top, double left, double right ) { CMatRenderContextBase::PerspectiveOffCenterX( flFovX, flAspect, flZNear, flZFar, bottom, top, left, right ); ForceSync(); if ( ShouldValidateMatrices() ) { g_pShaderAPI->PerspectiveOffCenterX( flFovX, flAspect, flZNear, flZFar, bottom, top, left, right ); TestMatrixSync( m_MatrixMode ); } } void CMatRenderContext::PickMatrix( int x, int y, int nWidth, int nHeight ) { CMatRenderContextBase::PickMatrix( x, y, nWidth, nHeight ); ForceSync(); if ( ShouldValidateMatrices() ) { g_pShaderAPI->PickMatrix( x, y, nWidth, nHeight ); TestMatrixSync( m_MatrixMode ); } } void CMatRenderContext::Rotate( float flAngle, float x, float y, float z ) { CMatRenderContextBase::Rotate( flAngle, x, y, z ); ForceSync(); if ( ShouldValidateMatrices() ) { g_pShaderAPI->Rotate( flAngle, x, y, z ); TestMatrixSync( m_MatrixMode ); } } void CMatRenderContext::Translate( float x, float y, float z ) { CMatRenderContextBase::Translate( x, y, z ); ForceSync(); if ( ShouldValidateMatrices() ) { g_pShaderAPI->Translate( x, y, z ); TestMatrixSync( m_MatrixMode ); } } void CMatRenderContext::Scale( float x, float y, float z ) { CMatRenderContextBase::Scale( x, y, z ); ForceSync(); if ( ShouldValidateMatrices() ) { g_pShaderAPI->Scale( x, y, z ); TestMatrixSync( m_MatrixMode ); } } void CMatRenderContext::GetMatrix( MaterialMatrixMode_t matrixMode, VMatrix *pMatrix ) { CMatRenderContextBase::GetMatrix( matrixMode, pMatrix ); ForceSync(); if ( ShouldValidateMatrices() ) { VMatrix testMatrix; VMatrix transposeMatrix; g_pShaderAPI->GetMatrix( matrixMode, (float*)transposeMatrix.m ); MatrixTranspose( transposeMatrix, testMatrix ); ValidateMatrices( testMatrix, *pMatrix ); } } void CMatRenderContext::GetMatrix( MaterialMatrixMode_t matrixMode, matrix3x4_t *pMatrix ) { if ( !ShouldValidateMatrices() ) { CMatRenderContextBase::GetMatrix( matrixMode, pMatrix ); } else { VMatrix matrix; CMatRenderContext::GetMatrix( matrixMode, &matrix ); *pMatrix = matrix.As3x4(); } } void CMatRenderContext::SyncMatrices() { if ( !ShouldValidateMatrices() && AllowLazyMatrixSync() ) { for( int i = 0; i < NUM_MATRIX_MODES; i++ ) { MatrixStackItem_t &top = m_MatrixStacks[i].Top(); if ( top.flags & MSF_DIRTY ) { g_pShaderAPI->MatrixMode( (MaterialMatrixMode_t)i ); if ( !( top.flags & MSF_IDENTITY ) ) { VMatrix transposeTop; MatrixTranspose( top.matrix, transposeTop ); g_pShaderAPI->LoadMatrix( transposeTop.Base() ); } else { g_pShaderAPI->LoadIdentity(); } top.flags &= ~MSF_DIRTY; } } } } void CMatRenderContext::ForceSyncMatrix( MaterialMatrixMode_t mode ) { MatrixStackItem_t &top = m_MatrixStacks[mode].Top(); if ( top.flags & MSF_DIRTY ) { bool bSetMode = ( m_MatrixMode != mode ); if ( bSetMode ) { g_pShaderAPI->MatrixMode( (MaterialMatrixMode_t)mode ); } if ( !( top.flags & MSF_IDENTITY ) ) { VMatrix transposeTop; MatrixTranspose( top.matrix, transposeTop ); g_pShaderAPI->LoadMatrix( transposeTop.Base() ); } else { g_pShaderAPI->LoadIdentity(); } if ( bSetMode ) { g_pShaderAPI->MatrixMode( (MaterialMatrixMode_t)mode ); } top.flags &= ~MSF_DIRTY; } } void CMatRenderContext::SyncMatrix( MaterialMatrixMode_t mode ) { if ( !ShouldValidateMatrices() && AllowLazyMatrixSync() ) { ForceSyncMatrix( mode ); } } //----------------------------------------------------------------------------- // Swap buffers //----------------------------------------------------------------------------- void CMatRenderContext::SwapBuffers() { g_pMorphMgr->AdvanceFrame(); g_pOcclusionQueryMgr->AdvanceFrame(); g_pShaderDevice->Present(); #ifdef _X360 if ( s_bDirtyDisk ) { SpinPresent(); } #endif } //----------------------------------------------------------------------------- // Clears the render data after we're done with it //----------------------------------------------------------------------------- void CMatRenderContext::OnRenderDataUnreferenced() { MarkRenderDataUnused( false ); } //----------------------------------------------------------------------------- // Custom clip planes //----------------------------------------------------------------------------- void CMatRenderContext::PushCustomClipPlane( const float *pPlane ) { PlaneStackElement psePlane; memcpy( psePlane.fValues, pPlane, sizeof( float ) * 4 ); psePlane.bHack_IsHeightClipPlane = false; m_CustomClipPlanes.AddToTail( psePlane ); //we're doing this as a UtlVector so height clip planes never change their cached index ApplyCustomClipPlanes(); } void CMatRenderContext::PopCustomClipPlane( void ) { Assert( m_CustomClipPlanes.Count() ); //remove the endmost non-height plane found int i; for( i = m_CustomClipPlanes.Count(); --i >= 0; ) { if( m_CustomClipPlanes[i].bHack_IsHeightClipPlane == false ) { m_CustomClipPlanes.Remove(i); break; } } Assert( i != -1 ); //only the height clip plane was found, which means this pop had no associated push ApplyCustomClipPlanes(); } void CMatRenderContext::ApplyCustomClipPlanes( void ) { int iMaxClipPlanes = HardwareConfig()->MaxUserClipPlanes(); int iCustomPlanes; if( m_bEnableClipping ) iCustomPlanes = m_CustomClipPlanes.Count(); else iCustomPlanes = 0; float fFakePlane[4]; unsigned int iFakePlaneVal = 0xFFFFFFFF; fFakePlane[0] = fFakePlane[1] = fFakePlane[2] = fFakePlane[3] = *((float *)&iFakePlaneVal); SyncMatrices(); if( iMaxClipPlanes >= 1 && !HardwareConfig()->UseFastClipping() ) { //yay, we get to be the cool clipping club if( iMaxClipPlanes >= iCustomPlanes ) { int i; for( i = 0; i < iCustomPlanes; ++i ) { g_pShaderAPI->SetClipPlane( i, m_CustomClipPlanes[i].fValues ); g_pShaderAPI->EnableClipPlane( i, true ); } for( ; i < iMaxClipPlanes; ++i ) //disable unused planes { g_pShaderAPI->EnableClipPlane( i, false ); g_pShaderAPI->SetClipPlane( i, fFakePlane ); } } else { int iCustomPlaneOffset = iCustomPlanes - iMaxClipPlanes; //can't enable them all for( int i = iCustomPlaneOffset; i < iCustomPlanes; ++i ) { g_pShaderAPI->SetClipPlane( i % iMaxClipPlanes, m_CustomClipPlanes[i].fValues ); g_pShaderAPI->EnableClipPlane( i % iMaxClipPlanes, true ); } } } else { //hmm, at most we can make 1 clip plane work if( iCustomPlanes == 0 ) { //no planes at all g_pShaderAPI->EnableFastClip( false ); g_pShaderAPI->SetFastClipPlane( fFakePlane ); } else { //we have to wire the topmost plane into the fast clipping scheme g_pShaderAPI->EnableFastClip( true ); g_pShaderAPI->SetFastClipPlane( m_CustomClipPlanes[iCustomPlanes - 1].fValues ); } } } //----------------------------------------------------------------------------- // Creates/destroys morph data associated w/ a particular material //----------------------------------------------------------------------------- IMorph *CMatRenderContext::CreateMorph( MorphFormat_t format, const char *pDebugName ) { Assert( format != 0 ); IMorphInternal *pMorph = g_pMorphMgr->CreateMorph( ); pMorph->Init( format, pDebugName ); return pMorph; } void CMatRenderContext::DestroyMorph( IMorph *pMorph ) { g_pMorphMgr->DestroyMorph( static_cast(pMorph) ); } void CMatRenderContext::BindMorph( IMorph *pMorph ) { IMorphInternal *pMorphInternal = static_cast(pMorph); if ( m_pBoundMorph != pMorphInternal ) { g_pShaderAPI->FlushBufferedPrimitives(); m_pBoundMorph = pMorphInternal; bool bEnableHWMorph = false; if ( pMorphInternal == MATERIAL_MORPH_DECAL ) { bEnableHWMorph = true; } else if ( pMorphInternal ) { bEnableHWMorph = true; pMorphInternal->Bind( m_pMorphRenderContext ); } g_pShaderAPI->EnableHWMorphing( bEnableHWMorph ); } } IMesh* CMatRenderContext::GetDynamicMesh( bool buffered, IMesh* pVertexOverride, IMesh* pIndexOverride, IMaterial *pAutoBind ) { VPROF_ASSERT_ACCOUNTED( "CMatRenderContext::GetDynamicMesh" ); if( pAutoBind ) { Bind( pAutoBind, NULL ); } if ( pVertexOverride ) { if ( CompressionType( pVertexOverride->GetVertexFormat() ) != VERTEX_COMPRESSION_NONE ) { // UNDONE: support compressed dynamic meshes if needed (pro: less VB memory, con: time spent compressing) DebuggerBreak(); return NULL; } } // For anything more than 1 bone, imply the last weight from the 1 - the sum of the others. int nCurrentBoneCount = GetCurrentNumBones(); Assert( nCurrentBoneCount <= 4 ); if ( nCurrentBoneCount > 1 ) { --nCurrentBoneCount; } return g_pShaderAPI->GetDynamicMesh( GetCurrentMaterialInternal(), nCurrentBoneCount, buffered, pVertexOverride, pIndexOverride); } IMesh* CMatRenderContext::GetDynamicMeshEx( VertexFormat_t vertexFormat, bool bBuffered, IMesh* pVertexOverride, IMesh* pIndexOverride, IMaterial *pAutoBind ) { VPROF_ASSERT_ACCOUNTED( "CMatRenderContext::GetDynamicMesh" ); if( pAutoBind ) { Bind( pAutoBind, NULL ); } if ( pVertexOverride ) { if ( CompressionType( pVertexOverride->GetVertexFormat() ) != VERTEX_COMPRESSION_NONE ) { // UNDONE: support compressed dynamic meshes if needed (pro: less VB memory, con: time spent compressing) DebuggerBreak(); return NULL; } } // For anything more than 1 bone, imply the last weight from the 1 - the sum of the others. // FIXME: this seems wrong - in common_vs_fxc.h, we only infer the last weight if we have 3 (not 2) int nCurrentBoneCount = GetCurrentNumBones(); Assert( nCurrentBoneCount <= 4 ); if ( nCurrentBoneCount > 1 ) { --nCurrentBoneCount; } return g_pShaderAPI->GetDynamicMeshEx( GetCurrentMaterialInternal(), vertexFormat, nCurrentBoneCount, bBuffered, pVertexOverride, pIndexOverride ); } //----------------------------------------------------------------------------- // Deals with depth range //----------------------------------------------------------------------------- void CMatRenderContext::DepthRange( float zNear, float zFar ) { m_Viewport.m_flMinZ = zNear; m_Viewport.m_flMaxZ = zFar; g_pShaderAPI->SetViewports( 1, &m_Viewport ); } //----------------------------------------------------------------------------- // Private utility function to actually commit the top of the RT/Viewport stack // to the device. Only called by the push and pop routines above. //----------------------------------------------------------------------------- void CMatRenderContext::CommitRenderTargetAndViewport( void ) { Assert( m_RenderTargetStack.Count() > 0 ); const RenderTargetStackElement_t &element = m_RenderTargetStack.Top( ); for( int rt=0; rtSetRenderTargetEx(rt); // No texture parameter here indicates back buffer if ( IsPC() ) { Assert( ImageLoader::SizeInBytes( g_pShaderDevice->GetBackBufferFormat() ) <= 4 ); g_pShaderAPI->EnableLinearColorSpaceFrameBuffer( false ); } if (rt == 0) // the first rt sets the viewport { // If either dimension is negative, set to full bounds of back buffer if ( (element.m_nViewW < 0) || (element.m_nViewH < 0) ) { m_Viewport.m_nTopLeftX = 0; m_Viewport.m_nTopLeftY = 0; g_pShaderAPI->GetBackBufferDimensions( m_Viewport.m_nWidth, m_Viewport.m_nHeight ); g_pShaderAPI->SetViewports( 1, &m_Viewport ); } else // use the bounds in the element { m_Viewport.m_nTopLeftX = element.m_nViewX; m_Viewport.m_nTopLeftY = element.m_nViewY; m_Viewport.m_nWidth = element.m_nViewW; m_Viewport.m_nHeight = element.m_nViewH; g_pShaderAPI->SetViewports( 1, &m_Viewport ); } } } else // We're dealing with a texture { ITextureInternal *pTexInt = static_cast(element.m_pRenderTargets[rt]); pTexInt->SetRenderTarget( rt, element.m_pDepthTexture ); if (rt == 0) { if ( IsPC() ) { if( element.m_pRenderTargets[rt]->GetImageFormat() == IMAGE_FORMAT_RGBA16161616F ) { g_pShaderAPI->EnableLinearColorSpaceFrameBuffer( true ); } else { g_pShaderAPI->EnableLinearColorSpaceFrameBuffer( false ); } } // If either dimension is negative, set to full bounds of target if ( (element.m_nViewW < 0) || (element.m_nViewH < 0) ) { m_Viewport.m_nTopLeftX = 0; m_Viewport.m_nTopLeftY = 0; m_Viewport.m_nWidth = element.m_pRenderTargets[rt]->GetActualWidth(); m_Viewport.m_nHeight = element.m_pRenderTargets[rt]->GetActualHeight(); g_pShaderAPI->SetViewports( 1, &m_Viewport ); } else // use the bounds passed in { m_Viewport.m_nTopLeftX = element.m_nViewX; m_Viewport.m_nTopLeftY = element.m_nViewY; m_Viewport.m_nWidth = element.m_nViewW; m_Viewport.m_nHeight = element.m_nViewH; g_pShaderAPI->SetViewports( 1, &m_Viewport ); } } } } } void CMatRenderContext::SetFrameBufferCopyTexture( ITexture *pTexture, int textureIndex ) { if( textureIndex < 0 || textureIndex > MAX_FB_TEXTURES ) { Assert( 0 ); return; } if( m_pCurrentFrameBufferCopyTexture[textureIndex] != pTexture ) { g_pShaderAPI->FlushBufferedPrimitives(); } // FIXME: Do I need to increment/decrement ref counts here, or assume that the app is going to do it? m_pCurrentFrameBufferCopyTexture[textureIndex] = pTexture; } void CMatRenderContext::BindLocalCubemap( ITexture *pTexture ) { ITexture *pPreviousTexture = m_pLocalCubemapTexture; CMatRenderContextBase::BindLocalCubemap( pTexture ); if( m_pLocalCubemapTexture != pPreviousTexture ) { g_pShaderAPI->FlushBufferedPrimitives(); } } void CMatRenderContext::SetNonInteractivePacifierTexture( ITexture *pTexture, float flNormalizedX, float flNormalizedY, float flNormalizedSize ) { m_pNonInteractivePacifier.Init( pTexture ); m_flNormalizedX = flNormalizedX; m_flNormalizedY = flNormalizedY; m_flNormalizedSize = flNormalizedSize; } void CMatRenderContext::SetNonInteractiveTempFullscreenBuffer( ITexture *pTexture, MaterialNonInteractiveMode_t mode ) { if ( mode != MATERIAL_NON_INTERACTIVE_MODE_NONE ) { m_pNonInteractiveTempFullscreenBuffer[mode].Init( pTexture ); } } void CMatRenderContext::RefreshFrontBufferNonInteractive() { g_pShaderDevice->RefreshFrontBufferNonInteractive(); #ifdef _X360 if ( s_bDirtyDisk ) { if ( m_NonInteractiveMode == MATERIAL_NON_INTERACTIVE_MODE_NONE ) { SpinPresent(); } else { while ( true ) { g_pShaderDevice->RefreshFrontBufferNonInteractive(); } } } #endif } void CMatRenderContext::EnableNonInteractiveMode( MaterialNonInteractiveMode_t mode ) { m_NonInteractiveMode = mode; if ( mode == MATERIAL_NON_INTERACTIVE_MODE_NONE ) { g_pShaderDevice->EnableNonInteractiveMode( mode ); } else { ShaderNonInteractiveInfo_t info; info.m_flNormalizedX = m_flNormalizedX; info.m_flNormalizedY = m_flNormalizedY; info.m_flNormalizedSize = m_flNormalizedSize; ITextureInternal *pTexInternal = static_cast( (ITexture*)m_pNonInteractiveTempFullscreenBuffer[mode] ); info.m_hTempFullscreenTexture = pTexInternal ? pTexInternal->GetTextureHandle(0) : INVALID_SHADERAPI_TEXTURE_HANDLE; ITextureInternal *pTexPacifierInternal = static_cast( (ITexture*)m_pNonInteractivePacifier ); info.m_nPacifierCount = pTexPacifierInternal ? pTexPacifierInternal->GetNumAnimationFrames() : 0; for ( int i = 0; i < info.m_nPacifierCount; ++i ) { info.m_pPacifierTextures[i] = pTexPacifierInternal->GetTextureHandle( i ); } g_pShaderDevice->EnableNonInteractiveMode( mode, &info ); } } void CMatRenderContext::SetRenderTargetEx( int nRenderTargetID, ITexture *pNewTarget ) { // Verify valid top of RT stack Assert ( m_RenderTargetStack.Count() > 0 ); // Grab the old target ITexture *pOldTarget = m_RenderTargetStack.Top().m_pRenderTargets[nRenderTargetID]; CMatRenderContextBase::SetRenderTargetEx( nRenderTargetID, pNewTarget ); // If we're actually changing render targets if( pNewTarget != pOldTarget ) { // If we're going to render to the back buffer if ( pNewTarget == NULL ) { if ( nRenderTargetID == 0) // reset viewport on set of rt 0 { m_Viewport.m_nTopLeftX = 0; m_Viewport.m_nTopLeftY = 0; g_pShaderAPI->GetBackBufferDimensions( m_Viewport.m_nWidth, m_Viewport.m_nHeight ); g_pShaderAPI->SetViewports( 1, &m_Viewport ); } g_pShaderAPI->SetRenderTargetEx( nRenderTargetID ); // No parameter here indicates back buffer } else { // If we're going to render to a texture // Make sure the texture is a render target... bool reset = true; if (nRenderTargetID==0) { // reset vp on change of rt#0 m_Viewport.m_nTopLeftX = 0; m_Viewport.m_nTopLeftY = 0; m_Viewport.m_nWidth = pNewTarget->GetActualWidth(); m_Viewport.m_nHeight = pNewTarget->GetActualHeight(); g_pShaderAPI->SetViewports( 1, &m_Viewport ); } ITextureInternal *pTexInt = static_cast(pNewTarget); if ( pTexInt ) { reset = !pTexInt->SetRenderTarget( nRenderTargetID ); if ( reset ) { g_pShaderAPI->SetRenderTargetEx( nRenderTargetID ); } } if( pNewTarget && pNewTarget->GetImageFormat() == IMAGE_FORMAT_RGBA16161616F ) { g_pShaderAPI->EnableLinearColorSpaceFrameBuffer( true ); } else { g_pShaderAPI->EnableLinearColorSpaceFrameBuffer( false ); } } } CommitRenderTargetAndViewport(); } void CMatRenderContext::GetRenderTargetDimensions( int &width, int &height ) const { // Target at top of stack ITexture *pTOS = m_RenderTargetStack.Top().m_pRenderTargets[0]; // If top of stack isn't the back buffer, get dimensions from the texture if ( pTOS != NULL ) { width = pTOS->GetActualWidth(); height = pTOS->GetActualHeight(); } else // otherwise, get them from the shader API { g_pShaderAPI->GetBackBufferDimensions( width, height ); } } //----------------------------------------------------------------------------- // What are the lightmap dimensions? //----------------------------------------------------------------------------- void CMatRenderContext::GetLightmapDimensions( int *w, int *h ) { *w = GetMaterialSystem()->GetLightmapWidth( GetLightmapPage() ); *h = GetMaterialSystem()->GetLightmapHeight( GetLightmapPage() ); } void CMatRenderContext::DrawScreenSpaceQuad( IMaterial* pMaterial ) { // Despite saying we render a full screen quad, this actually renders a single triangle // that covers the whole screen. int w, h; GetRenderTargetDimensions( w, h ); if ( ( w == 0 ) || ( h == 0 ) ) return; // DX9 disagrees about (0, 0) in a render target and (0, 0) in the texture. // Fix that here by doing a half-pixel offset for the pixel. // Because we are working in clip space which is 2 units across, the adjustment factor is 1. float flOffsetW = 1.0f / w; float flOffsetH = 1.0f / h; Bind( pMaterial ); IMesh* pMesh = GetDynamicMesh( true ); CMeshBuilder meshBuilder;; meshBuilder.Begin( pMesh, MATERIAL_TRIANGLES, 1 ); enum { TL, BL, TR, COORDS_COUNT }; struct CoordSSQ_t { float x, y; float u, v; }; CoordSSQ_t coords[] = { { -1.0f - 1.0f * flOffsetW, 1.0f + 1.0f * flOffsetH, 0.0f, 0.0f }, // TL { -1.0f - 1.0f * flOffsetW, -3.0f + 1.0f * flOffsetH, 0.0f, 2.0f }, // BL { 3.0f - 1.0f * flOffsetW, 1.0f + 1.0f * flOffsetH, 2.0f, 0.0f }, // TR }; static_assert( ARRAYSIZE( coords ) == COORDS_COUNT, "Unexpected number of coords in triangle, should match enum." ); MatrixMode( MATERIAL_VIEW ); PushMatrix(); LoadIdentity(); MatrixMode( MATERIAL_PROJECTION ); PushMatrix(); LoadIdentity(); for ( int i = 0; i < COORDS_COUNT; ++i ) { meshBuilder.Position3f( coords[ i ].x, coords[ i ].y, 0.0f ); meshBuilder.Normal3f( 0.0f, 0.0f, 1.0f ); meshBuilder.TangentS3f( 0.0f, 1.0f, 0.0f ); meshBuilder.TangentT3f( 1.0f, 0.0f, 0.0f ); meshBuilder.TexCoord2f( 0, coords[ i ].u, coords[ i ].v ); meshBuilder.AdvanceVertex(); } meshBuilder.End(); pMesh->Draw(); MatrixMode( MATERIAL_VIEW ); PopMatrix(); MatrixMode( MATERIAL_PROJECTION ); PopMatrix(); } void CMatRenderContext::DrawScreenSpaceRectangle( IMaterial *pMaterial, int destx, int desty, int width, int height, float src_texture_x0, float src_texture_y0, // which texel you want to appear at // destx/y float src_texture_x1, float src_texture_y1, // which texel you want to appear at // destx+width-1, desty+height-1 int src_texture_width, int src_texture_height, // needed for fixup void *pClientRenderable, int nXDice, int nYDice ) // Amount to tessellate the quad { pMaterial = ((IMaterialInternal *)pMaterial)->GetRealTimeVersion(); ::DrawScreenSpaceRectangle( pMaterial, destx, desty, width, height, src_texture_x0, src_texture_y0, src_texture_x1, src_texture_y1, src_texture_width, src_texture_height, pClientRenderable, nXDice, nYDice ); return; } static int CompareVertexFormats( VertexFormat_t Fmt1, VertexFormat_t Fmt2 ) { if ( Fmt1 != Fmt2 ) { if ( Fmt1 > Fmt2 ) return 1; else return -1; } else return 0; } int CMatRenderContext::CompareMaterialCombos( IMaterial *pMaterial1, IMaterial *pMaterial2, int lightMapID1, int lightMapID2 ) { pMaterial1 = ((IMaterialInternal *)pMaterial1)->GetRealTimeVersion(); //always work with the real time version of materials internally. pMaterial2 = ((IMaterialInternal *)pMaterial2)->GetRealTimeVersion(); //always work with the real time version of materials internally. IMaterialInternal *pMat1 = (IMaterialInternal *)pMaterial1; IMaterialInternal *pMat2 = (IMaterialInternal *)pMaterial2; ShaderRenderState_t *pState1 = pMat1->GetRenderState(); ShaderRenderState_t *pState2 = pMat2->GetRenderState(); int dPass = pState2->m_pSnapshots->m_nPassCount - pState1->m_pSnapshots->m_nPassCount; if ( dPass ) return dPass; if ( pState1->m_pSnapshots->m_nPassCount > 1 ) { int dFormat = CompareVertexFormats( pMat1->GetVertexFormat(), pMat2->GetVertexFormat() ); if ( dFormat ) return dFormat; } for ( int i = 0; i < pState1->m_pSnapshots->m_nPassCount; i++ ) { // UNDONE: Compare snapshots in the shaderapi? int dSnapshot = pState1->m_pSnapshots->m_Snapshot[i] - pState2->m_pSnapshots->m_Snapshot[i]; if ( dSnapshot ) { dSnapshot = g_pShaderAPI->CompareSnapshots( pState1->m_pSnapshots->m_Snapshot[i], pState2->m_pSnapshots->m_Snapshot[i] ); if ( dSnapshot ) return dSnapshot; } } int dFormat = CompareVertexFormats( pMat1->GetVertexFormat(), pMat2->GetVertexFormat() ); if ( dFormat ) return dFormat; IMaterialVar **pParams1 = pMat1->GetShaderParams(); IMaterialVar **pParams2 = pMat2->GetShaderParams(); int nParams1 = pMat1->ShaderParamCount(); int nParams2 = pMat2->ShaderParamCount(); int nBaseTexParamType1 = pParams1 && nParams1 > BASETEXTURE ? pParams1[BASETEXTURE]->GetType() : -1; int nBaseTexParamType2 = pParams2 && nParams2 > BASETEXTURE ? pParams2[BASETEXTURE]->GetType() : -1; if( nBaseTexParamType1 == MATERIAL_VAR_TYPE_TEXTURE || nBaseTexParamType2 == MATERIAL_VAR_TYPE_TEXTURE ) { if( nBaseTexParamType1 != nBaseTexParamType2 ) { return nBaseTexParamType2 - nBaseTexParamType1; } int dBaseTexture = Q_stricmp( pParams1[BASETEXTURE]->GetTextureValue()->GetName(), pParams2[BASETEXTURE]->GetTextureValue()->GetName() ); if ( dBaseTexture ) return dBaseTexture; } int dLightmap = lightMapID1 - lightMapID2; if ( dLightmap ) return dLightmap; return (int)pMat1 - (int)pMat2; } void CMatRenderContext::Bind( IMaterial *iMaterial, void *proxyData ) { if ( !iMaterial ) { if ( !g_pErrorMaterial ) return; Warning( "Programming error: CMatRenderContext::Bind: NULL material\n" ); iMaterial = g_pErrorMaterial; } else { iMaterial = iMaterial->CheckProxyReplacement( proxyData ); } IMaterialInternal *material = static_cast( iMaterial ); material = material->GetRealTimeVersion(); //always work with the real time versions of materials internally if ( material->GetReferenceCount() <= 0 ) { static ConVarRef matTextureListConVar( "mat_texture_list" ); static ConVarRef matShowWaterTextureConVar( "mat_showwatertextures" ); if ( ( !matTextureListConVar.IsValid() || !matTextureListConVar.GetBool() ) && ( !matShowWaterTextureConVar.IsValid() || !matShowWaterTextureConVar.GetBool() )) { Warning( "Material %s has bad reference count %d when being bound\n", material->GetName(), material->GetReferenceCount() ); // The usual solution for this for global materials that really don't need refcounting is to do material->AddRef(); Assert( 0 ); iMaterial = g_pErrorMaterial; } } if (g_config.bDrawFlat && !material->NoDebugOverride()) { material = static_cast( GetDrawFlatMaterial() ); } CMatRenderContextBase::Bind( iMaterial, proxyData ); // We've always gotta call the bind proxy SyncMatrices(); if ( GetMaterialSystem()->GetThreadMode() == MATERIAL_SINGLE_THREADED ) { GetCurrentMaterialInternal()->CallBindProxy( proxyData ); } g_pShaderAPI->Bind( GetCurrentMaterialInternal() ); } void CMatRenderContext::CopyRenderTargetToTextureEx( ITexture *pTexture, int nRenderTargetID, Rect_t *pSrcRect, Rect_t *pDstRect ) { if ( !pTexture ) { Assert( 0 ); return; } GetMaterialSystem()->Flush( false ); ITextureInternal *pTextureInternal = (ITextureInternal *)pTexture; if ( IsPC() || !IsX360() ) { pTextureInternal->CopyFrameBufferToMe( nRenderTargetID, pSrcRect, pDstRect ); } else { // X360 only does 1:1 resolves. So we can do full resolves to textures of size // equal or greater than the viewport trivially. Downsizing is nasty. Rect_t srcRect; if ( !pSrcRect ) { // build out source rect pSrcRect = &srcRect; int x, y, w, h; GetViewport( x, y, w, h ); pSrcRect->x = 0; pSrcRect->y = 0; pSrcRect->width = w; pSrcRect->height = h; } Rect_t dstRect; if ( !pDstRect ) { // build out target rect pDstRect = &dstRect; pDstRect->x = 0; pDstRect->y = 0; pDstRect->width = pTexture->GetActualWidth(); pDstRect->height = pTexture->GetActualHeight(); } if ( pSrcRect->width == pDstRect->width && pSrcRect->height == pDstRect->height ) { // 1:1 mapping, no stretching needed, use direct path pTextureInternal->CopyFrameBufferToMe( nRenderTargetID, pSrcRect, pDstRect ); return; } if( (pDstRect->x == 0) && (pDstRect->y == 0) && (pDstRect->width == pTexture->GetActualWidth()) && (pDstRect->height == pTexture->GetActualHeight()) && (pDstRect->width >= pSrcRect->width) && (pDstRect->height >= pSrcRect->height) ) { // Resolve takes up the whole texture, and the texture is large enough to hold the resolve. // This is turned into a 1:1 resolve within shaderapi by making D3D think the texture is smaller from now on. (Until it resolves from a bigger source) pTextureInternal->CopyFrameBufferToMe( nRenderTargetID, pSrcRect, pDstRect ); return; } // currently assuming disparate copies are only for FB blits // ensure active render target is actually the back buffer Assert( m_RenderTargetStack.Top().m_pRenderTargets[0] == NULL ); // nasty sequence: // resolve FB surface to matching clone DDR texture // gpu draw from clone DDR FB texture to disparate RT target surface // resolve to its matching DDR clone texture ITextureInternal *pFullFrameFB = (ITextureInternal*)GetMaterialSystem()->FindTexture( "_rt_FullFrameFB", TEXTURE_GROUP_RENDER_TARGET ); pFullFrameFB->CopyFrameBufferToMe( nRenderTargetID, NULL, NULL ); // target texture must be a render target PushRenderTargetAndViewport( pTexture ); // blit FB source to render target DrawScreenSpaceRectangle( GetMaterialSystem()->GetRenderTargetBlitMaterial(), pDstRect->x, pDstRect->y, pDstRect->width, pDstRect->height, pSrcRect->x, pSrcRect->y, pSrcRect->x+pSrcRect->width-1, pSrcRect->y+pSrcRect->height-1, pFullFrameFB->GetActualWidth(), pFullFrameFB->GetActualHeight() ); // resolve render target to texture ((ITextureInternal *)pTexture)->CopyFrameBufferToMe( 0, NULL, NULL ); // restore render target and viewport PopRenderTargetAndViewport(); } } void CMatRenderContext::CopyRenderTargetToTexture( ITexture *pTexture ) { CopyRenderTargetToTextureEx( pTexture, NULL, NULL ); } void CMatRenderContext::CopyTextureToRenderTargetEx( int nRenderTargetID, ITexture *pTexture, Rect_t *pSrcRect, Rect_t *pDstRect ) { if ( !pTexture ) { Assert( 0 ); return; } GetMaterialSystem()->Flush( false ); ITextureInternal *pTextureInternal = (ITextureInternal *)pTexture; if ( IsPC() || !IsX360() ) { pTextureInternal->CopyMeToFrameBuffer( nRenderTargetID, pSrcRect, pDstRect ); } else { Assert( 0 ); } } void CMatRenderContext::ClearBuffers( bool bClearColor, bool bClearDepth, bool bClearStencil ) { int width, height; GetRenderTargetDimensions( width, height ); g_pShaderAPI->ClearBuffers( bClearColor, bClearDepth, bClearStencil, width, height ); } void CMatRenderContext::DrawClearBufferQuad( unsigned char r, unsigned char g, unsigned char b, unsigned char a, bool bClearColor, bool bClearAlpha, bool bClearDepth ) { IMaterialInternal *pClearMaterial = GetBufferClearObeyStencil( bClearColor + ( bClearAlpha << 1 ) + ( bClearDepth << 2 ) ); Bind( pClearMaterial ); IMesh* pMesh = GetDynamicMesh( true ); MatrixMode( MATERIAL_MODEL ); PushMatrix(); LoadIdentity(); MatrixMode( MATERIAL_VIEW ); PushMatrix(); LoadIdentity(); MatrixMode( MATERIAL_PROJECTION ); PushMatrix(); LoadIdentity(); float flDepth = GetMaterialSystem()->GetConfig().bReverseDepth ? 0.0f : 1.0f; CMeshBuilder meshBuilder; meshBuilder.Begin( pMesh, MATERIAL_QUADS, 1 ); //1.1 instead of 1.0 to fix small borders around the edges in full screen with anti-aliasing enabled meshBuilder.Position3f( -1.1f, -1.1f, flDepth ); meshBuilder.Color4ub( r, g, b, a ); meshBuilder.AdvanceVertex(); meshBuilder.Position3f( -1.1f, 1.1f, flDepth ); meshBuilder.Color4ub( r, g, b, a ); meshBuilder.AdvanceVertex(); meshBuilder.Position3f( 1.1f, 1.1f, flDepth ); meshBuilder.Color4ub( r, g, b, a ); meshBuilder.AdvanceVertex(); meshBuilder.Position3f( 1.1f, -1.1f, flDepth ); meshBuilder.Color4ub( r, g, b, a ); meshBuilder.AdvanceVertex(); meshBuilder.End(); pMesh->Draw(); MatrixMode( MATERIAL_MODEL ); PopMatrix(); MatrixMode( MATERIAL_VIEW ); PopMatrix(); MatrixMode( MATERIAL_PROJECTION ); PopMatrix(); } //----------------------------------------------------------------------------- // Should really be called SetViewport //----------------------------------------------------------------------------- void CMatRenderContext::Viewport( int x, int y, int width, int height ) { CMatRenderContextBase::Viewport( x, y, width, height ); // If either dimension is negative, set to full bounds of current target if ( (width < 0) || (height < 0) ) { ITexture *pTarget = m_RenderTargetStack.Top().m_pRenderTargets[0]; // If target is the back buffer if ( pTarget == NULL ) { m_Viewport.m_nTopLeftX = 0; m_Viewport.m_nTopLeftY = 0; g_pShaderAPI->GetBackBufferDimensions( m_Viewport.m_nWidth, m_Viewport.m_nHeight ); g_pShaderAPI->SetViewports( 1, &m_Viewport ); } else // target is a texture { m_Viewport.m_nTopLeftX = 0; m_Viewport.m_nTopLeftY = 0; m_Viewport.m_nWidth = pTarget->GetActualWidth(); m_Viewport.m_nHeight = pTarget->GetActualHeight(); g_pShaderAPI->SetViewports( 1, &m_Viewport ); } } else // use the bounds passed in { m_Viewport.m_nTopLeftX = x; m_Viewport.m_nTopLeftY = y; m_Viewport.m_nWidth = width; m_Viewport.m_nHeight = height; g_pShaderAPI->SetViewports( 1, &m_Viewport ); } } void CMatRenderContext::GetViewport( int& x, int& y, int& width, int& height ) const { // Verify valid top of RT stack Assert ( m_RenderTargetStack.Count() > 0 ); // Grab the top of stack const RenderTargetStackElement_t& element = m_RenderTargetStack.Top(); // If either dimension is not positive, set to full bounds of current target if ( (element.m_nViewW <= 0) || (element.m_nViewH <= 0) ) { // Viewport origin at target origin x = y = 0; // If target is back buffer if ( element.m_pRenderTargets[0] == NULL ) { g_pShaderAPI->GetBackBufferDimensions( width, height ); } else // if target is texture { width = element.m_pRenderTargets[0]->GetActualWidth(); height = element.m_pRenderTargets[0]->GetActualHeight(); } } else // use the bounds from the stack directly { x = element.m_nViewX; y = element.m_nViewY; width = element.m_nViewW; height = element.m_nViewH; } } //----------------------------------------------------------------------------- // Methods related to user clip planes //----------------------------------------------------------------------------- void CMatRenderContext::UpdateHeightClipUserClipPlane( void ) { PlaneStackElement pse; pse.bHack_IsHeightClipPlane = true; int iExistingHeightClipPlaneIndex; for( iExistingHeightClipPlaneIndex = m_CustomClipPlanes.Count(); --iExistingHeightClipPlaneIndex >= 0; ) { if( m_CustomClipPlanes[iExistingHeightClipPlaneIndex].bHack_IsHeightClipPlane ) break; } switch( m_HeightClipMode ) { case MATERIAL_HEIGHTCLIPMODE_DISABLE: if( iExistingHeightClipPlaneIndex != -1 ) m_CustomClipPlanes.Remove( iExistingHeightClipPlaneIndex ); break; case MATERIAL_HEIGHTCLIPMODE_RENDER_ABOVE_HEIGHT: pse.fValues[0] = 0.0f; pse.fValues[1] = 0.0f; pse.fValues[2] = 1.0f; pse.fValues[3] = m_HeightClipZ; if( iExistingHeightClipPlaneIndex != -1 ) { memcpy( m_CustomClipPlanes.Base() + iExistingHeightClipPlaneIndex, &pse, sizeof( PlaneStackElement ) ); } else { m_CustomClipPlanes.AddToTail( pse ); } break; case MATERIAL_HEIGHTCLIPMODE_RENDER_BELOW_HEIGHT: pse.fValues[0] = 0.0f; pse.fValues[1] = 0.0f; pse.fValues[2] = -1.0f; pse.fValues[3] = -m_HeightClipZ; if( iExistingHeightClipPlaneIndex != -1 ) { memcpy( m_CustomClipPlanes.Base() + iExistingHeightClipPlaneIndex, &pse, sizeof( PlaneStackElement ) ); } else { m_CustomClipPlanes.AddToTail( pse ); } break; }; ApplyCustomClipPlanes(); /*switch( m_HeightClipMode ) { case MATERIAL_HEIGHTCLIPMODE_DISABLE: g_pShaderAPI->EnableClipPlane( 0, false ); break; case MATERIAL_HEIGHTCLIPMODE_RENDER_ABOVE_HEIGHT: plane[0] = 0.0f; plane[1] = 0.0f; plane[2] = 1.0f; plane[3] = m_HeightClipZ; g_pShaderAPI->SetClipPlane( 0, plane ); g_pShaderAPI->EnableClipPlane( 0, true ); break; case MATERIAL_HEIGHTCLIPMODE_RENDER_BELOW_HEIGHT: plane[0] = 0.0f; plane[1] = 0.0f; plane[2] = -1.0f; plane[3] = -m_HeightClipZ; g_pShaderAPI->SetClipPlane( 0, plane ); g_pShaderAPI->EnableClipPlane( 0, true ); break; }*/ } //----------------------------------------------------------------------------- // Lightmap stuff //----------------------------------------------------------------------------- void CMatRenderContext::BindLightmapPage( int lightmapPageID ) { if ( m_lightmapPageID == lightmapPageID ) return; // We gotta make sure there's no buffered primitives 'cause this'll // change the render state. g_pShaderAPI->FlushBufferedPrimitives(); CMatRenderContextBase::BindLightmapPage( lightmapPageID ); } void CMatRenderContext::BindLightmapTexture( ITexture *pLightmapTexture ) { if ( ( m_lightmapPageID == MATERIAL_SYSTEM_LIGHTMAP_PAGE_USER_DEFINED ) && ( m_pUserDefinedLightmap == pLightmapTexture ) ) return; // We gotta make sure there's no buffered primitives 'cause this'll // change the render state. g_pShaderAPI->FlushBufferedPrimitives(); m_lightmapPageID = MATERIAL_SYSTEM_LIGHTMAP_PAGE_USER_DEFINED; if ( pLightmapTexture ) { pLightmapTexture->IncrementReferenceCount(); } if ( m_pUserDefinedLightmap ) { m_pUserDefinedLightmap->DecrementReferenceCount(); } m_pUserDefinedLightmap = static_cast( pLightmapTexture ); } void CMatRenderContext::BindLightmap( Sampler_t sampler ) { switch ( m_lightmapPageID ) { default: Assert( ( m_lightmapPageID == 0 && GetLightmaps()->GetNumLightmapPages() == 0 ) || ( m_lightmapPageID >= 0 && m_lightmapPageID < GetLightmaps()->GetNumLightmapPages() ) ); if( m_lightmapPageID >= 0 && m_lightmapPageID < GetLightmaps()->GetNumLightmapPages() ) { g_pShaderAPI->BindTexture( sampler, GetLightmaps()->GetLightmapPageTextureHandle( m_lightmapPageID ) ); } break; case MATERIAL_SYSTEM_LIGHTMAP_PAGE_USER_DEFINED: AssertOnce( m_pUserDefinedLightmap ); g_pShaderAPI->BindTexture( sampler, m_pUserDefinedLightmap->GetTextureHandle( 0 ) ); break; case MATERIAL_SYSTEM_LIGHTMAP_PAGE_WHITE: BindFullbrightLightmap( sampler ); break; case MATERIAL_SYSTEM_LIGHTMAP_PAGE_WHITE_BUMP: BindBumpedFullbrightLightmap( sampler ); break; } } void CMatRenderContext::BindBumpLightmap( Sampler_t sampler ) { switch ( m_lightmapPageID ) { default: Assert( m_lightmapPageID >= 0 && m_lightmapPageID < GetLightmaps()->GetNumLightmapPages() ); if( m_lightmapPageID >= 0 && m_lightmapPageID < GetLightmaps()->GetNumLightmapPages() ) { g_pShaderAPI->BindTexture( sampler, GetLightmaps()->GetLightmapPageTextureHandle( m_lightmapPageID ) ); g_pShaderAPI->BindTexture( (Sampler_t)(sampler+1), GetLightmaps()->GetLightmapPageTextureHandle( m_lightmapPageID ) ); g_pShaderAPI->BindTexture( (Sampler_t)(sampler+2), GetLightmaps()->GetLightmapPageTextureHandle( m_lightmapPageID ) ); } break; case MATERIAL_SYSTEM_LIGHTMAP_PAGE_USER_DEFINED: AssertOnce( m_pUserDefinedLightmap ); g_pShaderAPI->BindTexture( sampler, m_pUserDefinedLightmap->GetTextureHandle( 0 ) ); g_pShaderAPI->BindTexture( (Sampler_t)(sampler+1), m_pUserDefinedLightmap->GetTextureHandle( 0 ) ); g_pShaderAPI->BindTexture( (Sampler_t)(sampler+2), m_pUserDefinedLightmap->GetTextureHandle( 0 ) ); break; case MATERIAL_SYSTEM_LIGHTMAP_PAGE_WHITE_BUMP: BindBumpedFullbrightLightmap( sampler ); BindBumpedFullbrightLightmap( (Sampler_t)(sampler+1) ); BindBumpedFullbrightLightmap( (Sampler_t)(sampler+2) ); break; case MATERIAL_SYSTEM_LIGHTMAP_PAGE_WHITE: BindBumpedFullbrightLightmap( sampler ); BindBumpedFullbrightLightmap( (Sampler_t)(sampler+1) ); BindBumpedFullbrightLightmap( (Sampler_t)(sampler+2) ); break; } } void CMatRenderContext::BindFullbrightLightmap( Sampler_t sampler ) { g_pShaderAPI->BindTexture( sampler, GetFullbrightLightmapTextureHandle() ); } void CMatRenderContext::BindBumpedFullbrightLightmap( Sampler_t sampler ) { g_pShaderAPI->BindTexture( sampler, GetFullbrightBumpedLightmapTextureHandle() ); } //----------------------------------------------------------------------------- // Bind standard textures //----------------------------------------------------------------------------- void CMatRenderContext::BindStandardTexture( Sampler_t sampler, StandardTextureId_t id ) { switch ( id ) { case TEXTURE_LIGHTMAP: BindLightmap( sampler ); return; case TEXTURE_LIGHTMAP_BUMPED: BindBumpLightmap( sampler ); return; case TEXTURE_LIGHTMAP_FULLBRIGHT: BindFullbrightLightmap( sampler ); return; case TEXTURE_LIGHTMAP_BUMPED_FULLBRIGHT: BindBumpedFullbrightLightmap( sampler ); return; case TEXTURE_WHITE: g_pShaderAPI->BindTexture( sampler, GetWhiteTextureHandle() ); return; case TEXTURE_BLACK: g_pShaderAPI->BindTexture( sampler, GetBlackTextureHandle() ); return; case TEXTURE_GREY: g_pShaderAPI->BindTexture( sampler, GetGreyTextureHandle() ); return; case TEXTURE_GREY_ALPHA_ZERO: g_pShaderAPI->BindTexture( sampler, GetGreyAlphaZeroTextureHandle() ); return; case TEXTURE_NORMALMAP_FLAT: g_pShaderAPI->BindTexture( sampler, GetFlatNormalTextureHandle() ); return; case TEXTURE_NORMALIZATION_CUBEMAP: TextureManager()->NormalizationCubemap()->Bind( sampler ); return; case TEXTURE_NORMALIZATION_CUBEMAP_SIGNED: TextureManager()->SignedNormalizationCubemap()->Bind( sampler ); return; case TEXTURE_FRAME_BUFFER_FULL_TEXTURE_0: case TEXTURE_FRAME_BUFFER_FULL_TEXTURE_1: { int nTextureIndex = id - TEXTURE_FRAME_BUFFER_FULL_TEXTURE_0; if( m_pCurrentFrameBufferCopyTexture[ nTextureIndex ] ) { ( ( ITextureInternal * )m_pCurrentFrameBufferCopyTexture[ nTextureIndex ] )->Bind( sampler ); } } return; case TEXTURE_COLOR_CORRECTION_VOLUME_0: case TEXTURE_COLOR_CORRECTION_VOLUME_1: case TEXTURE_COLOR_CORRECTION_VOLUME_2: case TEXTURE_COLOR_CORRECTION_VOLUME_3: { ITextureInternal *pTexture = TextureManager()->ColorCorrectionTexture( id - TEXTURE_COLOR_CORRECTION_VOLUME_0 ); if( pTexture ) { pTexture->Bind( sampler ); } } return; case TEXTURE_SHADOW_NOISE_2D: TextureManager()->ShadowNoise2D()->Bind( sampler ); return; case TEXTURE_IDENTITY_LIGHTWARP: TextureManager()->IdentityLightWarp()->Bind( sampler ); return; case TEXTURE_MORPH_ACCUMULATOR: g_pMorphMgr->MorphAccumulator()->Bind( sampler ); return; case TEXTURE_MORPH_WEIGHTS: g_pMorphMgr->MorphWeights()->Bind( sampler ); return; case TEXTURE_FRAME_BUFFER_FULL_DEPTH: if( m_bFullFrameDepthIsValid ) TextureManager()->FullFrameDepthTexture()->Bind( sampler ); else g_pShaderAPI->BindTexture( sampler, GetMaxDepthTextureHandle() ); return; case TEXTURE_DEBUG_LUXELS: TextureManager()->DebugLuxels2D()->Bind( sampler ); return; default: Assert(0); } } void CMatRenderContext::BindStandardVertexTexture( VertexTextureSampler_t sampler, StandardTextureId_t id ) { switch ( id ) { case TEXTURE_MORPH_ACCUMULATOR: g_pMorphMgr->MorphAccumulator()->BindVertexTexture( sampler ); return; case TEXTURE_MORPH_WEIGHTS: g_pMorphMgr->MorphWeights()->BindVertexTexture( sampler ); return; default: Assert(0); } } void CMatRenderContext::GetStandardTextureDimensions( int *pWidth, int *pHeight, StandardTextureId_t id ) { ITexture *pTexture = NULL; switch ( id ) { case TEXTURE_LIGHTMAP: case TEXTURE_LIGHTMAP_BUMPED: case TEXTURE_LIGHTMAP_FULLBRIGHT: case TEXTURE_LIGHTMAP_BUMPED_FULLBRIGHT: // NOTE: Doesn't exactly work since we may be in fullbright mode // GetLightmapDimensions( pWidth, pHeight ); // break; case TEXTURE_WHITE: case TEXTURE_BLACK: case TEXTURE_GREY: case TEXTURE_GREY_ALPHA_ZERO: case TEXTURE_NORMALMAP_FLAT: default: Assert( 0 ); Warning( "GetStandardTextureDimensions: still unimplemented for this type!\n" ); *pWidth = *pHeight = -1; break; case TEXTURE_NORMALIZATION_CUBEMAP: pTexture = TextureManager()->NormalizationCubemap(); break; case TEXTURE_NORMALIZATION_CUBEMAP_SIGNED: pTexture = TextureManager()->SignedNormalizationCubemap(); break; case TEXTURE_FRAME_BUFFER_FULL_TEXTURE_0: case TEXTURE_FRAME_BUFFER_FULL_TEXTURE_1: { int nTextureIndex = id - TEXTURE_FRAME_BUFFER_FULL_TEXTURE_0; pTexture = m_pCurrentFrameBufferCopyTexture[ nTextureIndex ]; } break; case TEXTURE_COLOR_CORRECTION_VOLUME_0: case TEXTURE_COLOR_CORRECTION_VOLUME_1: case TEXTURE_COLOR_CORRECTION_VOLUME_2: case TEXTURE_COLOR_CORRECTION_VOLUME_3: pTexture = TextureManager()->ColorCorrectionTexture( id - TEXTURE_COLOR_CORRECTION_VOLUME_0 ); break; case TEXTURE_SHADOW_NOISE_2D: pTexture = TextureManager()->ShadowNoise2D(); break; case TEXTURE_IDENTITY_LIGHTWARP: pTexture = TextureManager()->IdentityLightWarp(); return; case TEXTURE_MORPH_ACCUMULATOR: pTexture = g_pMorphMgr->MorphAccumulator(); break; case TEXTURE_MORPH_WEIGHTS: pTexture = g_pMorphMgr->MorphWeights(); break; case TEXTURE_DEBUG_LUXELS: pTexture = TextureManager()->DebugLuxels2D(); break; } if ( pTexture ) { *pWidth = pTexture->GetActualWidth(); *pHeight = pTexture->GetActualHeight(); } else { Warning( "GetStandardTextureDimensions: Couldn't find the texture to get the dimensions!\n" ); *pWidth = *pHeight = -1; } } void CMatRenderContext::FogColor3f( float r, float g, float b ) { unsigned char fogColor[3]; fogColor[0] = clamp( (int)(r * 255.0f), 0, 255 ); fogColor[1] = clamp( (int)(g * 255.0f), 0, 255 ); fogColor[2] = clamp( (int)(b * 255.0f), 0, 255 ); g_pShaderAPI->SceneFogColor3ub( fogColor[0], fogColor[1], fogColor[2] ); } void CMatRenderContext::FogColor3fv( const float* rgb ) { unsigned char fogColor[3]; fogColor[0] = clamp( (int)(rgb[0] * 255.0f), 0, 255 ); fogColor[1] = clamp( (int)(rgb[1] * 255.0f), 0, 255 ); fogColor[2] = clamp( (int)(rgb[2] * 255.0f), 0, 255 ); g_pShaderAPI->SceneFogColor3ub( fogColor[0], fogColor[1], fogColor[2] ); } void CMatRenderContext::SetFlashlightMode( bool bEnable ) { if( bEnable != m_bFlashlightEnable ) { g_pShaderAPI->FlushBufferedPrimitives(); m_bFlashlightEnable = bEnable; } } bool CMatRenderContext::GetFlashlightMode( ) const { return m_bFlashlightEnable; } void CMatRenderContext::SetFlashlightStateEx( const FlashlightState_t &state, const VMatrix &worldToTexture, ITexture *pFlashlightDepthTexture ) { g_pShaderAPI->SetFlashlightStateEx( state, worldToTexture, pFlashlightDepthTexture ); if ( IsPC() && g_config.dxSupportLevel <= 70 ) { // Going to go ahead and set a single hardware light here to do all lighting except for // the spotlight falloff function, which is done with a texture. SetAmbientLight( 0.0f, 0.0f, 0.0f ); static Vector4D blackCube[6]; int i; for( i = 0; i < 6; i++ ) { blackCube[i].Init( 0.0f, 0.0f, 0.0f, 0.0f ); } SetAmbientLightCube( blackCube ); // Disable all the lights except for the first one. for( i = 1; i < HardwareConfig()->MaxNumLights(); ++i ) { LightDesc_t desc; desc.m_Type = MATERIAL_LIGHT_DISABLE; SetLight( i, desc ); } LightDesc_t desc; desc.m_Type = MATERIAL_LIGHT_POINT; desc.m_Attenuation0 = state.m_fConstantAtten; desc.m_Attenuation1 = state.m_fLinearAtten; desc.m_Attenuation2 = state.m_fQuadraticAtten; // flashlightfixme: I don't know why this scale has to be here to get fixed function lighting to work. desc.m_Color.x = state.m_Color[0] * 17000.0f; desc.m_Color.y = state.m_Color[1] * 17000.0f; desc.m_Color.z = state.m_Color[2] * 17000.0f; desc.m_Position = state.m_vecLightOrigin; QAngle angles; QuaternionAngles( state.m_quatOrientation, angles ); AngleVectors( angles, &desc.m_Direction ); desc.m_Range = state.m_FarZ; desc.m_Falloff = 0.0f; SetLight( 0, desc ); } } void CMatRenderContext::SetScissorRect( const int nLeft, const int nTop, const int nRight, const int nBottom, const bool bEnableScissor ) { g_pShaderAPI->SetScissorRect( nLeft, nTop, nRight, nBottom, bEnableScissor ); } void CMatRenderContext::SetToneMappingScaleLinear( const Vector &scale ) { g_pShaderAPI->SetToneMappingScaleLinear( scale ); } void CMatRenderContext::BeginBatch( IMesh* pIndices ) { Assert( !m_pBatchMesh && !m_pBatchIndices); m_pBatchIndices = pIndices; } void CMatRenderContext::BindBatch( IMesh* pVertices, IMaterial *pAutoBind ) { m_pBatchMesh = GetDynamicMesh( false, pVertices, m_pBatchIndices, pAutoBind ); } void CMatRenderContext::DrawBatch(int firstIndex, int numIndices ) { Assert( m_pBatchMesh ); m_pBatchMesh->Draw( firstIndex, numIndices ); } void CMatRenderContext::EndBatch() { m_pBatchIndices = NULL; m_pBatchMesh = NULL; } bool CMatRenderContext::OnDrawMesh( IMesh *pMesh, int firstIndex, int numIndices ) { SyncMatrices(); return true; } bool CMatRenderContext::OnDrawMesh( IMesh *pMesh, CPrimList *pLists, int nLists ) { SyncMatrices(); return true; } void CMatRenderContext::AsyncCreateTextureFromRenderTarget( ITexture* pSrcRt, const char* pDstName, ImageFormat dstFmt, bool bGenMips, int nAdditionalCreationFlags, IAsyncTextureOperationReceiver* pRecipient, void* pExtraArgs ) { if ( g_pMaterialSystem->GetThreadMode() == MATERIAL_SINGLE_THREADED ) { OnAsyncCreateTextureFromRenderTarget( pSrcRt, &pDstName, pRecipient ); } TextureManager()->AsyncCreateTextureFromRenderTarget( pSrcRt, pDstName, dstFmt, bGenMips, nAdditionalCreationFlags, pRecipient, pExtraArgs ); } void CMatRenderContext::AsyncMap( ITextureInternal* pTexToMap, IAsyncTextureOperationReceiver* pRecipient, void* pExtraArgs ) { if ( g_pMaterialSystem->GetThreadMode() == MATERIAL_SINGLE_THREADED ) { OnAsyncMap( pTexToMap, pRecipient, pExtraArgs ); } void* pMemory = NULL; int nPitch = NULL; pTexToMap->Map( &pMemory, &nPitch ); pRecipient->OnAsyncMapComplete( pTexToMap, pExtraArgs, pMemory, nPitch ); // Release references held earlier in OnAsyncMap SafeRelease( &pRecipient ); SafeRelease( &pTexToMap ); } void CMatRenderContext::AsyncUnmap( ITextureInternal* pTexToUnmap ) { if ( g_pMaterialSystem->GetThreadMode() == MATERIAL_SINGLE_THREADED ) { OnAsyncUnmap( pTexToUnmap ); } pTexToUnmap->Unmap(); SafeRelease( &pTexToUnmap ); // Matches AddRef from OnAsyncUnmap } void CMatRenderContext::AsyncCopyRenderTargetToStagingTexture( ITexture* pDst, ITexture* pSrc, IAsyncTextureOperationReceiver* pRecipient, void* pExtraArgs ) { if ( g_pMaterialSystem->GetThreadMode() == MATERIAL_SINGLE_THREADED ) { OnAsyncCopyRenderTargetToStagingTexture( pDst, pSrc, pRecipient ); } pSrc->CopyToStagingTexture( pDst ); pRecipient->OnAsyncReadbackBegin( pDst, pSrc, pExtraArgs ); SafeRelease( &pDst ); SafeRelease( &pSrc ); SafeRelease( &pRecipient ); } //----------------------------------------------------------------------------- // Methods related to morph accumulation //----------------------------------------------------------------------------- void CMatRenderContext::BeginMorphAccumulation() { g_pMorphMgr->BeginMorphAccumulation( m_pMorphRenderContext ); } void CMatRenderContext::EndMorphAccumulation() { g_pMorphMgr->EndMorphAccumulation( m_pMorphRenderContext ); } void CMatRenderContext::AccumulateMorph( IMorph* pMorph, int nMorphCount, const MorphWeight_t* pWeights ) { g_pMorphMgr->AccumulateMorph( m_pMorphRenderContext, pMorph, nMorphCount, pWeights ); } bool CMatRenderContext::GetMorphAccumulatorTexCoord( Vector2D *pTexCoord, IMorph *pMorph, int nVertex ) { return g_pMorphMgr->GetMorphAccumulatorTexCoord( m_pMorphRenderContext, pTexCoord, pMorph, nVertex ); } //----------------------------------------------------------------------------- // Occlusion query support //----------------------------------------------------------------------------- OcclusionQueryObjectHandle_t CMatRenderContext::CreateOcclusionQueryObject() { OcclusionQueryObjectHandle_t h = g_pOcclusionQueryMgr->CreateOcclusionQueryObject(); g_pOcclusionQueryMgr->OnCreateOcclusionQueryObject( h ); return h; } int CMatRenderContext::OcclusionQuery_GetNumPixelsRendered( OcclusionQueryObjectHandle_t h ) { return g_pOcclusionQueryMgr->OcclusionQuery_GetNumPixelsRendered( h, true ); } void CMatRenderContext::SetFullScreenDepthTextureValidityFlag( bool bIsValid ) { m_bFullFrameDepthIsValid = bIsValid; } //----------------------------------------------------------------------------- // Debug logging //----------------------------------------------------------------------------- void CMatRenderContext::PrintfVA( char *fmt, va_list vargs ) { #if GLMDEBUG g_pShaderAPI->PrintfVA( fmt, vargs ); #endif } void CMatRenderContext::Printf( const char *fmt, ... ) { #if GLMDEBUG va_list vargs; va_start(vargs, fmt); g_pShaderAPI->PrintfVA( (char *)fmt, vargs ); va_end( vargs ); #endif } float CMatRenderContext::Knob( char *knobname, float *setvalue ) { #if GLMDEBUG return g_pShaderAPI->Knob( knobname, setvalue ); #else return 0.0f; #endif }