//========= Copyright Valve Corporation, All rights reserved. ============// // // Purpose: // // $NoKeywords: $ // //=============================================================================// #ifndef COMMON_FXC_H_ #define COMMON_FXC_H_ #include "common_pragmas.h" #include "common_hlsl_cpp_consts.h" #ifdef NV3X # define HALF half # define HALF2 half2 # define HALF3 half3 # define HALF4 half4 # define HALF3x3 half3x3 # define HALF3x4 half3x4 # define HALF4x3 half4x3 # define HALF_CONSTANT( _constant ) ((HALF)_constant) #else # define HALF float # define HALF2 float2 # define HALF3 float3 # define HALF4 float4 # define HALF3x3 float3x3 # define HALF3x4 float3x4 # define HALF4x3 float4x3 # define HALF_CONSTANT( _constant ) _constant #endif // This is where all common code for both vertex and pixel shaders. #define OO_SQRT_3 0.57735025882720947f static const HALF3 bumpBasis[3] = { HALF3( 0.81649661064147949f, 0.0f, OO_SQRT_3 ), HALF3( -0.40824833512306213f, 0.70710676908493042f, OO_SQRT_3 ), HALF3( -0.40824821591377258f, -0.7071068286895752f, OO_SQRT_3 ) }; static const HALF3 bumpBasisTranspose[3] = { HALF3( 0.81649661064147949f, -0.40824833512306213f, -0.40824833512306213f ), HALF3( 0.0f, 0.70710676908493042f, -0.7071068286895752f ), HALF3( OO_SQRT_3, OO_SQRT_3, OO_SQRT_3 ) }; #if defined( _X360 ) #define REVERSE_DEPTH_ON_X360 //uncomment to use D3DFMT_D24FS8 with an inverted depth viewport for better performance. Keep this in sync with the same named #define in public/shaderapi/shareddefs.h //Note that the reversal happens in the viewport. So ONLY reading back from a depth texture should be affected. Projected math is unaffected. #endif HALF3 CalcReflectionVectorNormalized( HALF3 normal, HALF3 eyeVector ) { // FIXME: might be better of normalizing with a normalizing cube map and // get rid of the dot( normal, normal ) // compute reflection vector r = 2 * ((n dot v)/(n dot n)) n - v return 2.0 * ( dot( normal, eyeVector ) / dot( normal, normal ) ) * normal - eyeVector; } HALF3 CalcReflectionVectorUnnormalized( HALF3 normal, HALF3 eyeVector ) { // FIXME: might be better of normalizing with a normalizing cube map and // get rid of the dot( normal, normal ) // compute reflection vector r = 2 * ((n dot v)/(n dot n)) n - v // multiply all values through by N.N. uniformly scaling reflection vector won't affect result // since it is used in a cubemap lookup return (2.0*(dot( normal, eyeVector ))*normal) - (dot( normal, normal )*eyeVector); } float3 HuePreservingColorClamp( float3 c ) { // Get the max of all of the color components and a specified maximum amount float maximum = max( max( c.x, c.y ), max( c.z, 1.0f ) ); return (c / maximum); } HALF3 HuePreservingColorClamp( HALF3 c, HALF maxVal ) { // Get the max of all of the color components and a specified maximum amount float maximum = max( max( c.x, c.y ), max( c.z, maxVal ) ); return (c * ( maxVal / maximum ) ); } #if (AA_CLAMP==1) HALF2 ComputeLightmapCoordinates( HALF4 Lightmap1and2Coord, HALF2 Lightmap3Coord ) { HALF2 result = saturate(Lightmap1and2Coord.xy) * Lightmap1and2Coord.wz * 0.99; result += Lightmap3Coord; return result; } void ComputeBumpedLightmapCoordinates( HALF4 Lightmap1and2Coord, HALF2 Lightmap3Coord, out HALF2 bumpCoord1, out HALF2 bumpCoord2, out HALF2 bumpCoord3 ) { HALF2 result = saturate(Lightmap1and2Coord.xy) * Lightmap1and2Coord.wz * 0.99; result += Lightmap3Coord; bumpCoord1 = result + HALF2(Lightmap1and2Coord.z, 0); bumpCoord2 = result + 2*HALF2(Lightmap1and2Coord.z, 0); bumpCoord3 = result + 3*HALF2(Lightmap1and2Coord.z, 0); } #else HALF2 ComputeLightmapCoordinates( HALF4 Lightmap1and2Coord, HALF2 Lightmap3Coord ) { return Lightmap1and2Coord.xy; } void ComputeBumpedLightmapCoordinates( HALF4 Lightmap1and2Coord, HALF2 Lightmap3Coord, out HALF2 bumpCoord1, out HALF2 bumpCoord2, out HALF2 bumpCoord3 ) { bumpCoord1 = Lightmap1and2Coord.xy; bumpCoord2 = Lightmap1and2Coord.wz; // reversed order!!! bumpCoord3 = Lightmap3Coord.xy; } #endif // Versions of matrix multiply functions which force HLSL compiler to explictly use DOTs, // not giving it the option of using MAD expansion. In a perfect world, the compiler would // always pick the best strategy, and these shouldn't be needed.. but.. well.. umm.. // // lorenmcq float3 mul3x3(float3 v, float3x3 m) { #if !defined( _X360 ) return float3(dot(v, transpose(m)[0]), dot(v, transpose(m)[1]), dot(v, transpose(m)[2])); #else // xbox360 fxc.exe (new back end) borks with transposes, generates bad code return mul( v, m ); #endif } float3 mul4x3(float4 v, float4x3 m) { #if !defined( _X360 ) return float3(dot(v, transpose(m)[0]), dot(v, transpose(m)[1]), dot(v, transpose(m)[2])); #else // xbox360 fxc.exe (new back end) borks with transposes, generates bad code return mul( v, m ); #endif } float3 DecompressHDR( float4 input ) { return input.rgb * input.a * MAX_HDR_OVERBRIGHT; } float4 CompressHDR( float3 input ) { // FIXME: want to use min so that we clamp to white, but what happens if we // have an albedo component that's less than 1/MAX_HDR_OVERBRIGHT? // float fMax = max( max( color.r, color.g ), color.b ); float4 output; float fMax = min( min( input.r, input.g ), input.b ); if( fMax > 1.0f ) { float oofMax = 1.0f / fMax; output.rgb = oofMax * input.rgb; output.a = min( fMax / MAX_HDR_OVERBRIGHT, 1.0f ); } else { output.rgb = input.rgb; output.a = 0.0f; } return output; } float3 LinearToGamma( const float3 f3linear ) { return pow( f3linear, 1.0f / 2.2f ); } float4 LinearToGamma( const float4 f4linear ) { return float4( pow( f4linear.xyz, 1.0f / 2.2f ), f4linear.w ); } float LinearToGamma( const float f1linear ) { return pow( f1linear, 1.0f / 2.2f ); } float3 GammaToLinear( const float3 gamma ) { return pow( gamma, 2.2f ); } float4 GammaToLinear( const float4 gamma ) { return float4( pow( gamma.xyz, 2.2f ), gamma.w ); } float GammaToLinear( const float gamma ) { return pow( gamma, 2.2f ); } // These two functions use the actual sRGB math float SrgbGammaToLinear( float flSrgbGammaValue ) { float x = saturate( flSrgbGammaValue ); return ( x <= 0.04045f ) ? ( x / 12.92f ) : ( pow( ( x + 0.055f ) / 1.055f, 2.4f ) ); } float SrgbLinearToGamma( float flLinearValue ) { float x = saturate( flLinearValue ); return ( x <= 0.0031308f ) ? ( x * 12.92f ) : ( 1.055f * pow( x, ( 1.0f / 2.4f ) ) ) - 0.055f; } // These twofunctions use the XBox 360's exact piecewise linear algorithm float X360GammaToLinear( float fl360GammaValue ) { float flLinearValue; fl360GammaValue = saturate( fl360GammaValue ); if ( fl360GammaValue < ( 96.0f / 255.0f ) ) { if ( fl360GammaValue < ( 64.0f / 255.0f ) ) { flLinearValue = fl360GammaValue * 255.0f; } else { flLinearValue = fl360GammaValue * ( 255.0f * 2.0f ) - 64.0f; flLinearValue += floor( flLinearValue * ( 1.0f / 512.0f ) ); } } else { if( fl360GammaValue < ( 192.0f / 255.0f ) ) { flLinearValue = fl360GammaValue * ( 255.0f * 4.0f ) - 256.0f; flLinearValue += floor( flLinearValue * ( 1.0f / 256.0f ) ); } else { flLinearValue = fl360GammaValue * ( 255.0f * 8.0f ) - 1024.0f; flLinearValue += floor( flLinearValue * ( 1.0f / 128.0f ) ); } } flLinearValue *= 1.0f / 1023.0f; flLinearValue = saturate( flLinearValue ); return flLinearValue; } float X360LinearToGamma( float flLinearValue ) { float fl360GammaValue; flLinearValue = saturate( flLinearValue ); if ( flLinearValue < ( 128.0f / 1023.0f ) ) { if ( flLinearValue < ( 64.0f / 1023.0f ) ) { fl360GammaValue = flLinearValue * ( 1023.0f * ( 1.0f / 255.0f ) ); } else { fl360GammaValue = flLinearValue * ( ( 1023.0f / 2.0f ) * ( 1.0f / 255.0f ) ) + ( 32.0f / 255.0f ); } } else { if ( flLinearValue < ( 512.0f / 1023.0f ) ) { fl360GammaValue = flLinearValue * ( ( 1023.0f / 4.0f ) * ( 1.0f / 255.0f ) ) + ( 64.0f / 255.0f ); } else { fl360GammaValue = flLinearValue * ( ( 1023.0f /8.0f ) * ( 1.0f / 255.0f ) ) + ( 128.0f /255.0f ); // 1.0 -> 1.0034313725490196078431372549016 if ( fl360GammaValue > 1.0f ) { fl360GammaValue = 1.0f; } } } fl360GammaValue = saturate( fl360GammaValue ); return fl360GammaValue; } float SrgbGammaTo360Gamma( float flSrgbGammaValue ) { float flLinearValue = SrgbGammaToLinear( flSrgbGammaValue ); float fl360GammaValue = X360LinearToGamma( flLinearValue ); return fl360GammaValue; } float3 Vec3WorldToTangent( float3 iWorldVector, float3 iWorldNormal, float3 iWorldTangent, float3 iWorldBinormal ) { float3 vTangentVector; vTangentVector.x = dot( iWorldVector.xyz, iWorldTangent.xyz ); vTangentVector.y = dot( iWorldVector.xyz, iWorldBinormal.xyz ); vTangentVector.z = dot( iWorldVector.xyz, iWorldNormal.xyz ); return vTangentVector.xyz; // Return without normalizing } float3 Vec3WorldToTangentNormalized( float3 iWorldVector, float3 iWorldNormal, float3 iWorldTangent, float3 iWorldBinormal ) { return normalize( Vec3WorldToTangent( iWorldVector, iWorldNormal, iWorldTangent, iWorldBinormal ) ); } float3 Vec3TangentToWorld( float3 iTangentVector, float3 iWorldNormal, float3 iWorldTangent, float3 iWorldBinormal ) { float3 vWorldVector; vWorldVector.xyz = iTangentVector.x * iWorldTangent.xyz; vWorldVector.xyz += iTangentVector.y * iWorldBinormal.xyz; vWorldVector.xyz += iTangentVector.z * iWorldNormal.xyz; return vWorldVector.xyz; // Return without normalizing } float3 Vec3TangentToWorldNormalized( float3 iTangentVector, float3 iWorldNormal, float3 iWorldTangent, float3 iWorldBinormal ) { return normalize( Vec3TangentToWorld( iTangentVector, iWorldNormal, iWorldTangent, iWorldBinormal ) ); } #endif //#ifndef COMMON_FXC_H_