//========= Copyright Valve Corporation, All rights reserved. ============// // // Purpose: // //============================================================================= #include "movieobjects/dmelog.h" #include "datamodel/dmelementfactoryhelper.h" #include "datamodel/dmehandle.h" #include "vstdlib/random.h" #include "tier0/dbg.h" #include // memdbgon must be the last include file in a .cpp file!!! #include "tier0/memdbgon.h" LayerSelectionData_t::DataLayer_t::DataLayer_t( float frac, CDmeLogLayer *layer ) : m_flStartFraction( frac ) { m_hData = layer; } LayerSelectionData_t::LayerSelectionData_t() : m_DataType( AT_UNKNOWN ), m_nDuration( 0 ), m_tStartOffset( DMETIME_ZERO ) { m_nHoldTimes[ 0 ] = m_nHoldTimes[ 1 ] = 0; } void LayerSelectionData_t::Release() { for ( int i = 0; i < m_vecData.Count(); ++i ) { DataLayer_t *dl = &m_vecData[ i ]; if ( dl->m_hData.Get() ) { g_pDataModel->DestroyElement( dl->m_hData->GetHandle() ); } } m_vecData.Purge(); } //----------------------------------------------------------------------------- // Interpolatable types //----------------------------------------------------------------------------- inline bool IsInterpolableType( DmAttributeType_t type ) { return ( type == AT_FLOAT ) || ( type == AT_COLOR ) || ( type == AT_VECTOR2 ) || ( type == AT_VECTOR3 ) || ( type == AT_QANGLE ) || ( type == AT_QUATERNION ); } static Vector s_pInterolationPoints[ 4 ] = { Vector( 0.0f, 0.0f, 0.0f ), Vector( 0.0f, 0.0f, 0.0f ), Vector( 1.0f, 1.0f, 0.0f ), Vector( 1.0f, 1.0f, 0.0f ) }; static inline float ComputeInterpolationFactor( float flFactor, int nInterpolatorType ) { Vector out; Interpolator_CurveInterpolate ( nInterpolatorType, s_pInterolationPoints[ 0 ], // unused s_pInterolationPoints[ 1 ], s_pInterolationPoints[ 2 ], s_pInterolationPoints[ 3 ], // unused flFactor, out ); return out.y; // clamp( out.y, 0.0f, 1.0f ); } float DmeLog_TimeSelection_t::AdjustFactorForInterpolatorType( float flFactor, int nSide ) const { return ComputeInterpolationFactor( flFactor, m_nFalloffInterpolatorTypes[ nSide ] ); } //----------------------------------------------------------------------------- // NOTE: See DmeTimeSelectionTimes_t for return values, -1 means before, TS_TIME_COUNT means after //----------------------------------------------------------------------------- static inline int ComputeRegionForTime( DmeTime_t t, const DmeTime_t *pRegionTimes ) { if ( t >= pRegionTimes[TS_LEFT_HOLD] ) { if ( t <= pRegionTimes[TS_RIGHT_HOLD] ) return 2; return ( t <= pRegionTimes[TS_RIGHT_FALLOFF] ) ? 3 : 4; } return ( t >= pRegionTimes[TS_LEFT_FALLOFF] ) ? 1 : 0; } //----------------------------------------------------------------------------- // NOTE: See DmeTimeSelectionTimes_t for return values, -1 means before, TS_TIME_COUNT means after //----------------------------------------------------------------------------- int DmeLog_TimeSelection_t::ComputeRegionForTime( DmeTime_t curtime ) const { return ::ComputeRegionForTime( curtime, m_nTimes ); } //----------------------------------------------------------------------------- // per-type averaging methods //----------------------------------------------------------------------------- float DmeLog_TimeSelection_t::GetAmountForTime( DmeTime_t dmetime ) const { float minfrac = 0.0f; float t = dmetime.GetSeconds(); // FIXME, this is slow, we should cache this maybe? COMPILE_TIME_ASSERT( TS_TIME_COUNT == 4 ); float times[ TS_TIME_COUNT ]; times[ 0 ] = m_nTimes[ 0 ].GetSeconds(); times[ 1 ] = m_nTimes[ 1 ].GetSeconds(); times[ 2 ] = m_nTimes[ 2 ].GetSeconds(); times[ 3 ] = m_nTimes[ 3 ].GetSeconds(); float dt1, dt2; dt1 = times[ 1 ] - times[ 0 ]; dt2 = times[ 3 ] - times[ 2 ]; if ( dt1 > 0.0f && t >= times[ 0 ] && t < times[ 1 ] ) { float f = ( t - times[ 0 ] ) / dt1; Vector out; Interpolator_CurveInterpolate ( m_nFalloffInterpolatorTypes[ 0 ], s_pInterolationPoints[ 0 ], // unused s_pInterolationPoints[ 1 ], s_pInterolationPoints[ 2 ], s_pInterolationPoints[ 3 ], // unused f, out ); return clamp( out.y, minfrac, 1.0f ); } if ( t >= times[ 1 ] && t <= times[ 2 ] ) return 1.0f; if ( dt2 > 0.0f && t > times[ 2 ] && t <= times[ 3 ] ) { float f = ( times[ 3 ] - t ) / dt2; Vector out; Interpolator_CurveInterpolate ( m_nFalloffInterpolatorTypes[ 1 ], s_pInterolationPoints[ 0 ], // unused s_pInterolationPoints[ 1 ], s_pInterolationPoints[ 2 ], s_pInterolationPoints[ 3 ], // unused f, out ); return clamp( out.y, minfrac, 1.0f ); } return minfrac; } // catch-all for non-interpolable types - just holds first value template < class T > T Average( const T *pValues, int nValues) { if ( IsInterpolableType( CDmAttributeInfo< T >::AttributeType() ) ) { static bool first = true; if ( first ) { first = false; Warning( "CDmeLog: interpolable type %s doesn't have an averaging function!", CDmAttributeInfo< T >::AttributeTypeName() ); } } Assert( nValues > 0 ); if ( nValues <= 0 ) return T(); // uninitialized for most value classes!!! return pValues[ 0 ]; } // float version template <> float Average( const float *pValues, int nValues ) { Assert( nValues > 0 ); if ( nValues <= 0 ) return 0.0f; float sum = 0.0f; for ( int i = 0; i < nValues; ++i ) { sum += pValues[ i ]; } return sum / nValues; } // Color version template <> Color Average( const Color *pValues, int nValues ) { Assert( nValues > 0 ); if ( nValues <= 0 ) return Color( 0, 0, 0, 0 ); float r = 0.0f, g = 0.0f, b = 0.0f, a = 0.0f; for ( int i = 0; i < nValues; ++i ) { r += pValues[ i ].r(); g += pValues[ i ].g(); b += pValues[ i ].b(); a += pValues[ i ].a(); } float inv = nValues; return Color( r * inv, g * inv, b * inv, a * inv ); } // Vector2 version template <> Vector2D Average( const Vector2D *pValues, int nValues ) { Assert( nValues > 0 ); if ( nValues <= 0 ) return Vector2D( 0.0f, 0.0f ); Vector2D sum( 0.0f, 0.0f ); for ( int i = 0; i < nValues; ++i ) { sum += pValues[ i ]; } return sum / nValues; } // Vector3 version template <> Vector Average( const Vector *pValues, int nValues ) { Assert( nValues > 0 ); if ( nValues <= 0 ) return Vector( 0.0f, 0.0f, 0.0f ); Vector sum( 0.0f, 0.0f, 0.0f ); for ( int i = 0; i < nValues; ++i ) { sum += pValues[ i ]; } return sum / nValues; } // QAngle version template <> QAngle Average( const QAngle *pValues, int nValues ) { Assert( nValues > 0 ); if ( nValues <= 0 ) return QAngle( 0.0f, 0.0f, 0.0f ); Quaternion ave; AngleQuaternion( pValues[ 0 ], ave ); // this is calculating the average by slerping with decreasing weights // for example: ave = 1/3 * q2 + 2/3 ( 1/2 * q1 + 1/2 * q0 ) for ( int i = 1; i < nValues; ++i ) { Quaternion quat; AngleQuaternion( pValues[ i ], quat ); QuaternionSlerp( ave, quat, 1 / float( i + 1 ), ave ); } QAngle qangle; QuaternionAngles( ave, qangle ); return qangle; } // Quaternion version template <> Quaternion Average( const Quaternion *pValues, int nValues ) { Assert( nValues > 0 ); if ( nValues <= 0 ) return Quaternion( 0.0f, 0.0f, 0.0f, 1.0f ); Quaternion ave = pValues[ 0 ]; // this is calculating the average by slerping with decreasing weights // for example: ave = 1/3 * q2 + 2/3 ( 1/2 * q1 + 1/2 * q0 ) for ( int i = 1; i < nValues; ++i ) { QuaternionSlerp( ave, pValues[ i ], 1 / float( i + 1 ), ave ); } return ave; } //----------------------------------------------------------------------------- // per-type interpolation methods //----------------------------------------------------------------------------- // catch-all for non-interpolable types - just holds first value template < class T > T Interpolate( float t, const T& ti, const T& tj ) { if ( IsInterpolableType( CDmAttributeInfo< T >::AttributeType() ) ) { static bool first = true; if ( first ) { first = false; Warning( "CDmeLog: interpolable type %s doesn't have an interpolation function!", CDmAttributeInfo< T >::AttributeTypeName() ); } } return ti; } // float version template <> float Interpolate( float t, const float& ti, const float& tj ) { return t * tj + (1.0f - t) * ti; } // Color version template <> Color Interpolate( float t, const Color& ti, const Color& tj ) { int ri, gi, bi, ai; int rj, gj, bj, aj; ti.GetColor( ri, gi, bi, ai ); tj.GetColor( rj, gj, bj, aj ); return Color( t * rj + (1.0f - t) * ri, t * gj + (1.0f - t) * gi, t * bj + (1.0f - t) * bi, t * aj + (1.0f - t) * ai); } // Vector2 version template <> Vector2D Interpolate( float t, const Vector2D& ti, const Vector2D& tj ) { return t * tj + (1.0f - t) * ti; } // Vector3 version template <> Vector Interpolate( float t, const Vector& ti, const Vector& tj ) { return t * tj + (1.0f - t) * ti; } // QAngle version template <> QAngle Interpolate( float t, const QAngle& ti, const QAngle& tj ) { QAngle qaResult; Quaternion q, qi, qj; // Some Quaternion temps for doing the slerp AngleQuaternion( ti, qi ); // Convert QAngles to Quaternions AngleQuaternion( tj, qj ); QuaternionSlerp( qi, qj, t, q ); // Do a slerp as Quaternions QuaternionAngles( q, qaResult ); // Convert back to QAngles return qaResult; } // Quaternion version template <> Quaternion Interpolate( float t, const Quaternion& ti, const Quaternion& tj ) { static Quaternion s_value; QuaternionSlerp( ti, tj, t, s_value ); return s_value; } // catch-all for non-interpolable types - just holds first value template < class T > T Curve_Interpolate( float t, DmeTime_t times[ 4 ], const T values[ 4 ], int curveTypes[ 4 ], float fmin, float fmax ) { if ( IsInterpolableType( CDmAttributeInfo< T >::AttributeType() ) ) { static bool first = true; if ( first ) { first = false; Warning( "CDmeLog: interpolable type %s doesn't have an interpolation function!", CDmAttributeInfo< T >::AttributeTypeName() ); } } return t; } // float version template <> float Curve_Interpolate( float t, DmeTime_t times[ 4 ], const float values[ 4 ], int curveTypes[ 4 ], float fmin, float fmax ) { Vector args[ 4 ]; for ( int i = 0; i < 4; ++i ) { args[ i ].Init( times[ i ].GetSeconds(), values[ i ], 0.0f ); } Vector vOut; int dummy; int earlypart, laterpart; // Not holding out value of previous curve... Interpolator_CurveInterpolatorsForType( curveTypes[ 1 ], dummy, earlypart ); Interpolator_CurveInterpolatorsForType( curveTypes[ 2 ], laterpart, dummy ); if ( earlypart == INTERPOLATE_HOLD ) { // Hold "out" of previous sample (can cause a discontinuity) VectorLerp( args[ 1 ], args[ 2 ], t, vOut ); vOut.y = args[ 1 ].y; } else if ( laterpart == INTERPOLATE_HOLD ) { // Hold "out" of previous sample (can cause a discontinuity) VectorLerp( args[ 1 ], args[ 2 ], t, vOut ); vOut.y = args[ 2 ].y; } else { bool sameCurveType = earlypart == laterpart ? true : false; if ( sameCurveType ) { Interpolator_CurveInterpolate( laterpart, args[ 0 ], args[ 1 ], args[ 2 ], args[ 3 ], t, vOut ); } else // curves differ, sigh { Vector vOut1, vOut2; Interpolator_CurveInterpolate( earlypart, args[ 0 ], args[ 1 ], args[ 2 ], args[ 3 ], t, vOut1 ); Interpolator_CurveInterpolate( laterpart, args[ 0 ], args[ 1 ], args[ 2 ], args[ 3 ], t, vOut2 ); VectorLerp( vOut1, vOut2, t, vOut ); } } // FIXME: This means we can only work with curves that range from 0.0 to 1.0f!!! float retval = clamp( vOut.y, fmin, fmax ); return retval; } // Vector version template <> Vector Curve_Interpolate( float t, DmeTime_t times[ 4 ], const Vector values[ 4 ], int curveTypes[ 4 ], float fmin, float fmax ) { Vector vOut; int dummy; int earlypart, laterpart; // Not holding out value of previous curve... Interpolator_CurveInterpolatorsForType( curveTypes[ 1 ], dummy, earlypart ); Interpolator_CurveInterpolatorsForType( curveTypes[ 2 ], laterpart, dummy ); if ( earlypart == INTERPOLATE_HOLD ) { // Hold "out" of previous sample (can cause a discontinuity) vOut = values[ 1 ]; } else if ( laterpart == INTERPOLATE_HOLD ) { // Hold "out" of previous sample (can cause a discontinuity) vOut = values[ 2 ]; } else { bool sameCurveType = earlypart == laterpart; if ( sameCurveType ) { Interpolator_CurveInterpolate_NonNormalized( laterpart, values[ 0 ], values[ 1 ], values[ 2 ], values[ 3 ], t, vOut ); } else // curves differ, sigh { Vector vOut1, vOut2; Interpolator_CurveInterpolate_NonNormalized( earlypart, values[ 0 ], values[ 1 ], values[ 2 ], values[ 3 ], t, vOut1 ); Interpolator_CurveInterpolate_NonNormalized( laterpart, values[ 0 ], values[ 1 ], values[ 2 ], values[ 3 ], t, vOut2 ); VectorLerp( vOut1, vOut2, t, vOut ); } } return vOut; } // Quaternion version template <> Quaternion Curve_Interpolate( float t, DmeTime_t times[ 4 ], const Quaternion values[ 4 ], int curveTypes[ 4 ], float fmin, float fmax ) { Quaternion vOut; int dummy; int earlypart, laterpart; // Not holding out value of previous curve... Interpolator_CurveInterpolatorsForType( curveTypes[ 1 ], dummy, earlypart ); Interpolator_CurveInterpolatorsForType( curveTypes[ 2 ], laterpart, dummy ); if ( earlypart == INTERPOLATE_HOLD ) { // Hold "out" of previous sample (can cause a discontinuity) vOut = values[ 1 ]; } else if ( laterpart == INTERPOLATE_HOLD ) { // Hold "out" of previous sample (can cause a discontinuity) vOut = values[ 2 ]; } else { bool sameCurveType = ( earlypart == laterpart ) ? true : false; if ( sameCurveType ) { Interpolator_CurveInterpolate_NonNormalized( laterpart, values[ 0 ], values[ 1 ], values[ 2 ], values[ 3 ], t, vOut ); } else // curves differ, sigh { Quaternion vOut1, vOut2; Interpolator_CurveInterpolate_NonNormalized( earlypart, values[ 0 ], values[ 1 ], values[ 2 ], values[ 3 ], t, vOut1 ); Interpolator_CurveInterpolate_NonNormalized( laterpart, values[ 0 ], values[ 1 ], values[ 2 ], values[ 3 ], t, vOut2 ); QuaternionSlerp( vOut1, vOut2, t, vOut ); } } return vOut; } template< class T > T ScaleValue( const T& value, float scale ) { return value * scale; } template<> bool ScaleValue( const bool& value, float scale ) { Assert( 0 ); return value; } template<> Color ScaleValue( const Color& value, float scale ) { Assert( 0 ); return value; } template<> Vector4D ScaleValue( const Vector4D& value, float scale ) { return Vector4D( value.x * scale, value.y * scale, value.z * scale, value.w * scale ); } template<> Quaternion ScaleValue( const Quaternion& value, float scale ) { return Quaternion( value.x * scale, value.y * scale, value.z * scale, value.w * scale ); } template<> VMatrix ScaleValue( const VMatrix& value, float scale ) { Assert( 0 ); return value; } template<> CUtlString ScaleValue( const CUtlString& value, float scale ) { Assert( 0 ); return value; } template< class T > float LengthOf( const T& value ) { return value; } template<> float LengthOf( const bool& value ) { if ( value ) return 1.0f; return 0.0f; } template<> float LengthOf( const Color& value ) { return (float)sqrt( (float)( value.r() * value.r() + value.g() * value.g() + value.b() * value.b() + value.a() * value.a()) ); } template<> float LengthOf( const Vector4D& value ) { return sqrt( value.x * value.x + value.y * value.y + value.z * value.z + value.w * value.w ); } template<> float LengthOf( const Quaternion& value ) { return sqrt( value.x * value.x + value.y * value.y + value.z * value.z + value.w * value.w ); } template<> float LengthOf( const VMatrix& value ) { return 0.0f; } template<> float LengthOf( const CUtlString& value ) { return 0.0f; } template<> float LengthOf( const Vector2D& value ) { return value.Length(); } template<> float LengthOf( const Vector& value ) { return value.Length(); } template<> float LengthOf( const QAngle& value ) { return value.Length(); } template< class T > T Subtract( const T& v1, const T& v2 ) { return v1 - v2; } template<> bool Subtract( const bool& v1, const bool& v2 ) { return v1; } template<> CUtlString Subtract( const CUtlString& v1, const CUtlString& v2 ) { return v1; } template<> Color Subtract( const Color& v1, const Color& v2 ) { Color ret; for ( int i = 0; i < 4; ++i ) { ret[ i ] = clamp( v1[ i ] - v2[ i ], 0, 255 ); } return ret; } template<> Vector4D Subtract( const Vector4D& v1, const Vector4D& v2 ) { Vector4D ret; for ( int i = 0; i < 4; ++i ) { ret[ i ] = v1[ i ] - v2[ i ]; } return ret; } template<> Quaternion Subtract( const Quaternion& v1, const Quaternion& v2 ) { Quaternion ret; for ( int i = 0; i < 4; ++i ) { ret[ i ] = v1[ i ]; } return ret; } template< class T > T Add( const T& v1, const T& v2 ) { return v1 + v2; } template<> bool Add( const bool& v1, const bool& v2 ) { return v1; } template<> CUtlString Add( const CUtlString& v1, const CUtlString& v2 ) { return v1; } template<> Color Add( const Color& v1, const Color& v2 ) { Color ret; for ( int i = 0; i < 4; ++i ) { ret[ i ] = clamp( v1[ i ] + v2[ i ], 0, 255 ); } return ret; } template<> Vector4D Add( const Vector4D& v1, const Vector4D& v2 ) { Vector4D ret; for ( int i = 0; i < 4; ++i ) { ret[ i ] = v1[ i ] + v2[ i ]; } return ret; } template<> Quaternion Add( const Quaternion& v1, const Quaternion& v2 ) { return v1; } IMPLEMENT_ABSTRACT_ELEMENT( DmeLogLayer, CDmeLogLayer ); IMPLEMENT_ELEMENT_FACTORY( DmeIntLogLayer, CDmeIntLogLayer ); IMPLEMENT_ELEMENT_FACTORY( DmeFloatLogLayer, CDmeFloatLogLayer ); IMPLEMENT_ELEMENT_FACTORY( DmeBoolLogLayer, CDmeBoolLogLayer ); IMPLEMENT_ELEMENT_FACTORY( DmeColorLogLayer, CDmeColorLogLayer ); IMPLEMENT_ELEMENT_FACTORY( DmeVector2LogLayer, CDmeVector2LogLayer ); IMPLEMENT_ELEMENT_FACTORY( DmeVector3LogLayer, CDmeVector3LogLayer ); IMPLEMENT_ELEMENT_FACTORY( DmeVector4LogLayer, CDmeVector4LogLayer ); IMPLEMENT_ELEMENT_FACTORY( DmeQAngleLogLayer, CDmeQAngleLogLayer ); IMPLEMENT_ELEMENT_FACTORY( DmeQuaternionLogLayer, CDmeQuaternionLogLayer ); IMPLEMENT_ELEMENT_FACTORY( DmeVMatrixLogLayer, CDmeVMatrixLogLayer ); IMPLEMENT_ELEMENT_FACTORY( DmeStringLogLayer, CDmeStringLogLayer ); //----------------------------------------------------------------------------- // explicit template instantiation //----------------------------------------------------------------------------- template class CDmeTypedLogLayer; template class CDmeTypedLogLayer; template class CDmeTypedLogLayer; template class CDmeTypedLogLayer; template class CDmeTypedLogLayer; template class CDmeTypedLogLayer; template class CDmeTypedLogLayer; template class CDmeTypedLogLayer; template class CDmeTypedLogLayer; template class CDmeTypedLogLayer; template class CDmeTypedLogLayer; IMPLEMENT_ABSTRACT_ELEMENT( DmeCurveInfo, CDmeCurveInfo ); IMPLEMENT_ELEMENT_FACTORY( DmeIntCurveInfo, CDmeIntCurveInfo ); IMPLEMENT_ELEMENT_FACTORY( DmeFloatCurveInfo, CDmeFloatCurveInfo ); IMPLEMENT_ELEMENT_FACTORY( DmeBoolCurveInfo, CDmeBoolCurveInfo ); IMPLEMENT_ELEMENT_FACTORY( DmeColorCurveInfo, CDmeColorCurveInfo ); IMPLEMENT_ELEMENT_FACTORY( DmeVector2CurveInfo, CDmeVector2CurveInfo ); IMPLEMENT_ELEMENT_FACTORY( DmeVector3CurveInfo, CDmeVector3CurveInfo ); IMPLEMENT_ELEMENT_FACTORY( DmeVector4CurveInfo, CDmeVector4CurveInfo ); IMPLEMENT_ELEMENT_FACTORY( DmeQAngleCurveInfo, CDmeQAngleCurveInfo ); IMPLEMENT_ELEMENT_FACTORY( DmeQuaternionCurveInfo, CDmeQuaternionCurveInfo ); IMPLEMENT_ELEMENT_FACTORY( DmeVMatrixCurveInfo, CDmeVMatrixCurveInfo ); IMPLEMENT_ELEMENT_FACTORY( DmeStringCurveInfo, CDmeStringCurveInfo ); //----------------------------------------------------------------------------- // explicit template instantiation //----------------------------------------------------------------------------- template class CDmeTypedCurveInfo; template class CDmeTypedCurveInfo; template class CDmeTypedCurveInfo; template class CDmeTypedCurveInfo; template class CDmeTypedCurveInfo; template class CDmeTypedCurveInfo; template class CDmeTypedCurveInfo; template class CDmeTypedCurveInfo; template class CDmeTypedCurveInfo; template class CDmeTypedCurveInfo; template class CDmeTypedCurveInfo; //----------------------------------------------------------------------------- // Class factory //----------------------------------------------------------------------------- IMPLEMENT_ABSTRACT_ELEMENT( DmeLog, CDmeLog ); IMPLEMENT_ELEMENT_FACTORY( DmeIntLog, CDmeIntLog ); IMPLEMENT_ELEMENT_FACTORY( DmeFloatLog, CDmeFloatLog ); IMPLEMENT_ELEMENT_FACTORY( DmeBoolLog, CDmeBoolLog ); IMPLEMENT_ELEMENT_FACTORY( DmeColorLog, CDmeColorLog ); IMPLEMENT_ELEMENT_FACTORY( DmeVector2Log, CDmeVector2Log ); IMPLEMENT_ELEMENT_FACTORY( DmeVector3Log, CDmeVector3Log ); IMPLEMENT_ELEMENT_FACTORY( DmeVector4Log, CDmeVector4Log ); IMPLEMENT_ELEMENT_FACTORY( DmeQAngleLog, CDmeQAngleLog ); IMPLEMENT_ELEMENT_FACTORY( DmeQuaternionLog, CDmeQuaternionLog ); IMPLEMENT_ELEMENT_FACTORY( DmeVMatrixLog, CDmeVMatrixLog ); IMPLEMENT_ELEMENT_FACTORY( DmeStringLog, CDmeStringLog ); //----------------------------------------------------------------------------- // explicit template instantiation //----------------------------------------------------------------------------- template class CDmeTypedLog; template class CDmeTypedLog; template class CDmeTypedLog; template class CDmeTypedLog; template class CDmeTypedLog; template class CDmeTypedLog; template class CDmeTypedLog; template class CDmeTypedLog; template class CDmeTypedLog; template class CDmeTypedLog; template class CDmeTypedLog; //----------------------------------------------------------------------------- // instantiate and initialize static vars //----------------------------------------------------------------------------- float CDmeIntLog::s_defaultThreshold = 0.0f; float CDmeFloatLog::s_defaultThreshold = 0.0f; float CDmeBoolLog::s_defaultThreshold = 0.0f; float CDmeColorLog::s_defaultThreshold = 0.0f; float CDmeVector2Log::s_defaultThreshold = 0.0f; float CDmeVector3Log::s_defaultThreshold = 0.0f; float CDmeVector4Log::s_defaultThreshold = 0.0f; float CDmeQAngleLog::s_defaultThreshold = 0.0f; float CDmeQuaternionLog::s_defaultThreshold = 0.0f; float CDmeVMatrixLog::s_defaultThreshold = 0.0f; float CDmeStringLog::s_defaultThreshold = 0.0f; void CDmeLogLayer::OnConstruction() { m_pOwnerLog = NULL; m_lastKey = 0; m_times.Init( this, "times" ); m_CurveTypes.Init( this, "curvetypes" ); } void CDmeLogLayer::OnDestruction() { } CDmeLog *CDmeLogLayer::GetOwnerLog() { return m_pOwnerLog; } const CDmeLog *CDmeLogLayer::GetOwnerLog() const { return m_pOwnerLog; } DmeTime_t CDmeLogLayer::GetBeginTime() const { if ( m_times.Count() == 0 ) return DmeTime_t::MinTime(); return DmeTime_t( m_times[ 0 ] ); } DmeTime_t CDmeLogLayer::GetEndTime() const { uint tn = m_times.Count(); if ( tn == 0 ) return DmeTime_t::MaxTime(); return DmeTime_t( m_times[ tn - 1 ] ); } // Validates that all keys are correctly sorted in time bool CDmeLogLayer::ValidateKeys() const { int nCount = m_times.Count(); for ( int i = 1; i < nCount; ++i ) { if ( m_times[i] <= m_times[i-1] ) { Warning( "Error in log %s! Key times are out of order [keys %d->%d: %d->%d]!\n", GetName(), i-1, i, m_times[i-1], m_times[i] ); return false; } } return true; } int CDmeLogLayer::FindKey( DmeTime_t time ) const { int tn = m_times.Count(); if ( m_lastKey >= 0 && m_lastKey < tn ) { if ( time >= DmeTime_t( m_times[ m_lastKey ] ) ) { // common case - playing forward for ( ; m_lastKey < tn - 1; ++m_lastKey ) { if ( time < DmeTime_t( m_times[ m_lastKey + 1 ] ) ) return m_lastKey; } // if time past the end, return the last key return m_lastKey; } else { tn = m_lastKey; } } for ( int ti = tn - 1; ti >= 0; --ti ) { if ( time >= DmeTime_t( m_times[ ti ] ) ) { m_lastKey = ti; return ti; } } return -1; } //----------------------------------------------------------------------------- // Returns the number of keys //----------------------------------------------------------------------------- int CDmeLogLayer::GetKeyCount() const { return m_times.Count(); } //----------------------------------------------------------------------------- // Purpose: // Input : nKeyIndex - // keyTime - //----------------------------------------------------------------------------- void CDmeLogLayer::SetKeyTime( int nKeyIndex, DmeTime_t keyTime ) { m_times.Set( nKeyIndex, keyTime.GetTenthsOfMS() ); } //----------------------------------------------------------------------------- // Returns a specific key's value //----------------------------------------------------------------------------- DmeTime_t CDmeLogLayer::GetKeyTime( int nKeyIndex ) const { return DmeTime_t( m_times[ nKeyIndex ] ); } //----------------------------------------------------------------------------- // Scale + bias key times //----------------------------------------------------------------------------- void CDmeLogLayer::ScaleBiasKeyTimes( double flScale, DmeTime_t nBias ) { // Don't waste time on the identity transform if ( ( nBias == DMETIME_ZERO ) && ( fabs( flScale - 1.0 ) < 1e-5 ) ) return; int nCount = GetKeyCount(); for ( int i = 0; i < nCount; ++i ) { DmeTime_t t = GetKeyTime( i ); t.SetSeconds( t.GetSeconds() * flScale ); t += nBias; SetKeyTime( i, t ); } } //----------------------------------------------------------------------------- // Returns the index of a particular key //----------------------------------------------------------------------------- int CDmeLogLayer::FindKeyWithinTolerance( DmeTime_t nTime, DmeTime_t nTolerance ) { int nClosest = -1; DmeTime_t nClosestTolerance = DmeTime_t::MaxTime(); DmeTime_t nCurrTolerance; int start = 0, end = GetKeyCount() - 1; while ( start <= end ) { int mid = (start + end) >> 1; DmeTime_t nDelta = nTime - DmeTime_t( m_times[mid] ); if ( nDelta > DmeTime_t( 0 ) ) { nCurrTolerance = nDelta; start = mid + 1; } else if ( nDelta < DmeTime_t( 0 ) ) { nCurrTolerance = -nDelta; end = mid - 1; } else { return mid; } if ( nCurrTolerance < nClosestTolerance ) { nClosest = mid; nClosestTolerance = nCurrTolerance; } } if ( nClosestTolerance > nTolerance ) return -1; return nClosest; } void CDmeLogLayer::OnUsingCurveTypesChanged() { if ( g_pDataModel->IsUnserializing() ) return; if ( !IsUsingCurveTypes() ) { m_CurveTypes.RemoveAll(); } else { m_CurveTypes.RemoveAll(); // Fill in an array with the default curve type for int c = m_times.Count(); for ( int i = 0; i < c; ++i ) { m_CurveTypes.AddToTail( GetDefaultCurveType() ); } } } bool CDmeLogLayer::IsUsingCurveTypes() const { return GetOwnerLog() ? GetOwnerLog()->IsUsingCurveTypes() : false; } int CDmeLogLayer::GetDefaultCurveType() const { return GetOwnerLog()->GetDefaultCurveType(); } void CDmeLogLayer::SetKeyCurveType( int nKeyIndex, int curveType ) { Assert( GetOwnerLog() ); if ( !GetOwnerLog() ) return; Assert( GetOwnerLog()->IsUsingCurveTypes() ); Assert( m_CurveTypes.IsValidIndex( nKeyIndex ) ); if ( !m_CurveTypes.IsValidIndex( nKeyIndex ) ) return; m_CurveTypes.Set( nKeyIndex, curveType ); } int CDmeLogLayer::GetKeyCurveType( int nKeyIndex ) const { Assert( GetOwnerLog() ); if ( !GetOwnerLog() ) return CURVE_DEFAULT; Assert( GetOwnerLog()->IsUsingCurveTypes() ); Assert( m_CurveTypes.IsValidIndex( nKeyIndex ) ); if ( !m_CurveTypes.IsValidIndex( nKeyIndex ) ) return GetOwnerLog()->GetDefaultCurveType(); return m_CurveTypes[ nKeyIndex ]; } //----------------------------------------------------------------------------- // Removes all keys outside the specified time range //----------------------------------------------------------------------------- void CDmeLogLayer::RemoveKeysOutsideRange( DmeTime_t tStart, DmeTime_t tEnd ) { int i; int nKeysToRemove = 0; int nKeyCount = m_times.Count(); for ( i = 0; i < nKeyCount; ++i, ++nKeysToRemove ) { if ( m_times[i] >= tStart.GetTenthsOfMS() ) break; } if ( nKeysToRemove ) { RemoveKey( 0, nKeysToRemove ); } nKeyCount = m_times.Count(); for ( i = 0; i < nKeyCount; ++i ) { if ( m_times[i] > tEnd.GetTenthsOfMS() ) break; } nKeysToRemove = nKeyCount - i; if ( nKeysToRemove ) { RemoveKey( i, nKeysToRemove ); } } template < class T > class CUndoLayerAdded : public CUndoElement { typedef CUndoElement BaseClass; public: CUndoLayerAdded( const char *desc, CDmeLog *pLog ) : BaseClass( desc ), m_bNeedsCleanup( false ), m_hLog( pLog ) { Assert( pLog && pLog->GetFileId() != DMFILEID_INVALID ); } virtual ~CUndoLayerAdded() { if ( m_bNeedsCleanup ) { g_pDataModel->DestroyElement( m_hLayer ); } } virtual void Undo() { m_bNeedsCleanup = true; m_hLayer = m_hLog->RemoveLayerFromTail()->GetHandle(); g_pDataModel->MarkHandleInvalid( m_hLayer ); } virtual void Redo() { m_bNeedsCleanup = false; g_pDataModel->MarkHandleValid( m_hLayer ); m_hLog->AddLayerToTail( GetElement< CDmeTypedLogLayer< T > >( m_hLayer ) ); } virtual const char *GetDesc() { static char sz[ 512 ]; int iLayer = m_hLog->GetTopmostLayer(); if ( iLayer >= 0 ) { CDmeLogLayer *layer = m_hLog->GetLayer( iLayer ); Q_snprintf( sz, sizeof( sz ), "addlayer: log %p lc[%d], layer %p", m_hLog.Get(), m_hLog->GetNumLayers(), layer ); } else { Q_snprintf( sz, sizeof( sz ), "addlayer: log %p lc[%d], layer NULL", m_hLog.Get(), m_hLog->GetNumLayers() ); } return sz; } private: CDmeHandle< CDmeLog > m_hLog; bool m_bNeedsCleanup; CDmeCountedHandle m_hLayer; }; template < class T > class CUndoFlattenLayers : public CUndoElement { typedef CUndoElement BaseClass; public: CUndoFlattenLayers( const char *desc, CDmeTypedLog< T > *pLog, float threshold, int flags ) : BaseClass( desc ), m_bNeedsCleanup( true ), m_hLog( pLog ), m_nFlags( flags ), m_flThreshold( threshold ) { Assert( pLog && pLog->GetFileId() != DMFILEID_INVALID ); LatchCurrentLayers(); } virtual ~CUndoFlattenLayers() { if ( m_bNeedsCleanup ) { for ( int i = 0; i < m_hLayers.Count(); ++i ) { m_hLayers[ i ] = DMELEMENT_HANDLE_INVALID; #ifdef _DEBUG CDmElement *pElement = g_pDataModel->GetElement( m_hLayers[ i ] ); Assert( !pElement || pElement->IsStronglyReferenced() ); #endif } } } virtual void Undo() { m_bNeedsCleanup = false; for ( int i = 0; i < m_hLayers.Count(); ++i ) { if ( i == 0 ) { // Copy base layer in place so handles to the base layer remain valid CDmeTypedLogLayer< T > *base = m_hLog->GetLayer( i ); base->CopyLayer( GetElement< CDmeTypedLogLayer< T > >( m_hLayers[ i ] ) ); // Release it since we didn't txfer it over g_pDataModel->DestroyElement( m_hLayers[ i ] ); } else { // This transfers ownership, so no Release needed m_hLog->AddLayerToTail( GetElement< CDmeTypedLogLayer< T > >( m_hLayers[ i ] ) ); } } m_hLayers.RemoveAll(); } virtual void Redo() { m_bNeedsCleanup = true; Assert( m_hLayers.Count() == 0 ); LatchCurrentLayers(); // Flatten them again (won't create undo records since we're in undo already) m_hLog->FlattenLayers( m_flThreshold, m_nFlags ); } virtual const char *GetDesc() { static char sz[ 512 ]; Q_snprintf( sz, sizeof( sz ), "flatten log %p lc[%d]", m_hLog.Get(), m_hLayers.Count() ); return sz; } private: void LatchCurrentLayers() { CDisableUndoScopeGuard guard; Assert( m_hLayers.Count() == 0 ); Assert( m_hLog->GetNumLayers() >= 1 ); // Entry 0 is the original "base" layer for ( int i = 0; i < m_hLog->GetNumLayers(); ++i ) { CDmeTypedLogLayer< T > *pLayer = CastElement< CDmeTypedLogLayer< T > >( CreateLayer< T >( m_hLog ) ); pLayer->CopyLayer( m_hLog->GetLayer( i ) ); m_hLayers.AddToTail( pLayer->GetHandle() ); } } CDmeHandle< CDmeTypedLog< T > > m_hLog; bool m_bNeedsCleanup; CUtlVector< CDmeCountedHandle > m_hLayers; int m_nFlags; float m_flThreshold; }; //----------------------------------------------------------------------------- // CDmeTypedLogLayer - a generic typed layer used by a log //----------------------------------------------------------------------------- template< class T > void CDmeTypedLogLayer< T >::OnConstruction() { // m_times.Init( this, "times" ); // m_CurveTypes.Init( this, "curvetypes" ); m_values.Init( this, "values" ); } template< class T > void CDmeTypedLogLayer< T >::SetOwnerLog( CDmeLog *owner ) { Assert( owner ); Assert( assert_cast< CDmeTypedLog< T > * >( owner ) ); m_pOwnerLog = owner; } template< class T > CDmeTypedLog< T > *CDmeTypedLogLayer< T >::GetTypedOwnerLog() { return assert_cast< CDmeTypedLog< T > * >( m_pOwnerLog ); } template< class T > const CDmeTypedLog< T > *CDmeTypedLogLayer< T >::GetTypedOwnerLog() const { return assert_cast< CDmeTypedLog< T > * >( m_pOwnerLog ); } template< class T > void CDmeTypedLogLayer< T >::OnDestruction() { } template< class T > void CDmeTypedLogLayer< T >::RemoveKeys( DmeTime_t starttime ) { int ti = FindKey( starttime ); if ( ti < 0 ) return; if ( starttime > DmeTime_t( m_times[ ti ] ) ) ++ti; int nKeys = m_times.Count() - ti; if ( nKeys == 0 ) return; m_times.RemoveMultiple( ti, nKeys ); m_values.RemoveMultiple( ti, nKeys ); if ( IsUsingCurveTypes() ) { m_CurveTypes.RemoveMultiple( ti, nKeys ); } if ( m_lastKey >= ti && m_lastKey < ti + nKeys ) { m_lastKey = ( ti > 0 ) ? ti - 1 : 0; } } template< class T > void CDmeTypedLogLayer< T >::ClearKeys() { m_times.RemoveAll(); m_values.RemoveAll(); m_CurveTypes.RemoveAll(); m_lastKey = 0; } template< class T > void CDmeTypedLogLayer< T >::RemoveKey( int nKeyIndex, int nNumKeysToRemove /*= 1*/ ) { m_times.RemoveMultiple( nKeyIndex, nNumKeysToRemove ); m_values.RemoveMultiple( nKeyIndex, nNumKeysToRemove ); if ( IsUsingCurveTypes() ) { m_CurveTypes.RemoveMultiple( nKeyIndex, nNumKeysToRemove ); } } //----------------------------------------------------------------------------- // Sets a key, removes all keys after this time // FIXME: This needs to account for interpolation!!! //----------------------------------------------------------------------------- template< class T > void CDmeTypedLogLayer< T >::SetKey( DmeTime_t time, const T& value, int curveType /*=CURVE_DEFAULT*/) { Assert( m_values.Count() == m_times.Count() ); Assert( !IsUsingCurveTypes() || ( m_CurveTypes.Count() == m_times.Count() ) ); // Remove all keys after this time RemoveKeys( time ); // Add the key and then check to see if the penultimate key is still necessary m_times.AddToTail( time.GetTenthsOfMS() ); m_values.AddToTail( value ); if ( IsUsingCurveTypes() ) { m_CurveTypes.AddToTail( curveType ); } int nKeys = m_values.Count(); if ( ( nKeys < 3 ) || ( IsUsingCurveTypes() && ( curveType != m_CurveTypes[ nKeys -1 ] || ( curveType != m_CurveTypes[ nKeys - 2 ] ) ) ) ) { return; } // If adding the new means that the penultimate key's value was unneeded, then we will remove the penultimate key value T check = GetValueSkippingKey( nKeys - 2 ); T oldPenultimateValue = m_values[ nKeys - 2 ]; if ( GetTypedOwnerLog()->ValuesDiffer( oldPenultimateValue, check ) ) { return; } // Remove penultimate, it's not needed m_times.Remove( nKeys - 2 ); m_values.Remove( nKeys - 2 ); if ( IsUsingCurveTypes() ) { m_CurveTypes.Remove( nKeys - 2 ); } } //----------------------------------------------------------------------------- // Finds a key within tolerance, or adds one //----------------------------------------------------------------------------- template< class T > int CDmeTypedLogLayer< T >::FindOrAddKey( DmeTime_t nTime, DmeTime_t nTolerance, const T& value, int curveType /*=CURVE_DEFAULT*/ ) { Assert( m_values.Count() == m_times.Count() ); Assert( !IsUsingCurveTypes() || ( m_CurveTypes.Count() == m_times.Count() ) ); // NOTE: This math must occur in 64bits because the max delta nDelta // can be 33 bits large. Bleah. int nClosest = -1; int64 nClosestTolerance = DmeTime_t::MinTime().GetTenthsOfMS(); int64 nCurrTolerance; int start = 0, end = GetKeyCount() - 1; while ( start <= end ) { int mid = (start + end) >> 1; int64 nDelta = (int64)nTime.GetTenthsOfMS() - (int64)m_times[mid]; if ( nDelta > 0 ) { nCurrTolerance = nDelta; start = mid + 1; } else if ( nDelta < 0 ) { nCurrTolerance = -nDelta; end = mid - 1; } else { nClosest = end = mid; nClosestTolerance = 0; break; } if ( nCurrTolerance < nClosestTolerance ) { nClosest = mid; nClosestTolerance = nCurrTolerance; } } // At this point, end is the entry less than or equal to the entry if ( nClosest == -1 || nTolerance.GetTenthsOfMS() < nClosestTolerance ) { ++end; nClosest = m_times.InsertBefore( end, nTime.GetTenthsOfMS() ); m_values.InsertBefore( end, value ); if ( IsUsingCurveTypes() ) { m_CurveTypes.InsertBefore( end, curveType ); } } return nClosest; } //----------------------------------------------------------------------------- // This inserts a key. Unlike SetKey, this will *not* delete keys after the specified time //----------------------------------------------------------------------------- template < class T > int CDmeTypedLogLayer< T >::InsertKey( DmeTime_t nTime, const T& value, int curveType /*=CURVE_DEFAULT*/ ) { int idx = FindOrAddKey( nTime, DmeTime_t( 0 ), value ); m_times .Set( idx, nTime.GetTenthsOfMS() ); m_values.Set( idx, value ); if ( IsUsingCurveTypes() ) { m_CurveTypes.Set( idx, curveType ); } return idx; } template< class T > int CDmeTypedLogLayer< T >::InsertKeyAtTime( DmeTime_t nTime, int curveType /*=CURVE_DEFAULT*/ ) { T curVal = GetValue( nTime ); return InsertKey( nTime, curVal, curveType ); } static bool CanInterpolateType( DmAttributeType_t attType ) { switch ( attType ) { default: return false; case AT_FLOAT: case AT_VECTOR3: case AT_QUATERNION: break; } return true; } template< class T > const T& CDmeTypedLogLayer< T >::GetValue( DmeTime_t time ) const { // Curve Interpolation only for 1-D float data right now!!! if ( IsUsingCurveTypes() && CanInterpolateType( GetDataType() ) ) { static T out; GetValueUsingCurveInfo( time, out ); return out; } int tc = m_times.Count(); Assert( m_values.Count() == tc ); Assert( !IsUsingCurveTypes() || ( m_CurveTypes.Count() == tc ) ); int ti = FindKey( time ); if ( ti < 0 ) { if ( tc > 0 ) return m_values[ 0 ]; const CDmeTypedLog< T > *pOwner = GetTypedOwnerLog(); if ( pOwner->HasDefaultValue() ) return pOwner->GetDefaultValue(); static T s_value; CDmAttributeInfo< T >::SetDefaultValue( s_value ); // TODO - create GetDefaultValue that returns a default T, to avoid rebuilding every time return s_value; } // Early out if we're at the end if ( ti >= tc - 1 ) return m_values[ ti ]; if ( !IsInterpolableType( GetDataType() ) ) return m_values[ ti ]; // Figure out the lerp factor float t = GetFractionOfTimeBetween( time, DmeTime_t( m_times[ti] ), DmeTime_t( m_times[ti+1] ) ); static T s_value; s_value = Interpolate( t, m_values[ti], m_values[ti+1] ); // Compute the lerp between ti and ti+1 return s_value; } template< class T > void CDmeTypedLogLayer< T >::SetKey( DmeTime_t time, const CDmAttribute *pAttr, uint index, int curveType /*= CURVE_DEFAULT*/ ) { DmAttributeType_t type = pAttr->GetType(); if ( IsValueType( type ) ) { Assert( pAttr->GetType() == GetDataType() ); SetKey( time, pAttr->GetValue< T >(), curveType ); } else if ( IsArrayType( type ) ) { Assert( ArrayTypeToValueType( type ) == GetDataType() ); CDmrArrayConst array( pAttr ); SetKey( time, array[ index ], curveType ); } else { Assert( 0 ); } } template< class T > bool CDmeTypedLogLayer< T >::SetDuplicateKeyAtTime( DmeTime_t time ) { int nKeys = m_times.Count(); if ( nKeys == 0 || DmeTime_t( m_times[ nKeys - 1 ] ) == time ) return false; T value = GetValue( time ); // these two calls need to be separated (and we need to make an extra copy here) because // CUtlVector has an assert to try to safeguard against inserting an existing value // therefore, m_values.AddToTail( m_values[ i ] ) is illegal (or at least, triggers the assert) SetKey( time, value ); return true; } //----------------------------------------------------------------------------- // Returns a specific key's value //----------------------------------------------------------------------------- template< class T > const T& CDmeTypedLogLayer< T >::GetKeyValue( int nKeyIndex ) const { Assert( m_values.Count() == m_times.Count() ); Assert( !IsUsingCurveTypes() || ( m_CurveTypes.Count() == m_times.Count() ) ); return m_values[ nKeyIndex ]; } template< class T > void CDmeTypedLogLayer< T >::GetValue( DmeTime_t time, CDmAttribute *pAttr, uint index ) const { DmAttributeType_t attrtype = pAttr->GetType(); if ( IsValueType( attrtype ) ) { Assert( attrtype == GetDataType() ); pAttr->SetValue( GetValue( time ) ); } else if ( IsArrayType( attrtype ) ) { Assert( ArrayTypeToValueType( attrtype ) == GetDataType() ); CDmrArray array( pAttr ); array.Set( index, GetValue( time ) ); } else { Assert( 0 ); } } template< class T > float CDmeTypedLogLayer< T >::GetComponent( DmeTime_t time, int componentIndex ) const { return ::GetComponent( GetValue( time ), componentIndex ); } template< class T > void CDmeTypedLogLayer< T >::SetKeyValue( int nKey, const T& value ) { Assert( nKey >= 0 ); Assert( nKey < m_values.Count() ); m_values.Set( nKey, value ); } //----------------------------------------------------------------------------- // resampling and filtering //----------------------------------------------------------------------------- template< class T > void CDmeTypedLogLayer< T >::Resample( DmeFramerate_t samplerate ) { // FIXME: Might have to revisit how to determine "curve types" for "resampled points... Assert( !IsUsingCurveTypes() ); // make sure we resample to include _at_least_ the existing time range DmeTime_t begin = GetBeginTime(); DmeTime_t end = GetEndTime(); int nSamples = 2 + FrameForTime( end - begin, samplerate ); CUtlVector< int > resampledTimes; CUtlVector< T > resampledValues; CUtlVector< int > resampledCurveTypes; resampledValues.EnsureCapacity( nSamples ); resampledTimes.EnsureCapacity( nSamples ); DmeTime_t time( begin ); for ( int i = 0; i < nSamples; ++i ) { resampledTimes.AddToTail( time.GetTenthsOfMS() ); resampledValues.AddToTail( GetValue( time ) ); if ( IsUsingCurveTypes() ) { resampledCurveTypes.AddToTail( CURVE_DEFAULT ); } time = time.TimeAtNextFrame( samplerate ); } m_times.SwapArray( resampledTimes ); m_values.SwapArray( resampledValues ); if ( IsUsingCurveTypes() ) { m_CurveTypes.SwapArray( resampledCurveTypes ); } } template< class T > void CDmeTypedLogLayer< T >::Filter( int nSampleRadius ) { // Doesn't mess with curvetypes!!! const CUtlVector< T > &values = m_values.Get(); CUtlVector< T > filteredValues; int nValues = values.Count(); filteredValues.EnsureCapacity( nValues ); for ( int i = 0; i < nValues; ++i ) { int nSamples = min( nSampleRadius, min( i, nValues - i - 1 ) ); filteredValues.AddToTail( Average( values.Base() + i - nSamples, 2 * nSamples + 1 ) ); } m_values.SwapArray( filteredValues ); } template< class T > void CDmeTypedLogLayer< T >::Filter2( DmeTime_t sampleRadius ) { // Doesn't mess with curvetypes!!! const CUtlVector< T > &values = m_values.Get(); CUtlVector< T > filteredValues; int nValues = values.Count(); filteredValues.EnsureCapacity( nValues ); DmeTime_t earliest = DMETIME_ZERO; if ( nValues > 0 ) { earliest = DmeTime_t( m_times[ 0 ] ); } for ( int i = 0; i < nValues; ++i ) { T vals[ 3 ]; DmeTime_t t = GetKeyTime( i ); DmeTime_t t0 = t - sampleRadius; DmeTime_t t1 = t + sampleRadius; if ( t0 >= earliest ) { vals[ 0 ] = GetValue( t0 ); } else { vals[ 0 ] = m_values[ 0 ]; } vals[ 1 ] = GetValue( t ); vals[ 2 ] = GetValue( t1 ); if ( i == 0 || i == nValues - 1 ) { filteredValues.AddToTail( values[ i ] ); } else { filteredValues.AddToTail( Average( vals, 3 ) ); } } m_values.SwapArray( filteredValues ); } template< class T > const T& CDmeTypedLogLayer< T >::GetValueSkippingKey( int nKeyToSkip ) const { // Curve Interpolation only for 1-D float data right now!!! if ( IsUsingCurveTypes() && CanInterpolateType( GetDataType() ) ) { static T out; GetValueUsingCurveInfoSkippingKey( nKeyToSkip, out ); return out; } Assert( m_values.Count() == m_times.Count() ); Assert( !IsUsingCurveTypes() || ( m_CurveTypes.Count() == m_times.Count() ) ); DmeTime_t time = GetKeyTime( nKeyToSkip ); int prevKey = nKeyToSkip - 1; int nextKey = nKeyToSkip + 1; DmeTime_t prevTime; T prevValue; int prevCurveType; DmeTime_t nextTime; T nextValue; int nextCurveType; GetBoundedSample( prevKey, prevTime, prevValue, prevCurveType ); GetBoundedSample( nextKey, nextTime, nextValue, nextCurveType ); // Figure out the lerp factor float t = GetFractionOfTimeBetween( time, prevTime, nextTime ); static T s_value; s_value = Interpolate( t, prevValue, nextValue ); return s_value; } template< class T > void CDmeTypedLog::RemoveRedundantKeys( float threshold ) { int bestLayer = GetTopmostLayer(); if ( bestLayer < 0 ) return; GetLayer( bestLayer )->RemoveRedundantKeys( threshold ); } template< class T > void CDmeTypedLogLayer::RemoveRedundantKeys( float threshold ) { Assert( GetTypedOwnerLog() ); if ( !GetTypedOwnerLog() ) return; float saveThreshold; { CDisableUndoScopeGuard sg; saveThreshold = GetTypedOwnerLog()->GetValueThreshold(); GetTypedOwnerLog()->SetValueThreshold( threshold ); } RemoveRedundantKeys(); { CDisableUndoScopeGuard sg; GetTypedOwnerLog()->SetValueThreshold( saveThreshold ); } } // Implementation of Douglas-Peucker curve simplification routine (hacked to only care about error against original curve (sort of 1D) template< class T > void CDmeTypedLogLayer< T >::CurveSimplify_R( float thresholdSqr, int startPoint, int endPoint, CDmeTypedLogLayer< T > *output ) { if ( endPoint <= startPoint + 1 ) { return; } int maxPoint = startPoint; float maxDistanceSqr = 0.0f; for ( int i = startPoint + 1 ; i < endPoint; ++i ) { DmeTime_t keyTime = GetKeyTime( i ); T check = GetKeyValue( i ); T check2 = output->GetValue( keyTime ); T dist = Subtract( check, check2 ); float distSqr = LengthOf( dist ) * LengthOf( dist ); if ( distSqr < maxDistanceSqr ) continue; maxPoint = i; maxDistanceSqr = distSqr; } if ( maxDistanceSqr > thresholdSqr ) { output->InsertKey( GetKeyTime( maxPoint ), GetKeyValue( maxPoint ) ); CurveSimplify_R( thresholdSqr, startPoint, maxPoint, output ); CurveSimplify_R( thresholdSqr, maxPoint, endPoint, output ); } } template<> void CDmeTypedLogLayer< bool >::CurveSimplify_R( float thresholdSqr, int startPoint, int endPoint, CDmeTypedLogLayer< bool > *output ) {}; template<> void CDmeTypedLogLayer< int >::CurveSimplify_R( float thresholdSqr, int startPoint, int endPoint, CDmeTypedLogLayer< int > *output ) {}; template<> void CDmeTypedLogLayer< Color >::CurveSimplify_R( float thresholdSqr, int startPoint, int endPoint, CDmeTypedLogLayer< Color > *output ) {}; template<> void CDmeTypedLogLayer< Quaternion >::CurveSimplify_R( float thresholdSqr, int startPoint, int endPoint, CDmeTypedLogLayer< Quaternion > *output ) {}; template<> void CDmeTypedLogLayer< VMatrix >::CurveSimplify_R( float thresholdSqr, int startPoint, int endPoint, CDmeTypedLogLayer< VMatrix > *output ) {}; // We can't just walk the keys linearly since it'll accumulate too much error and give us a bad curve after simplification. We do a recursive subdivide which has a worst case of O(n^2) but // probably is better than that in most cases. template< class T > void CDmeTypedLogLayer::RemoveRedundantKeys() { CDmeTypedLog< T > *pOwner = GetTypedOwnerLog(); if ( !pOwner ) return; int nKeys = GetKeyCount(); if ( nKeys <= 2 ) return; float thresh = pOwner->GetValueThreshold(); if ( thresh < 0.0f ) return; CDmeTypedLogLayer< T > *save = 0; { CDisableUndoScopeGuard guard; save = CastElement< CDmeTypedLogLayer< T > >( CreateLayer< T >( pOwner ) ); Assert( save ); save->m_times.EnsureCapacity( nKeys ); save->m_values.EnsureCapacity( nKeys ); // Insert start and end points as first "guess" at simplified curve // Skip preceeding and ending keys that have the same value int nFirstKey, nLastKey; for ( nFirstKey = 1; nFirstKey < nKeys; ++nFirstKey ) { // FIXME: Should we use a tolerance check here? if ( GetKeyValue( nFirstKey ) != GetKeyValue( nFirstKey - 1 ) ) break; } --nFirstKey; for ( nLastKey = nKeys; --nLastKey >= 1; ) { // FIXME: Should we use a tolerance check here? if ( GetKeyValue( nLastKey ) != GetKeyValue( nLastKey - 1 ) ) break; } if ( nLastKey <= nFirstKey ) { save->InsertKey( GetKeyTime( 0 ), GetKeyValue( 0 ) ); } else { if ( GetDataType() == AT_FLOAT ) { save->InsertKey( GetKeyTime( nFirstKey ), GetKeyValue( nFirstKey ) ); save->InsertKey( GetKeyTime( nLastKey ), GetKeyValue( nLastKey ) ); // Recursively finds the point with the largest error from the "simplified curve" and subdivides the problem on both sides until the largest delta from the simplified // curve is less than the tolerance (squared) CurveSimplify_R( thresh * thresh, nFirstKey, nLastKey, save ); } else { save->InsertKey( GetKeyTime( nFirstKey ), GetKeyValue( nFirstKey ) ); // copy over keys that differ from their prior or next keys - this keeps the first and last key of a run of same-valued keys for ( int i = nFirstKey + 1; i < nLastKey; ++i ) { // prev is from the saved log to allow deleting runs of same-valued keys const T &prev = save->GetKeyValue( save->GetKeyCount() - 1 ); const T &curr = GetKeyValue( i ); const T &next = GetKeyValue( i + 1 ); if ( pOwner->ValuesDiffer( prev, curr ) || pOwner->ValuesDiffer( curr, next ) ) { save->InsertKey( GetKeyTime( i ), curr ); } } save->InsertKey( GetKeyTime( nLastKey ), GetKeyValue( nLastKey ) ); } } } // This operation is undoable CopyLayer( save ); { CDisableUndoScopeGuard guard; g_pDataModel->DestroyElement( save->GetHandle() ); } } // curve info helpers template< class T > const CDmeTypedCurveInfo< T > *CDmeTypedLogLayer::GetTypedCurveInfo() const { Assert( GetTypedOwnerLog() ); return GetTypedOwnerLog()->GetTypedCurveInfo(); } template< class T > CDmeTypedCurveInfo< T > *CDmeTypedLogLayer::GetTypedCurveInfo() { Assert( GetTypedOwnerLog() ); return GetTypedOwnerLog()->GetTypedCurveInfo(); } template< class T > bool CDmeTypedLogLayer< T >::IsUsingEdgeInfo() const { return GetTypedOwnerLog()->IsUsingEdgeInfo(); } template< class T > const T& CDmeTypedLogLayer< T >::GetDefaultEdgeZeroValue() const { return GetTypedOwnerLog()->GetDefaultEdgeZeroValue(); } template< class T > DmeTime_t CDmeTypedLogLayer< T >::GetRightEdgeTime() const { return GetTypedOwnerLog()->GetRightEdgeTime(); } template< class T > void CDmeTypedLogLayer< T >::GetEdgeInfo( int edge, bool& active, T& val, int& curveType ) const { GetTypedOwnerLog()->GetEdgeInfo( edge, active, val, curveType ); } template< class T > int CDmeTypedLogLayer< T >::GetEdgeCurveType( int edge ) const { return GetTypedOwnerLog()->GetEdgeCurveType( edge ); } template< class T > void CDmeTypedLogLayer< T >::GetZeroValue( int side, T& val ) const { return GetTypedOwnerLog()->GetZeroValue( side, val ); } template< class T > void CDmeTypedLogLayer< T >::GetBoundedSample( int keyindex, DmeTime_t& time, T& val, int& curveType ) const { Assert( GetOwnerLog() ); if ( !GetOwnerLog() ) { time = DmeTime_t( 0 ); CDmAttributeInfo< T >::SetDefaultValue( val ); curveType = CURVE_DEFAULT; return; } if ( keyindex < 0 ) { time = DmeTime_t( 0 ); GetZeroValue( 0, val ); curveType = GetEdgeCurveType( 0 ); return; } else if ( keyindex >= m_times.Count() ) { time = GetTypedOwnerLog()->GetRightEdgeTime(); if ( time == DmeTime_t( 0 ) && m_times.Count() > 0 ) { // Push it one msec past the final end time time = DmeTime_t( m_times[ m_times.Count() - 1 ] ) + DmeTime_t( 1 ); } GetTypedOwnerLog()->GetZeroValue( 1, val ); curveType = GetTypedOwnerLog()->GetEdgeCurveType( 1 ); return; } time = DmeTime_t( m_times[ keyindex ] ); val = m_values[ keyindex ]; if ( IsUsingCurveTypes() ) { curveType = m_CurveTypes[ keyindex ]; if ( curveType == CURVE_DEFAULT ) { curveType = GetTypedOwnerLog()->GetDefaultCurveType(); } } } template<> void CDmeTypedLogLayer< float >::GetValueUsingCurveInfoSkippingKey( int nKeyToSkip, float& out ) const { Assert( GetOwnerLog() ); if ( !GetOwnerLog() ) { out = 0.0f; return; } Assert( CanInterpolateType( GetDataType() ) ); Assert( m_values.Count() == m_times.Count() ); Assert( !IsUsingCurveTypes() || ( m_CurveTypes.Count() == m_times.Count() ) ); Assert( IsInterpolableType( GetDataType() ) ); float v[ 4 ]; DmeTime_t t[ 4 ]; int curvetypes[ 4 ]; int ti = nKeyToSkip; DmeTime_t time = GetKeyTime( nKeyToSkip ); if ( !IsUsingCurveTypes() ) { if ( ti < 0 ) { CDmAttributeInfo< float >::SetDefaultValue( out ); // TODO - create GetDefaultValue that returns a default T, to avoid rebuilding every time return; } else if ( ti >= m_times.Count() - 1 ) { out = m_values[ ti + 1 ]; return; } } DmeTime_t finalTime = GetTypedOwnerLog()->GetRightEdgeTime(); if ( finalTime != DmeTime_t( 0 ) ) { if ( time > finalTime ) { GetZeroValue( 1, out ); return; } } else { if ( ti >= m_times.Count() - 1 ) { out = m_values[ ti + 1 ]; return; } } GetBoundedSample( ti - 2, t[ 0 ], v[ 0 ], curvetypes[ 0 ] ); GetBoundedSample( ti - 1, t[ 1 ], v[ 1 ], curvetypes[ 1 ] ); GetBoundedSample( ti + 1, t[ 2 ], v[ 2 ], curvetypes[ 2 ] ); GetBoundedSample( ti + 2, t[ 3 ], v[ 3 ], curvetypes[ 3 ] ); float frac = 0.0f; if ( t[2] > t[ 1 ] ) { frac = (time.GetSeconds() - t[1].GetSeconds()) / (float) ( t[2].GetSeconds() - t[ 1 ].GetSeconds() ); } // Compute the lerp between ti and ti+1 out = Curve_Interpolate( frac, t, v, curvetypes, GetOwnerLog()->GetMinValue(), GetOwnerLog()->GetMaxValue() ); } template<> void CDmeTypedLogLayer< Vector >::GetValueUsingCurveInfoSkippingKey( int nKeyToSkip, Vector& out ) const { Assert( GetOwnerLog() ); if ( !GetOwnerLog() ) { CDmAttributeInfo< Vector >::SetDefaultValue( out ); return; } Assert( CanInterpolateType( GetDataType() ) ); Assert( m_values.Count() == m_times.Count() ); Assert( !IsUsingCurveTypes() || ( m_CurveTypes.Count() == m_times.Count() ) ); Assert( IsInterpolableType( GetDataType() ) ); Vector v[ 4 ]; DmeTime_t t[ 4 ]; int curvetypes[ 4 ]; int ti = nKeyToSkip; DmeTime_t time = GetKeyTime( nKeyToSkip ); if ( !IsUsingCurveTypes() ) { if ( ti < 0 ) { CDmAttributeInfo< Vector >::SetDefaultValue( out ); // TODO - create GetDefaultValue that returns a default T, to avoid rebuilding every time return; } else if ( ti >= m_times.Count() - 1 ) { out = m_values[ ti + 1 ]; return; } } DmeTime_t finalTime = GetTypedOwnerLog()->GetRightEdgeTime(); if ( finalTime != DmeTime_t( 0 ) ) { if ( time > finalTime ) { CDmAttributeInfo< Vector >::SetDefaultValue( out ); return; } } else { if ( ti >= m_times.Count() - 1 ) { out = m_values[ ti + 1 ]; return; } } GetBoundedSample( ti - 2, t[ 0 ], v[ 0 ], curvetypes[ 0 ] ); GetBoundedSample( ti - 1, t[ 1 ], v[ 1 ], curvetypes[ 1 ] ); GetBoundedSample( ti + 1, t[ 2 ], v[ 2 ], curvetypes[ 2 ] ); GetBoundedSample( ti + 2, t[ 3 ], v[ 3 ], curvetypes[ 3 ] ); float frac = 0.0f; if ( t[2] > t[ 1 ] ) { frac = (time.GetSeconds() - t[1].GetSeconds()) / (float) ( t[2].GetSeconds() - t[ 1 ].GetSeconds() ); } // Compute the lerp between ti and ti+1 out = Curve_Interpolate( frac, t, v, curvetypes, GetOwnerLog()->GetMinValue(), GetOwnerLog()->GetMaxValue() ); } template<> void CDmeTypedLogLayer< Quaternion >::GetValueUsingCurveInfoSkippingKey( int nKeyToSkip, Quaternion& out ) const { Assert( GetOwnerLog() ); if ( !GetOwnerLog() ) { CDmAttributeInfo< Quaternion >::SetDefaultValue( out ); return; } Assert( CanInterpolateType( GetDataType() ) ); Assert( m_values.Count() == m_times.Count() ); Assert( !IsUsingCurveTypes() || ( m_CurveTypes.Count() == m_times.Count() ) ); Assert( IsInterpolableType( GetDataType() ) ); Quaternion v[ 4 ]; DmeTime_t t[ 4 ]; int curvetypes[ 4 ]; int ti = nKeyToSkip; DmeTime_t time = GetKeyTime( nKeyToSkip ); if ( !IsUsingCurveTypes() ) { if ( ti < 0 ) { CDmAttributeInfo< Quaternion >::SetDefaultValue( out ); // TODO - create GetDefaultValue that returns a default T, to avoid rebuilding every time return; } else if ( ti >= m_times.Count() - 1 ) { out = m_values[ ti + 1 ]; return; } } DmeTime_t finalTime = GetTypedOwnerLog()->GetRightEdgeTime(); if ( finalTime != DmeTime_t( 0 ) ) { if ( time > finalTime ) { CDmAttributeInfo< Quaternion >::SetDefaultValue( out ); return; } } else { if ( ti >= m_times.Count() - 1 ) { out = m_values[ ti + 1 ]; return; } } GetBoundedSample( ti - 2, t[ 0 ], v[ 0 ], curvetypes[ 0 ] ); GetBoundedSample( ti - 1, t[ 1 ], v[ 1 ], curvetypes[ 1 ] ); GetBoundedSample( ti + 1, t[ 2 ], v[ 2 ], curvetypes[ 2 ] ); GetBoundedSample( ti + 2, t[ 3 ], v[ 3 ], curvetypes[ 3 ] ); float frac = 0.0f; if ( t[2] > t[ 1 ] ) { frac = (time.GetSeconds() - t[1].GetSeconds()) / (float) ( t[2].GetSeconds() - t[ 1 ].GetSeconds() ); } // Compute the lerp between ti and ti+1 out = Curve_Interpolate( frac, t, v, curvetypes, GetOwnerLog()->GetMinValue(), GetOwnerLog()->GetMaxValue() ); } template<> void CDmeTypedLogLayer< float >::GetValueUsingCurveInfo( DmeTime_t time, float& out ) const { Assert( GetOwnerLog() ); if ( !GetOwnerLog() ) { out = 0.0f; return; } Assert( CanInterpolateType( GetDataType() ) ); Assert( m_values.Count() == m_times.Count() ); Assert( !IsUsingCurveTypes() || ( m_CurveTypes.Count() == m_times.Count() ) ); Assert( IsInterpolableType( GetDataType() ) ); float v[ 4 ]; DmeTime_t t[ 4 ]; int curvetypes[ 4 ]; int ti = FindKey( time ); if ( !IsUsingCurveTypes() ) { if ( ti < 0 ) { CDmAttributeInfo< float >::SetDefaultValue( out ); // TODO - create GetDefaultValue that returns a default T, to avoid rebuilding every time return; } else if ( ti >= m_times.Count() - 1 ) { out = m_values[ ti ]; return; } } DmeTime_t finalTime = GetTypedOwnerLog()->GetRightEdgeTime(); if ( finalTime != DmeTime_t( 0 ) ) { if ( time > finalTime ) { GetZeroValue( 1, out ); return; } } else { if ( ti >= m_times.Count() - 1 ) { out = m_values[ ti ]; return; } } GetBoundedSample( ti - 1, t[ 0 ], v[ 0 ], curvetypes[ 0 ] ); GetBoundedSample( ti + 0, t[ 1 ], v[ 1 ], curvetypes[ 1 ] ); GetBoundedSample( ti + 1, t[ 2 ], v[ 2 ], curvetypes[ 2 ] ); GetBoundedSample( ti + 2, t[ 3 ], v[ 3 ], curvetypes[ 3 ] ); float frac = 0.0f; if ( t[2] > t[ 1 ] ) { frac = (time.GetSeconds() - t[1].GetSeconds()) / (float) ( t[2].GetSeconds() - t[ 1 ].GetSeconds() ); } // Compute the lerp between ti and ti+1 out = Curve_Interpolate( frac, t, v, curvetypes, GetOwnerLog()->GetMinValue(), GetOwnerLog()->GetMaxValue() ); } template<> void CDmeTypedLogLayer< Vector >::GetValueUsingCurveInfo( DmeTime_t time, Vector& out ) const { Assert( GetOwnerLog() ); if ( !GetOwnerLog() ) { CDmAttributeInfo< Vector >::SetDefaultValue( out ); return; } Assert( CanInterpolateType( GetDataType() ) ); Assert( m_values.Count() == m_times.Count() ); Assert( !IsUsingCurveTypes() || ( m_CurveTypes.Count() == m_times.Count() ) ); Assert( IsInterpolableType( GetDataType() ) ); Vector v[ 4 ]; DmeTime_t t[ 4 ]; int curvetypes[ 4 ]; int ti = FindKey( time ); if ( !IsUsingCurveTypes() ) { if ( ti < 0 ) { CDmAttributeInfo< Vector >::SetDefaultValue( out ); // TODO - create GetDefaultValue that returns a default T, to avoid rebuilding every time return; } else if ( ti >= m_times.Count() - 1 ) { out = m_values[ ti ]; return; } } DmeTime_t finalTime = GetTypedOwnerLog()->GetRightEdgeTime(); if ( finalTime != DmeTime_t( 0 ) ) { if ( time > finalTime ) { CDmAttributeInfo< Vector >::SetDefaultValue( out ); return; } } else { if ( ti >= m_times.Count() - 1 ) { out = m_values[ ti ]; return; } } GetBoundedSample( ti - 1, t[ 0 ], v[ 0 ], curvetypes[ 0 ] ); GetBoundedSample( ti + 0, t[ 1 ], v[ 1 ], curvetypes[ 1 ] ); GetBoundedSample( ti + 1, t[ 2 ], v[ 2 ], curvetypes[ 2 ] ); GetBoundedSample( ti + 2, t[ 3 ], v[ 3 ], curvetypes[ 3 ] ); float frac = 0.0f; if ( t[2] > t[ 1 ] ) { frac = (time.GetSeconds() - t[1].GetSeconds()) / (float) ( t[2].GetSeconds() - t[ 1 ].GetSeconds() ); } // Compute the lerp between ti and ti+1 out = Curve_Interpolate( frac, t, v, curvetypes, GetOwnerLog()->GetMinValue(), GetOwnerLog()->GetMaxValue() ); } template<> void CDmeTypedLogLayer< Quaternion >::GetValueUsingCurveInfo( DmeTime_t time, Quaternion& out ) const { Assert( GetOwnerLog() ); if ( !GetOwnerLog() ) { CDmAttributeInfo< Quaternion >::SetDefaultValue( out ); return; } Assert( CanInterpolateType( GetDataType() ) ); Assert( m_values.Count() == m_times.Count() ); Assert( !IsUsingCurveTypes() || ( m_CurveTypes.Count() == m_times.Count() ) ); Assert( IsInterpolableType( GetDataType() ) ); Quaternion v[ 4 ]; DmeTime_t t[ 4 ]; int curvetypes[ 4 ]; int ti = FindKey( time ); if ( !IsUsingCurveTypes() ) { if ( ti < 0 ) { CDmAttributeInfo< Quaternion >::SetDefaultValue( out ); // TODO - create GetDefaultValue that returns a default T, to avoid rebuilding every time return; } else if ( ti >= m_times.Count() - 1 ) { out = m_values[ ti ]; return; } } DmeTime_t finalTime = GetTypedOwnerLog()->GetRightEdgeTime(); if ( finalTime != DmeTime_t( 0 ) ) { if ( time > finalTime ) { CDmAttributeInfo< Quaternion >::SetDefaultValue( out ); return; } } else { if ( ti >= m_times.Count() - 1 ) { out = m_values[ ti ]; return; } } GetBoundedSample( ti - 1, t[ 0 ], v[ 0 ], curvetypes[ 0 ] ); GetBoundedSample( ti + 0, t[ 1 ], v[ 1 ], curvetypes[ 1 ] ); GetBoundedSample( ti + 1, t[ 2 ], v[ 2 ], curvetypes[ 2 ] ); GetBoundedSample( ti + 2, t[ 3 ], v[ 3 ], curvetypes[ 3 ] ); float frac = 0.0f; if ( t[2] > t[ 1 ] ) { frac = (time.GetSeconds() - t[1].GetSeconds()) / (float) ( t[2].GetSeconds() - t[ 1 ].GetSeconds() ); } // Compute the lerp between ti and ti+1 out = Curve_Interpolate( frac, t, v, curvetypes, GetOwnerLog()->GetMinValue(), GetOwnerLog()->GetMaxValue() ); } template< class T > void CDmeTypedLogLayer< T >::CopyLayer( const CDmeLogLayer *src ) { const CDmeTypedLogLayer< T > *pSrc = static_cast< const CDmeTypedLogLayer< T > * >( src ); m_times = pSrc->m_times; m_lastKey = pSrc->m_lastKey; m_values = pSrc->m_values; m_CurveTypes = pSrc->m_CurveTypes; } template< class T > void CDmeTypedLogLayer< T >::InsertKeyFromLayer( DmeTime_t keyTime, const CDmeLogLayer *src, DmeTime_t srcKeyTime ) { const CDmeTypedLogLayer< T > *pSrc = static_cast< const CDmeTypedLogLayer< T > * >( src ); Assert( pSrc ); // NOTE: This copy is necessary if src == this T value = pSrc->GetValue( srcKeyTime ); InsertKey( keyTime, value ); } template< class T > void CDmeTypedLogLayer< T >::ExplodeLayer( const CDmeLogLayer *src, DmeTime_t startTime, DmeTime_t endTime, bool bRebaseTimestamps, DmeTime_t tResampleInterval ) { const CDmeTypedLogLayer< T > *pSrc = static_cast< const CDmeTypedLogLayer< T > * >( src ); Assert( pSrc ); DmeTime_t tTimeOffset = DMETIME_ZERO; if ( bRebaseTimestamps ) { tTimeOffset = -startTime; } m_times.RemoveAll(); m_values.RemoveAll(); m_CurveTypes.RemoveAll(); bool usecurvetypes = pSrc->IsUsingCurveTypes(); // Now copy the data for the later for ( DmeTime_t t = startTime ; t + tResampleInterval < endTime; t += tResampleInterval ) { DmeTime_t keyTime = DmeTime_t( t ); if ( keyTime > endTime ) { keyTime = endTime; } T val = pSrc->GetValue( keyTime ); keyTime += tTimeOffset; InsertKey( keyTime, val, usecurvetypes ? GetDefaultCurveType() : CURVE_DEFAULT ); } m_lastKey = m_times.Count() - 1; } template< class T > void CDmeTypedLogLayer< T >::CopyPartialLayer( const CDmeLogLayer *src, DmeTime_t startTime, DmeTime_t endTime, bool bRebaseTimestamps ) { const CDmeTypedLogLayer< T > *pSrc = static_cast< const CDmeTypedLogLayer< T > * >( src ); Assert( pSrc ); int nTimeOffset = 0; if ( bRebaseTimestamps ) { nTimeOffset = -startTime.GetTenthsOfMS(); } m_times.RemoveAll(); m_values.RemoveAll(); m_CurveTypes.RemoveAll(); bool usecurvetypes = pSrc->IsUsingCurveTypes(); // Now copy the data for the later int c = pSrc->m_times.Count(); for ( int i = 0; i < c; ++i ) { DmeTime_t keyTime = DmeTime_t( pSrc->m_times[ i ] ); if ( keyTime < startTime || keyTime > endTime ) continue; m_times.AddToTail( pSrc->m_times[ i ] + nTimeOffset ); m_values.AddToTail( pSrc->m_values[ i ] ); if ( usecurvetypes ) { m_CurveTypes.AddToTail( pSrc->m_CurveTypes[ i ] ); } } m_lastKey = m_times.Count() - 1; } //----------------------------------------------------------------------------- // Creates a log of a specific type //----------------------------------------------------------------------------- template< class T > CDmeLogLayer *CreateLayer< T >( CDmeTypedLog< T > *pOwnerLog ) { DmFileId_t fileid = pOwnerLog ? pOwnerLog->GetFileId() : DMFILEID_INVALID; CDmeLogLayer *layer = NULL; switch ( CDmAttributeInfo::AttributeType() ) { case AT_INT: case AT_INT_ARRAY: layer = CreateElement< CDmeIntLogLayer >( "int log", fileid ); break; case AT_FLOAT: case AT_FLOAT_ARRAY: layer = CreateElement< CDmeFloatLogLayer >( "float log", fileid ); break; case AT_BOOL: case AT_BOOL_ARRAY: layer = CreateElement< CDmeBoolLogLayer >( "bool log", fileid ); break; case AT_COLOR: case AT_COLOR_ARRAY: layer = CreateElement< CDmeColorLogLayer >( "color log", fileid ); break; case AT_VECTOR2: case AT_VECTOR2_ARRAY: layer = CreateElement< CDmeVector2LogLayer >( "vector2 log", fileid ); break; case AT_VECTOR3: case AT_VECTOR3_ARRAY: layer = CreateElement< CDmeVector3LogLayer >( "vector3 log", fileid ); break; case AT_VECTOR4: case AT_VECTOR4_ARRAY: layer = CreateElement< CDmeVector4LogLayer >( "vector4 log", fileid ); break; case AT_QANGLE: case AT_QANGLE_ARRAY: layer = CreateElement< CDmeQAngleLogLayer >( "qangle log", fileid ); break; case AT_QUATERNION: case AT_QUATERNION_ARRAY: layer = CreateElement< CDmeQuaternionLogLayer >( "quaternion log", fileid ); break; case AT_VMATRIX: case AT_VMATRIX_ARRAY: layer = CreateElement< CDmeVMatrixLogLayer >( "vmatrix log", fileid ); break; case AT_STRING: case AT_STRING_ARRAY: layer = CreateElement< CDmeStringLogLayer >( "string log", fileid ); break; } if ( layer ) { layer->SetOwnerLog( pOwnerLog ); } return layer; } //----------------------------------------------------------------------------- // // CDmeCurveInfo - abstract base class // //----------------------------------------------------------------------------- void CDmeCurveInfo::OnConstruction() { m_DefaultCurveType.Init( this, "defaultCurveType" ); m_MinValue.InitAndSet( this, "minvalue", 0.0f ); m_MaxValue.InitAndSet( this, "maxvalue", 1.0f ); } void CDmeCurveInfo::OnDestruction() { } // Global override for all keys unless overriden by specific key void CDmeCurveInfo::SetDefaultCurveType( int curveType ) { m_DefaultCurveType = curveType; } int CDmeCurveInfo::GetDefaultCurveType() const { return m_DefaultCurveType.Get(); } void CDmeCurveInfo::SetMinValue( float val ) { m_MinValue = val; } float CDmeCurveInfo::GetMinValue() const { return m_MinValue; } void CDmeCurveInfo::SetMaxValue( float val ) { m_MaxValue = val; } float CDmeCurveInfo::GetMaxValue() const { return m_MaxValue; } //----------------------------------------------------------------------------- // // CDmeTypedCurveInfo - implementation class for all logs // //----------------------------------------------------------------------------- template< class T > void CDmeTypedCurveInfo< T >::OnConstruction() { m_bUseEdgeInfo.Init( this, "useEdgeInfo" ); m_DefaultEdgeValue.Init( this, "defaultEdgeZeroValue" ); m_RightEdgeTime.Init( this, "rightEdgeTime" ); for ( int i = 0; i < 2; ++i ) { char edgename[ 32 ]; Q_snprintf( edgename, sizeof( edgename ), "%s", i == 0 ? "left" : "right" ); char name[ 32 ]; Q_snprintf( name, sizeof( name ), "%sEdgeActive", edgename ); m_bEdgeActive[ i ].Init( this, name ); Q_snprintf( name, sizeof( name ), "%sEdgeValue", edgename ); m_EdgeValue[ i ].Init( this, name ); Q_snprintf( name, sizeof( name ), "%sEdgeCurveType", edgename ); m_EdgeCurveType[ i ].Init( this, name ); } } template< class T > void CDmeTypedCurveInfo< T >::OnDestruction() { } template< class T > void CDmeTypedCurveInfo< T >::SetUseEdgeInfo( bool state ) { m_bUseEdgeInfo = state; } template< class T > bool CDmeTypedCurveInfo< T >::IsUsingEdgeInfo() const { return m_bUseEdgeInfo; } template< class T > void CDmeTypedCurveInfo< T >::SetEdgeInfo( int edge, bool active, const T& val, int curveType ) { SetUseEdgeInfo( true ); Assert( edge == 0 || edge == 1 ); m_bEdgeActive[ edge ] = active; m_EdgeValue[ edge ] = val; m_EdgeCurveType[ edge ] = curveType; } template< class T > void CDmeTypedCurveInfo< T >::SetDefaultEdgeZeroValue( const T& val ) { m_DefaultEdgeValue = val; } template< class T > const T& CDmeTypedCurveInfo< T >::GetDefaultEdgeZeroValue() const { return m_DefaultEdgeValue; } template< class T > void CDmeTypedCurveInfo< T >::SetRightEdgeTime( DmeTime_t time ) { m_RightEdgeTime = time.GetTenthsOfMS(); } template< class T > DmeTime_t CDmeTypedCurveInfo< T >::GetRightEdgeTime() const { return DmeTime_t( m_RightEdgeTime ); } template< class T > void CDmeTypedCurveInfo< T >::GetEdgeInfo( int edge, bool& active, T& val, int& curveType ) const { Assert( IsUsingEdgeInfo() ); Assert( edge == 0 || edge == 1 ); active = m_bEdgeActive[ edge ]; val = m_EdgeValue[ edge ]; curveType = m_EdgeCurveType[ edge ]; } template< class T > int CDmeTypedCurveInfo< T >::GetEdgeCurveType( int edge ) const { Assert( edge == 0 || edge == 1 ); if ( !m_bEdgeActive[ edge ] ) { return m_DefaultCurveType; } if ( m_EdgeCurveType[ edge ] == CURVE_DEFAULT ) { return m_DefaultCurveType; } return m_EdgeCurveType[ edge ]; } template<> void CDmeTypedCurveInfo::GetZeroValue( int side, float& val ) const { if ( !m_bUseEdgeInfo ) { val = 0.0f; return; } if ( m_bEdgeActive[ side ] ) { val = m_EdgeValue[ side ]; return; } val = m_DefaultEdgeValue; } template<> bool CDmeTypedCurveInfo::IsEdgeActive( int edge ) const { return m_bEdgeActive[ edge ]; } template<> void CDmeTypedCurveInfo::GetEdgeValue( int edge, float& value ) const { value = m_EdgeValue[ edge ]; } template<> void CDmeTypedCurveInfo::GetZeroValue( int side, Vector& val ) const { if ( !m_bUseEdgeInfo ) { val = vec3_origin; return; } if ( m_bEdgeActive[ side ] ) { val = m_EdgeValue[ side ]; return; } val = m_DefaultEdgeValue; } template<> void CDmeTypedCurveInfo::GetZeroValue( int side, Quaternion& val ) const { if ( !m_bUseEdgeInfo ) { val.Init(); return; } if ( m_bEdgeActive[ side ] ) { val = m_EdgeValue[ side ]; return; } val = m_DefaultEdgeValue; } //----------------------------------------------------------------------------- // // CDmeLog - abstract base class // //----------------------------------------------------------------------------- void CDmeLog::OnConstruction() { m_Layers.Init( this, "layers", FATTRIB_MUSTCOPY | FATTRIB_HAS_ARRAY_CALLBACK ); m_CurveInfo.Init( this, "curveinfo", FATTRIB_MUSTCOPY | FATTRIB_HAS_CALLBACK ); } void CDmeLog::OnDestruction() { } int CDmeLog::GetTopmostLayer() const { return m_Layers.Count() - 1; } int CDmeLog::GetNumLayers() const { return m_Layers.Count(); } CDmeLogLayer *CDmeLog::GetLayer( int index ) { return m_Layers[ index ]; } const CDmeLogLayer *CDmeLog::GetLayer( int index ) const { return m_Layers[ index ]; } bool CDmeLog::IsEmpty() const { int c = m_Layers.Count(); for ( int i = 0; i < c; ++i ) { CDmeLogLayer* layer = m_Layers[ i ]; if ( layer->GetKeyCount() > 0 ) return false; } return true; } void CDmeLog::FindLayersForTime( DmeTime_t time, CUtlVector< int >& list ) const { list.RemoveAll(); int c = m_Layers.Count(); // The base layer is always available!!! if ( c > 0 ) { list.AddToTail( 0 ); } for ( int i = 1; i < c; ++i ) { CDmeLogLayer* layer = m_Layers[ i ]; DmeTime_t layerStart = layer->GetBeginTime(); if ( layerStart == DmeTime_t::MinTime() ) continue; DmeTime_t layerEnd = layer->GetEndTime(); if ( layerEnd == DmeTime_t::MaxTime() ) continue; if ( time >= layerStart && time <= layerEnd ) { list.AddToTail( i ); } } } int CDmeLog::FindLayerForTimeSkippingTopmost( DmeTime_t time ) const { int c = m_Layers.Count() - 1; // This makes it never consider the topmost layer!!! for ( int i = c - 1; i >= 0; --i ) { CDmeLogLayer* layer = m_Layers[ i ]; DmeTime_t layerStart = layer->GetBeginTime(); if ( layerStart == DmeTime_t::MinTime() ) continue; DmeTime_t layerEnd = layer->GetEndTime(); if ( layerEnd == DmeTime_t::MaxTime() ) continue; if ( time >= layerStart && time <= layerEnd ) return i; } return ( c > 0 ) ? 0 : -1; } int CDmeLog::FindLayerForTime( DmeTime_t time ) const { int c = m_Layers.Count(); for ( int i = c - 1; i >= 0; --i ) { CDmeLogLayer* layer = m_Layers[ i ]; DmeTime_t layerStart = layer->GetBeginTime(); if ( layerStart == DmeTime_t::MinTime() ) continue; DmeTime_t layerEnd = layer->GetEndTime(); if ( layerEnd == DmeTime_t::MaxTime() ) continue; if ( time >= layerStart && time <= layerEnd ) return i; } return ( c > 0 ) ? 0 : -1; } DmeTime_t CDmeLog::GetBeginTime() const { int c = m_Layers.Count(); if ( c == 0 ) return DmeTime_t::MinTime(); DmeTime_t bestMin = DmeTime_t::MinTime(); for ( int i = 0; i < c; ++i ) { CDmeLogLayer* layer = m_Layers[ i ]; DmeTime_t layerStart = layer->GetBeginTime(); if ( layerStart == DmeTime_t::MinTime() ) continue; if ( bestMin == DmeTime_t::MinTime() ) { bestMin = layerStart; } else if ( layerStart < bestMin ) { bestMin = layerStart; } } return bestMin; } DmeTime_t CDmeLog::GetEndTime() const { int c = m_Layers.Count(); if ( c == 0 ) return DmeTime_t::MaxTime(); DmeTime_t bestMax = DmeTime_t::MaxTime(); for ( int i = 0; i < c; ++i ) { CDmeLogLayer *layer = m_Layers[ i ]; DmeTime_t layerEnd = layer->GetEndTime(); if ( layerEnd == DmeTime_t::MaxTime() ) continue; if ( bestMax == DmeTime_t::MaxTime() ) { bestMax = layerEnd; } else if ( layerEnd > bestMax ) { bestMax = layerEnd; } } return bestMax; } //----------------------------------------------------------------------------- // Returns the number of keys //----------------------------------------------------------------------------- int CDmeLog::GetKeyCount() const { int count = 0; int c = m_Layers.Count(); for ( int i = 0; i < c; ++i ) { CDmeLogLayer* layer = m_Layers[ i ]; int timecount = layer->GetKeyCount(); count += timecount; } return count; } //----------------------------------------------------------------------------- // Scale + bias key times //----------------------------------------------------------------------------- void CDmeLog::ScaleBiasKeyTimes( double flScale, DmeTime_t nBias ) { // Don't waste time on the identity transform if ( ( nBias == DMETIME_ZERO ) && ( fabs( flScale - 1.0 ) < 1e-5 ) ) return; int nCount = GetNumLayers(); for ( int i = 0; i < nCount; ++i ) { CDmeLogLayer *pLayer = GetLayer( i ); pLayer->ScaleBiasKeyTimes( flScale, nBias ); } } //----------------------------------------------------------------------------- // Resolve - keeps non-attribute data in sync with attribute data //----------------------------------------------------------------------------- void CDmeLog::Resolve() { int c = m_Layers.Count(); for ( int i = 0; i < c; ++i ) { CDmeLogLayer* layer = m_Layers[ i ]; layer->SetOwnerLog( this ); } } void CDmeLog::OnAttributeChanged( CDmAttribute *pAttribute ) { if ( pAttribute == m_CurveInfo.GetAttribute() ) { OnUsingCurveTypesChanged(); } } void CDmeLog::OnUsingCurveTypesChanged() { int c = m_Layers.Count(); for ( int i = 0; i < c; ++i ) { GetLayer( i )->OnUsingCurveTypesChanged(); } } // curve info helpers bool CDmeLog::IsUsingCurveTypes() const { return m_CurveInfo.GetElement() != NULL; } const CDmeCurveInfo *CDmeLog::GetCurveInfo() const { return m_CurveInfo.GetElement(); } CDmeCurveInfo *CDmeLog::GetCurveInfo() { return m_CurveInfo.GetElement(); } // accessors for CurveInfo data int CDmeLog::GetDefaultCurveType() const { Assert( IsUsingCurveTypes() ); return m_CurveInfo->GetDefaultCurveType(); } // min/max accessors float CDmeLog::GetMinValue() const { Assert( IsUsingCurveTypes() ); return m_CurveInfo->GetMinValue(); } void CDmeLog::SetMinValue( float val ) { Assert( IsUsingCurveTypes() ); m_CurveInfo->SetMinValue( val ); } float CDmeLog::GetMaxValue() const { Assert( IsUsingCurveTypes() ); return m_CurveInfo->GetMaxValue(); } void CDmeLog::SetMaxValue( float val ) { Assert( IsUsingCurveTypes() ); m_CurveInfo->SetMaxValue( val ); } void CDmeLog::SetKeyCurveType( int nKeyIndex, int curveType ) { int bestLayer = GetTopmostLayer(); if ( bestLayer < 0 ) return; GetLayer( bestLayer )->SetKeyCurveType( nKeyIndex, curveType ); } int CDmeLog::GetKeyCurveType( int nKeyIndex ) const { int bestLayer = GetTopmostLayer(); if ( bestLayer < 0 ) return CURVE_DEFAULT; return GetLayer( bestLayer )->GetKeyCurveType( nKeyIndex ); } //----------------------------------------------------------------------------- // Removes all keys in a certain time interval //----------------------------------------------------------------------------- bool CDmeLog::RemoveKeys( DmeTime_t tStartTime, DmeTime_t tEndTime ) { CDmeLogLayer *pLayer = GetLayer( GetTopmostLayer() ); int nKeyCount = pLayer->GetKeyCount(); int nFirstRemove = -1; int nLastRemove = -1; for ( int nKey = 0; nKey < nKeyCount; ++nKey ) { DmeTime_t tKeyTime = pLayer->GetKeyTime( nKey ); if ( tKeyTime < tStartTime ) continue; if ( tKeyTime > tEndTime ) break; if ( nFirstRemove == -1 ) { nFirstRemove = nKey; } nLastRemove = nKey; } if ( nFirstRemove != -1 ) { int nRemoveCount = nLastRemove - nFirstRemove + 1; pLayer->RemoveKey( nFirstRemove, nRemoveCount ); return true; } return false; } //----------------------------------------------------------------------------- // CDmeTypedLog - implementation class for all logs //----------------------------------------------------------------------------- template< class T > void CDmeTypedLog< T >::OnConstruction() { if ( !g_pDataModel->IsUnserializing() ) { // Add the default layer!!! AddNewLayer(); Assert( m_Layers.Count() == 1 ); } m_threshold = s_defaultThreshold; m_UseDefaultValue.InitAndSet( this, "usedefaultvalue", false ); m_DefaultValue.Init( this, "defaultvalue" ); } template< class T > void CDmeTypedLog< T >::OnDestruction() { } template< class T > void CDmeTypedLog< T >::SetDefaultValue( const T& value ) { m_UseDefaultValue = true; m_DefaultValue.Set( value ); } template< class T > const T& CDmeTypedLog< T >::GetDefaultValue() const { Assert( (bool)m_UseDefaultValue ); return m_DefaultValue; } template< class T > bool CDmeTypedLog< T >::HasDefaultValue() const { return m_UseDefaultValue; } template< class T > void CDmeTypedLog< T >::ClearDefaultValue() { m_UseDefaultValue = false; T out; CDmAttributeInfo< T >::SetDefaultValue( out ); m_DefaultValue.Set( out ); } // Only used by undo system!!! template< class T > void CDmeTypedLog< T >::AddLayerToTail( CDmeLogLayer *layer ) { Assert( layer ); Assert( (static_cast< CDmeTypedLogLayer< T > * >( layer ))->GetTypedOwnerLog() == this ); m_Layers.AddToTail( layer ); } template< class T > CDmeLogLayer *CDmeTypedLog< T >::RemoveLayerFromTail() { Assert( m_Layers.Count() >= 1 ); CDmeLogLayer *layer = m_Layers[ m_Layers.Count() -1 ]; m_Layers.Remove( m_Layers.Count() - 1 ); return layer; } template< class T > CDmeLogLayer *CDmeTypedLog< T >::RemoveLayer( int iLayer ) { Assert( m_Layers.IsValidIndex( iLayer ) ); CDmeLogLayer *layer = m_Layers[ iLayer ]; m_Layers.Remove( iLayer ); return layer; } template< class T > CDmeLogLayer *CDmeTypedLog< T >::AddNewLayer() { if ( g_pDataModel->UndoEnabledForElement( this ) ) { CUndoLayerAdded *pUndo = new CUndoLayerAdded( "AddNewLayer", this ); g_pDataModel->AddUndoElement( pUndo ); } CDisableUndoScopeGuard guard; // Now add the layer to the stack!!! CDmeTypedLogLayer< T > *layer = static_cast< CDmeTypedLogLayer< T > * >( CreateLayer( this ) ); if ( layer ) { layer->SetOwnerLog( this ); m_Layers.AddToTail( layer ); } return layer; } // curve info helpers template< class T > const CDmeTypedCurveInfo< T > *CDmeTypedLog::GetTypedCurveInfo() const { Assert( !m_CurveInfo.GetElement() || dynamic_cast< const CDmeTypedCurveInfo< T > * >( m_CurveInfo.GetElement() ) ); return static_cast< const CDmeTypedCurveInfo< T > * >( m_CurveInfo.GetElement() ); } template< class T > CDmeTypedCurveInfo< T > *CDmeTypedLog::GetTypedCurveInfo() { Assert( !m_CurveInfo.GetElement() || dynamic_cast< CDmeTypedCurveInfo< T > * >( m_CurveInfo.GetElement() ) ); return static_cast< CDmeTypedCurveInfo< T > * >( m_CurveInfo.GetElement() ); } template< class T > void CDmeTypedLog::SetCurveInfo( CDmeCurveInfo *pCurveInfo ) { Assert( !pCurveInfo || dynamic_cast< CDmeTypedCurveInfo< T > * >( pCurveInfo ) ); m_CurveInfo = pCurveInfo; OnUsingCurveTypesChanged(); // FIXME: Is this really necessary? OnAttributeChanged should have already called this! } template< class T > CDmeCurveInfo *CDmeTypedLog::GetOrCreateCurveInfo() { CDmeCurveInfo *pCurveInfo = m_CurveInfo.GetElement(); if ( pCurveInfo ) return pCurveInfo; SetCurveInfo( CreateElement< CDmeTypedCurveInfo< T > >( "curveinfo", GetFileId() ) ); return m_CurveInfo.GetElement(); } template < class T > struct ActiveLayer_t { ActiveLayer_t() : bValid( false ), priority( 0 ), firstTime( 0 ), lastTime( 0 ), layer( NULL ) { } static bool PriorityLessFunc( ActiveLayer_t< T > * const & lhs, ActiveLayer_t< T > * const & rhs ) { return lhs->priority < rhs->priority; } int priority; // higher wins bool bValid; DmeTime_t firstTime; DmeTime_t lastTime; CDmeTypedLogLayer< T > *layer; }; template < class T > struct LayerEvent_t { enum EventType_t { LE_START = 0, LE_END }; LayerEvent_t() : m_pList( NULL ), m_Type( LE_START ), m_nLayer( 0 ), m_Time( 0 ) { } static bool LessFunc( const LayerEvent_t& lhs, const LayerEvent_t& rhs ) { return lhs.m_Time < rhs.m_Time; } CUtlVector< ActiveLayer_t< T > > *m_pList; EventType_t m_Type; int m_nLayer; DmeTime_t m_Time; T m_NeighborValue; }; template< class T > static const T& GetActiveLayerValue( CUtlVector< ActiveLayer_t< T > > &layerlist, DmeTime_t t, int nTopmostLayer ) { int nCount = layerlist.Count(); #ifdef _DEBUG Assert( nCount >= nTopmostLayer ); #endif for ( int i = nTopmostLayer; i >= 0; --i ) { ActiveLayer_t< T > &layer = layerlist[i]; if ( layer.firstTime > t || layer.lastTime < t ) continue; return layer.layer->GetValue( t ); } if ( nCount != 0 ) { const CDmeTypedLog< T > *pOwner = layerlist[0].layer->GetTypedOwnerLog(); if ( pOwner->HasDefaultValue() ) return pOwner->GetDefaultValue(); } static T defaultVal; CDmAttributeInfo::SetDefaultValue( defaultVal ); return defaultVal; } template< class T > static void SpewEvents( CUtlRBTree< LayerEvent_t< T > > &events ) { for ( unsigned short idx = events.FirstInorder(); idx != events.InvalidIndex(); idx = events.NextInorder( idx ) ) { LayerEvent_t< T > *pEvent = &events[ idx ]; Msg( "Event %u layer %i at time %i type %s\n", (unsigned)idx, pEvent->m_nLayer, pEvent->m_Time.GetTenthsOfMS(), pEvent->m_Type == LayerEvent_t< T >::LE_START ? "start" : "end" ); } } template< class T > inline void SpewKey( const T& ) { Msg( "GenericType" ); } template<> inline void SpewKey( const float& val ) { Msg( "%f", val ); } template<> inline void SpewKey( const int& val ) { Msg( "%d", val ); } template<> inline void SpewKey( const Vector2D& val ) { Msg( "%f,%f", val.x, val.y ); } template<> inline void SpewKey( const Vector4D& val ) { Msg( "%f,%f,%f,%f", val.x, val.y, val.z, val.w ); } template<> inline void SpewKey( const DmeTime_t& val ) { Msg( "%d", val.GetTenthsOfMS() ); } template<> inline void SpewKey( const bool& val ) { Msg( "%s", val ? "true" : "false" ); } template<> inline void SpewKey( const Color& val ) { Msg( "%08x", val.GetRawColor() ); } template< > inline void SpewKey( const Vector& val ) { Msg( "[%f %f %f]", val.x, val.y, val.z ); } template< > inline void SpewKey( const Quaternion& val ) { Msg( "[%f %f %f %f]", val.x, val.y, val.z, val.w ); } template< class T > static void SpewFlattenedKey( CDmeTypedLogLayer< T > *pLogLayer, ActiveLayer_t< T > *pActiveLayer, DmeTime_t t, const T& val ) { Msg( "Layer %d: adding key at time %f [%d -> %d], value ", pActiveLayer->priority, t.GetSeconds(), pActiveLayer->firstTime.GetTenthsOfMS(), pActiveLayer->lastTime.GetTenthsOfMS() ); SpewKey( val ); Msg( "\n" ); } template< class T > static void ComputeLayerEvents( CDmeTypedLog< T >* pLog, CUtlVector< ActiveLayer_t< T > > &layerlist, CUtlRBTree< LayerEvent_t< T > > &events ) { // Build a list of all known layers and a sorted list of layer "transitions" for ( int i = 0; i < pLog->GetNumLayers(); ++i ) { ActiveLayer_t< T > layer; layer.priority = i; layer.layer = static_cast< CDmeTypedLogLayer< T > * >( pLog->GetLayer( i ) ); layer.firstTime = layer.layer->GetBeginTime(); layer.lastTime = layer.layer->GetEndTime(); layer.bValid = true; if ( ( layer.firstTime == DMETIME_MINTIME || layer.lastTime == DMETIME_MAXTIME ) && ( i > 0 ) ) // Base layer is always valid { layer.bValid = false; } // Skip invalid layers if ( !layer.bValid ) continue; // Layer zero can capture everything from above... if ( i == 0 ) { layer.firstTime = DmeTime_t::MinTime(); layer.lastTime = DmeTime_t::MaxTime(); } // Add layer to global list int nIndex = layerlist.AddToTail( layer ); // Add layer start/end events DmeTime_t tNeighbor = ( layer.firstTime != DMETIME_MINTIME ) ? ( layer.firstTime - DMETIME_MINDELTA ) : DMETIME_MINTIME; LayerEvent_t< T > start; start.m_pList = &layerlist; start.m_nLayer = nIndex; start.m_Type = LayerEvent_t< T >::LE_START; start.m_Time = layer.firstTime; start.m_NeighborValue = GetActiveLayerValue( layerlist, tNeighbor, nIndex - 1 ); events.Insert( start ); tNeighbor = ( layer.lastTime != DMETIME_MAXTIME ) ? ( layer.lastTime + DMETIME_MINDELTA ) : DMETIME_MAXTIME; LayerEvent_t< T > end; end.m_pList = &layerlist; end.m_nLayer = nIndex; end.m_Type = LayerEvent_t< T >::LE_END; end.m_Time = layer.lastTime; end.m_NeighborValue = GetActiveLayerValue( layerlist, tNeighbor, nIndex - 1 ); events.Insert( end ); } } template< class T > static void AddDiscontinitySample( CDmeTypedLogLayer< T > *pTargetLayer, CDmeTypedLog< T > *pLog, DmeTime_t tKeyTime, const T& val, const char *pSpewLabel ) { // Finally, add a helper key if ( pLog->IsUsingCurveTypes() ) { if ( pSpewLabel ) { Msg( "Adding %s helper key at %d value ", pSpewLabel, tKeyTime.GetTenthsOfMS() ); SpewKey( val ); Msg( " [curvetype %s]\n", Interpolator_NameForCurveType( pLog->GetDefaultCurveType(), false ) ); } pTargetLayer->SetKey( tKeyTime, val, pLog->GetDefaultCurveType() ); } else { if ( pSpewLabel ) { Msg( "Adding %s helper key at %d value ", pSpewLabel, tKeyTime.GetTenthsOfMS() ); SpewKey( val ); Msg( "\n" ); } pTargetLayer->SetKey( tKeyTime, val ); } } template< class T > static DmeTime_t ProcessStartLayerStartEvent( bool bSpew, bool bFixupDiscontinuities, CDmeTypedLog< T > *pLog, LayerEvent_t< T > *pEvent, CUtlVector< ActiveLayer_t< T > > &layerlist, CUtlRBTree< ActiveLayer_t< T > * > &active, CDmeTypedLogLayer< T > *flattenedlayer ) { Assert( pEvent->m_Type == LayerEvent_t< T >::LE_START ); // Push it onto the active stack if it's not already on the stack if ( active.Find( &layerlist[ pEvent->m_nLayer ] ) != active.InvalidIndex() ) return pEvent->m_Time; if ( bSpew ) { Msg( "adding layer %d to stack\n", layerlist[ pEvent->m_nLayer ].priority ); } active.Insert( &layerlist[ pEvent->m_nLayer ] ); if ( !bFixupDiscontinuities || ( pEvent->m_Time == DMETIME_MINTIME ) ) return pEvent->m_Time; // We'll need to add 2 new "discontinuity" fixup samples. // 1) A sample from the base layer @ start time - .1 msec // 2) A sample from the new layer @ start time int nActiveCount = active.Count(); if ( nActiveCount >= 2 ) { DmeTime_t tKeyTime = pEvent->m_Time - DmeTime_t( 1 ); AddDiscontinitySample( flattenedlayer, pLog, tKeyTime, pEvent->m_NeighborValue, bSpew ? "start" : NULL ); } AddDiscontinitySample( flattenedlayer, pLog, pEvent->m_Time, GetActiveLayerValue( layerlist, pEvent->m_Time, pEvent->m_nLayer ), bSpew ? "start" : NULL ); return pEvent->m_Time; } template< class T > static DmeTime_t ProcessStartLayerEndEvent( bool bSpew, bool bFixupDiscontinuities, CDmeTypedLog< T > *pLog, LayerEvent_t< T > *pEvent, CUtlVector< ActiveLayer_t< T > > &layerlist, CUtlRBTree< ActiveLayer_t< T > * > &active, CDmeTypedLogLayer< T > *pBaseLayer ) { Assert( pEvent->m_Type == LayerEvent_t< T >::LE_END ); // Push it onto the active stack if it's not already on the stack if ( bSpew ) { Msg( "removing layer %d from stack\n", layerlist[ pEvent->m_nLayer ].priority ); } // We'll need to add a "discontinuity" fixup sample from the // 1) A sample from the ending layer @ start time // 2) A sample from the new layer @ start time + .1 msec // NOTE: This will cause problems if there are non-default value keys at max time Assert( active.Count() >= 1 ); if ( bFixupDiscontinuities && ( pEvent->m_Time != DMETIME_MAXTIME ) ) { AddDiscontinitySample( pBaseLayer, pLog, pEvent->m_Time, GetActiveLayerValue( layerlist, pEvent->m_Time, pEvent->m_nLayer ), bSpew ? "end" : NULL ); if ( active.Count() >= 2 ) { DmeTime_t keyTime = pEvent->m_Time + DmeTime_t( 1 ); AddDiscontinitySample( pBaseLayer, pLog, keyTime, pEvent->m_NeighborValue, bSpew ? "end" : NULL ); } } active.Remove( &layerlist[ pEvent->m_nLayer ] ); return ( active.Count() >= 2 ) ? pEvent->m_Time + DmeTime_t( 1 ) : pEvent->m_Time; } template< class T > void CDmeTypedLog< T >::FlattenLayers( float threshold, int flags ) { // Already flattened if ( m_Layers.Count() <= 1 ) return; if ( g_pDataModel->UndoEnabledForElement( this ) ) { CUndoFlattenLayers *pUndo = new CUndoFlattenLayers( "FlattenLayers", this, threshold, flags ); g_pDataModel->AddUndoElement( pUndo ); } bool bSpew = ( flags & FLATTEN_SPEW ) != 0; bool bFixupDiscontinuities = true; //( flags & FLATTEN_NODISCONTINUITY_FIXUP ) == 0; // NOTE: UNDO IS DISABLED FOR THE REST OF THIS OPERATION (the above function does what we need to preserve the layers) CDisableUndoScopeGuard guard; CDmeTypedLogLayer< T > *flattenedlayer = static_cast< CDmeTypedLogLayer< T > * >( CreateLayer< T >( this ) ); flattenedlayer->SetOwnerLog( this ); // Global list of layers CUtlVector< ActiveLayer_t< T > > layerlist; // List of all start/end layer events, sorted by the time at which the event occurs ( we walk this list in order ) CUtlRBTree< LayerEvent_t< T > > events( 0, 0, LayerEvent_t< T >::LessFunc ); // Stack of active events, sorted by event "priority", which means last item is the one writing data into the new base layer CUtlRBTree< ActiveLayer_t< T > * > active( 0, 0, ActiveLayer_t< T >::PriorityLessFunc ); // Build layer list and list of start/end events and times ComputeLayerEvents( this, layerlist, events ); // Debuggins if ( bSpew ) { SpewEvents( events ); } // Now walk from the earliest time in any layer until the latest time, going key by key and checking if the active layer should change as we go DmeTime_t iCurrentKeyTime = DmeTime_t::MinTime(); unsigned short idx = events.FirstInorder(); while ( 1 ) { if ( idx == events.InvalidIndex() ) break; LayerEvent_t< T > *pEvent = &events[ idx ]; switch ( pEvent->m_Type ) { default: iCurrentKeyTime = pEvent->m_Time; Assert( 0 ); break; case LayerEvent_t< T >::LE_START: iCurrentKeyTime = ProcessStartLayerStartEvent( bSpew, bFixupDiscontinuities, this, pEvent, layerlist, active, flattenedlayer ); break; case LayerEvent_t< T >::LE_END: iCurrentKeyTime = ProcessStartLayerEndEvent( bSpew, bFixupDiscontinuities, this, pEvent, layerlist, active, flattenedlayer ); break; } int nNextIndex = events.NextInorder( idx ); // We popped the last item off the stack if ( nNextIndex == events.InvalidIndex() ) { Assert( active.Count() == 0 ); break; } // Walk from current time up to the time of the next relevant event LayerEvent_t< T > *nextevent = &events[ nNextIndex ]; DmeTime_t layerFinishTime = nextevent->m_Time; // The topmost layer is the active layer int layernum = active.LastInorder(); if ( layernum == active.InvalidIndex() ) break; ActiveLayer_t< T > *activeLayer = active[ layernum ]; CDmeTypedLogLayer< T > *loglayer = activeLayer->layer; // Splat all keys betweeen the current head position and the next event time (layerFinishTime) into the flattened layer int keyCount = loglayer->GetKeyCount(); for ( int j = 0; j < keyCount; ++j ) { DmeTime_t keyTime = loglayer->GetKeyTime( j ); // Key is too early, skip if ( keyTime < iCurrentKeyTime ) continue; // Done with this layer, set time exactly equal to end time so next layer can take over // at the correct spot if ( keyTime >= layerFinishTime ) { iCurrentKeyTime = layerFinishTime; break; } // Advance the head position iCurrentKeyTime = keyTime; // Because it's a key, the interpolated value should == the actual value (not true for certain 4 point curve types, but we shouldn't support them // for this type of operation anyway) const T& val = loglayer->GetKeyValue( j ); // Debugging spew if ( bSpew ) { SpewFlattenedKey( loglayer, activeLayer, iCurrentKeyTime, val ); } // Now set the key into the flattened layer flattenedlayer->SetKey( iCurrentKeyTime, val, loglayer->IsUsingCurveTypes() ? loglayer->GetKeyCurveType( j ) : CURVE_DEFAULT ); } idx = nNextIndex; } // Blow away all of the existing layers except the original base layer while ( GetNumLayers() > 1 ) { CDmeTypedLogLayer< T > *layer = static_cast< CDmeTypedLogLayer< T > * >( RemoveLayerFromTail() ); g_pDataModel->DestroyElement( layer->GetHandle() ); } // Compress the flattened layer flattenedlayer->RemoveRedundantKeys( threshold ); // Copy the flattened layer over the existing base layer GetLayer( 0 )->CopyLayer( flattenedlayer ); g_pDataModel->DestroyElement( flattenedlayer->GetHandle() ); } template< class T > void CDmeTypedLog< T >::StampKeyAtHead( DmeTime_t tHeadPosition, DmeTime_t tPreviousHeadPosition, const DmeLog_TimeSelection_t& params, const CDmAttribute *pAttr, uint index /*= 0*/ ) { DmAttributeType_t type = pAttr->GetType(); if ( IsValueType( type ) ) { Assert( pAttr->GetType() == GetDataType() ); StampKeyAtHead( tHeadPosition, tPreviousHeadPosition, params, pAttr->GetValue< T >() ); } else if ( IsArrayType( type ) ) { Assert( ArrayTypeToValueType( type ) == GetDataType() ); CDmrArrayConst array( pAttr ); StampKeyAtHead( tHeadPosition, tPreviousHeadPosition, params, array[ index ] ); } else { Assert( 0 ); } } template< class T > void CDmeTypedLog< T >::FinishTimeSelection( DmeTime_t tHeadPosition, DmeLog_TimeSelection_t& params ) { bool bWasAdvancing = params.IsTimeAdvancing(); params.ResetTimeAdvancing(); if ( !params.m_bAttachedMode ) return; if ( !bWasAdvancing ) return; // Should be in "layer recording" mode!!! Assert( GetNumLayers() >= 2 ); int nBestLayer = GetTopmostLayer(); // Topmost should be at least layer # 1 (0 is the base layer) if ( nBestLayer < 1 ) return; CDmeTypedLogLayer< T > *pWriteLayer = GetLayer( nBestLayer ); Assert( pWriteLayer ); if ( !pWriteLayer ) return; int nKeyCount = pWriteLayer->GetKeyCount(); if ( nKeyCount <= 0 ) return; // The head is considered to be at the "last" value T headValue = pWriteLayer->GetKeyValue( nKeyCount - 1 ); _StampKeyAtHeadResample( tHeadPosition, params, headValue, true, false ); } template< > float CDmeTypedLog< float >::ClampValue( const float& value ) { float retval; if ( !IsUsingCurveTypes() ) { retval = clamp( value, 0.0f, 1.0f ); } else { retval = clamp( value, GetMinValue(), GetMaxValue() ); } return retval; } template< class T > void CDmeTypedLog< T >::StampKeyAtHead( DmeTime_t tHeadPosition, DmeTime_t tPreviousHeadPosition, const DmeLog_TimeSelection_t& params, const T& value ) { //T useValue = ClampValue( value ); // This gets set if time ever starts moving (even if the user pauses time while still holding a slider) if ( params.IsTimeAdvancing() ) { // This uses the time selection as a "filter" to decide whether to stamp a new key at the current position _StampKeyAtHeadFilteredByTimeSelection( tHeadPosition, tPreviousHeadPosition, params, value ); } else { Assert( params.m_bResampleMode ); _StampKeyAtHeadResample( tHeadPosition, params, value, false, true ); } } /* template<> void CDmeTypedLog< float >::_StampKeyAtHeadResample( const DmeLog_TimeSelection_t& params, const float& value ); template<> void CDmeTypedLog< bool >::_StampKeyAtHeadResample( const DmeLog_TimeSelection_t& params, const bool& value ); template<> void CDmeTypedLog< Color >::_StampKeyAtHeadResample( const DmeLog_TimeSelection_t& params, const Color& value ); template<> void CDmeTypedLog< Vector4D >::_StampKeyAtHeadResample( const DmeLog_TimeSelection_t& params, const Vector4D& value ); template<> void CDmeTypedLog< Vector2D >::_StampKeyAtHeadResample( const DmeLog_TimeSelection_t& params, const Vector2D& value ); template<> void CDmeTypedLog< VMatrix >::_StampKeyAtHeadResample( const DmeLog_TimeSelection_t& params, const VMatrix& value ); template<> void CDmeTypedLog< Quaternion >::_StampKeyAtHeadResample( const DmeLog_TimeSelection_t& params, const Quaternion& value ); template<> void CDmeTypedLog< QAngle >::_StampKeyAtHeadResample( const DmeLog_TimeSelection_t& params, const QAngle& value ); */ //----------------------------------------------------------------------------- // Helper class used to compute falloff blend factors //----------------------------------------------------------------------------- template< class T > struct LogClampHelper_t { public: LogClampHelper_t() : m_tLastTime( DMETIME_MINTIME ) {} DmeTime_t m_tLastTime; T m_LastUnclampedValue; }; template< class T > class CLogFalloffBlend { public: void Init( CDmeTypedLog *pLog, DmeTime_t tFalloff, DmeTime_t tHold, bool bLeftFalloff, int nInterpolatorType, const T& delta ); void Init( CDmeTypedLog *pLog, const T& delta ); float ComputeBlendFactor( DmeTime_t tTime, const T& oldVal, bool bUsingInterpolation ) const; const T& GetDelta() const; void StampKey( CDmeTypedLogLayer* pWriteLayer, DmeTime_t t, const CDmeTypedLogLayer* pReadLayer, float flIntensity, LogClampHelper_t &helper, bool bSpew, const T* pInterpTarget ); void UpdateClampHelper( DmeTime_t t, const CDmeTypedLogLayer* pReadLayer, float flIntensity, LogClampHelper_t &helper, const T* pInterpTarget ); private: void ComputeDelta( CDmeTypedLog *pLog, const T& delta, const T& holdValue ); void InsertClampTransitionPoints( CDmeTypedLogLayer* pWriteLayer, DmeTime_t t, LogClampHelper_t &clampHelper, const T& val, bool bSpew ); void ComputeBounds( CDmeTypedLog *pLog ); T m_BaseValue; T m_Delta; DmeTime_t m_tBaseTime; DmeTime_t m_tHoldTime; float m_flOOTime; int m_nTestSign; int m_nInterpolatorType; int m_nCurveType; T m_MinValue; T m_MaxValue; bool m_bHold; }; template< class T > void CLogFalloffBlend< T >::Init( CDmeTypedLog *pLog, DmeTime_t tFalloffTime, DmeTime_t tHoldTime, bool bLeftFalloff, int nInterpolatorType, const T& delta ) { m_tBaseTime = tFalloffTime; m_tHoldTime = tHoldTime; m_BaseValue = pLog->GetValueSkippingTopmostLayer( tFalloffTime ); T holdValue = pLog->GetValueSkippingTopmostLayer( tHoldTime ); m_nTestSign = bLeftFalloff ? 1 : -1; m_nInterpolatorType = nInterpolatorType; m_bHold = false; m_nCurveType = pLog->IsUsingCurveTypes() ? pLog->GetDefaultCurveType() : CURVE_DEFAULT; float flDuration = tHoldTime.GetSeconds() - tFalloffTime.GetSeconds(); m_flOOTime = ( flDuration != 0.0f ) ? 1.0f / flDuration : 0.0f; ComputeBounds( pLog ); ComputeDelta( pLog, delta, holdValue ); } template< class T > void CLogFalloffBlend< T >::Init( CDmeTypedLog *pLog, const T& delta ) { m_nTestSign = 0; m_nInterpolatorType = INTERPOLATE_DEFAULT; m_bHold = true; m_nCurveType = pLog->IsUsingCurveTypes() ? pLog->GetDefaultCurveType() : CURVE_DEFAULT; m_Delta = delta; ComputeBounds( pLog ); } template< class T > void CLogFalloffBlend< T >::ComputeBounds( CDmeTypedLog *pLog ) { } template<> void CLogFalloffBlend< float >::ComputeBounds( CDmeTypedLog *pLog ) { m_MinValue = pLog->IsUsingCurveTypes() ? pLog->GetMinValue() : 0.0f; m_MaxValue = pLog->IsUsingCurveTypes() ? pLog->GetMaxValue() : 1.0f; } template< class T > void CLogFalloffBlend< T >::ComputeDelta( CDmeTypedLog *pLog, const T& delta, const T& holdValue ) { // By default, no clamping m_Delta = delta; } template<> void CLogFalloffBlend< float >::ComputeDelta( CDmeTypedLog *pLog, const float& delta, const float& holdValue ) { if ( LengthOf( delta ) > 0.0f ) { m_Delta = min( delta, m_MaxValue - holdValue ); // Max amount we can move up... } else { m_Delta = max( delta, m_MinValue - holdValue ); // Amount we can move down... } } template< class T > float CLogFalloffBlend< T >::ComputeBlendFactor( DmeTime_t tTime, const T& oldVal, bool bUsingInterpolation ) const { if ( m_bHold ) return 1.0f; // Clamp inside region; hold time beats base time (for zero width regions) if ( ( tTime - m_tHoldTime ) * m_nTestSign >= DMETIME_ZERO ) return 1.0f; if ( ( tTime - m_tBaseTime ) * m_nTestSign <= DMETIME_ZERO ) return 0.0f; float flFactor = ( tTime.GetSeconds() - m_tBaseTime.GetSeconds() ) * m_flOOTime; return ComputeInterpolationFactor( flFactor, m_nInterpolatorType ); } template< class T > const T& CLogFalloffBlend< T >::GetDelta( ) const { return m_Delta; } //----------------------------------------------------------------------------- // Insert points where clamping begins or ends //----------------------------------------------------------------------------- template< class T > void CLogFalloffBlend< T >::InsertClampTransitionPoints( CDmeTypedLogLayer* pWriteLayer, DmeTime_t t, LogClampHelper_t &clampHelper, const T& val, bool bSpew ) { // NOTE: By default, nothing clamps, so no transition points are needed } template<> void CLogFalloffBlend< float >::InsertClampTransitionPoints( CDmeTypedLogLayer* pWriteLayer, DmeTime_t t, LogClampHelper_t &clampHelper, const float& val, bool bSpew ) { bool bLastLess, bLastGreater, bCurrLess, bCurrGreater; DmeTime_t tCrossing, tDuration; double flOODv; // First time through? cache last values. if ( clampHelper.m_tLastTime == DMETIME_MINTIME ) goto cacheLastValues; bLastLess = clampHelper.m_LastUnclampedValue < m_MinValue; bLastGreater = clampHelper.m_LastUnclampedValue > m_MaxValue; bCurrLess = val < m_MinValue; bCurrGreater = val > m_MaxValue; if ( bLastLess == bCurrLess && bLastGreater == bCurrGreater ) goto cacheLastValues; // NOTE: The check above means val != m_LastUnclampedValue flOODv = 1.0 / ( val - clampHelper.m_LastUnclampedValue ); tDuration = t - clampHelper.m_tLastTime; // NOTE: Clamp semantics here favor keeping the non-clamped value // That's why when we start outside + end inside, we never overwrite the dest // and why when we start inside + end outside, we never overwrite the start // These two checks deal with starting outside + heading inside if ( bLastLess && !bCurrLess ) { // Insert at min crossing double flFactor = ( m_MinValue - clampHelper.m_LastUnclampedValue ) * flOODv; tCrossing = clampHelper.m_tLastTime + tDuration * flFactor; tCrossing.Clamp( clampHelper.m_tLastTime, t - DMETIME_MINDELTA ); pWriteLayer->InsertKey( tCrossing, m_MinValue, m_nCurveType ); if ( bSpew ) { Msg(" Clamp Crossing Key: %d %f\n", tCrossing.GetTenthsOfMS(), m_MinValue ); } } else if ( bLastGreater && !bCurrGreater ) { // Insert at max crossing double flFactor = ( m_MaxValue - clampHelper.m_LastUnclampedValue ) * flOODv; tCrossing = clampHelper.m_tLastTime + tDuration * flFactor; tCrossing.Clamp( clampHelper.m_tLastTime, t - DMETIME_MINDELTA ); pWriteLayer->InsertKey( tCrossing, m_MaxValue, m_nCurveType ); if ( bSpew ) { Msg(" Clamp Crossing Key: %d %f\n", tCrossing.GetTenthsOfMS(), m_MaxValue ); } } // These two checks deal with starting inside + heading outside if ( !bLastLess && bCurrLess ) { // Insert at min crossing // NOTE: Clamp semantics here favor keeping the non-clamped value double flFactor = ( m_MinValue - clampHelper.m_LastUnclampedValue ) * flOODv; tCrossing = clampHelper.m_tLastTime + tDuration * flFactor; tCrossing.Clamp( clampHelper.m_tLastTime + DMETIME_MINDELTA, t ); pWriteLayer->InsertKey( tCrossing, m_MinValue, m_nCurveType ); if ( bSpew ) { Msg(" Clamp Crossing Key: %d %f\n", tCrossing.GetTenthsOfMS(), m_MinValue ); } } else if ( !bLastGreater && bCurrGreater ) { // Insert at max crossing double flFactor = ( m_MaxValue - clampHelper.m_LastUnclampedValue ) * flOODv; tCrossing = clampHelper.m_tLastTime + tDuration * flFactor; tCrossing.Clamp( clampHelper.m_tLastTime + DMETIME_MINDELTA, t ); pWriteLayer->InsertKey( tCrossing, m_MaxValue, m_nCurveType ); if ( bSpew ) { Msg(" Clamp Crossing Key: %d %f\n", tCrossing.GetTenthsOfMS(), m_MaxValue ); } } // Cache off the last values cacheLastValues: clampHelper.m_tLastTime = t; clampHelper.m_LastUnclampedValue = val; } //----------------------------------------------------------------------------- // Stamp the key at the specified time //----------------------------------------------------------------------------- template< class T > void CLogFalloffBlend< T >::StampKey( CDmeTypedLogLayer* pWriteLayer, DmeTime_t t, const CDmeTypedLogLayer* pReadLayer, float flIntensity, LogClampHelper_t &clampHelper, bool bSpew, const T* pInterpTarget ) { // Stamp the key at the current time T oldVal = pReadLayer->GetValue( t ); // In the falloff area float flFactor = ComputeBlendFactor( t, oldVal, ( pInterpTarget != NULL ) ); flFactor *= flIntensity; T newVal; if ( !pInterpTarget ) { newVal = ScaleValue( m_Delta, flFactor ); newVal = Add( oldVal, newVal ); } else { newVal = Interpolate( flFactor, oldVal, *pInterpTarget ); } InsertClampTransitionPoints( pWriteLayer, t, clampHelper, newVal, bSpew ); T clampedVal = pWriteLayer->GetTypedOwnerLog()->ClampValue( newVal ); // Add a key to the new "layer" at this time with this value pWriteLayer->InsertKey( t, clampedVal, m_nCurveType ); if ( bSpew ) { Msg(" Key: %d ", t.GetTenthsOfMS() ); SpewKey( clampedVal ); Msg(" [" ); SpewKey( newVal ); Msg( "]\n" ); } } //----------------------------------------------------------------------------- // Stamp the key at the specified time //----------------------------------------------------------------------------- template< class T > void CLogFalloffBlend< T >::UpdateClampHelper( DmeTime_t t, const CDmeTypedLogLayer* pReadLayer, float flIntensity, LogClampHelper_t &clampHelper, const T* pInterpTarget ) { // Stamp the key at the current time T oldVal = pReadLayer->GetValue( t ); // In the falloff area float flFactor = ComputeBlendFactor( t, oldVal, ( pInterpTarget != NULL ) ); flFactor *= flIntensity; T val; if ( !pInterpTarget ) { val = ScaleValue( m_Delta, flFactor ); val = Add( oldVal, val ); } else { val = Interpolate( flFactor, oldVal, *pInterpTarget ); } clampHelper.m_tLastTime = t; clampHelper.m_LastUnclampedValue = val; } //----------------------------------------------------------------------------- // This is used to modify the entire portion of the curve under the time selection //----------------------------------------------------------------------------- static inline DmeTime_t ComputeResampleStartTime( const DmeLog_TimeSelection_t ¶ms, int nSide ) { // NOTE: This logic will place the resampled points centered in the falloff regions DmeTimeSelectionTimes_t start = ( nSide == 0 ) ? TS_LEFT_FALLOFF : TS_RIGHT_HOLD; DmeTimeSelectionTimes_t end = ( nSide == 0 ) ? TS_LEFT_HOLD : TS_RIGHT_FALLOFF; if ( params.m_nFalloffInterpolatorTypes[nSide] != INTERPOLATE_LINEAR_INTERP ) { DmeTime_t tDuration = params.m_nTimes[end] - params.m_nTimes[start]; if ( tDuration > params.m_nResampleInterval ) { int nFactor = tDuration.GetTenthsOfMS() / params.m_nResampleInterval.GetTenthsOfMS(); tDuration -= params.m_nResampleInterval * nFactor; tDuration /= 2; return params.m_nTimes[start] + tDuration; } } return DMETIME_MAXTIME; } //----------------------------------------------------------------------------- // This is used to modify the entire portion of the curve under the time selection //----------------------------------------------------------------------------- template< class T > void CDmeTypedLog< T >::_StampKeyAtHeadResample( DmeTime_t tHeadPosition, const DmeLog_TimeSelection_t& params, const T& value, bool bSkipToHead, bool bClearPreviousKeys ) { Assert( params.m_nResampleInterval > DmeTime_t( 0 ) ); if ( params.m_nResampleInterval < DmeTime_t( 0 ) ) return; // Should be in "layer recording" mode!!! Assert( GetNumLayers() >= 2 ); int nBestLayer = GetTopmostLayer(); // Topmost should be at least layer # 1 (0 is the base layer) if ( nBestLayer < 1 ) return; CDmeTypedLogLayer< T > *pWriteLayer = GetLayer( nBestLayer ); Assert( pWriteLayer ); if ( !pWriteLayer ) return; if ( bClearPreviousKeys ) { pWriteLayer->ClearKeys(); } bool bSpew = false; // NOTE: The headDelta is only used when not blending toward a preset // When not blending toward a preset, just add the head delta onto everything. // When blending toward a preset, lerp towards the preset. T oldHeadValue = GetValueSkippingTopmostLayer( tHeadPosition ); T headDelta = Subtract( value, oldHeadValue ); // When dragging preset fader, eveything get's blended in by the amount of the preset being applied bool bUsePresetRules = ( RECORD_PRESET == params.GetRecordingMode() ); bool bIsStampingQuaternions = ( CDmAttributeInfo::ATTRIBUTE_TYPE == AT_QUATERNION ); bool bPerformInterpolation = bUsePresetRules || bIsStampingQuaternions; // FIXME: Preset value should never be NULL. We need to grab it from the attribute bool bUsePresetValue = bUsePresetRules && params.m_pPresetValue && params.m_pPresetValue->GetType() == CDmAttributeInfo::ATTRIBUTE_TYPE; const T& interpTarget = bUsePresetValue ? params.m_pPresetValue->GetValue() : value; // Compute falloff region blend factors CLogFalloffBlend< T > blend[ 3 ]; blend[0].Init( this, params.m_nTimes[ TS_FALLOFF(0) ], params.m_nTimes[ TS_HOLD(0) ], true, params.m_nFalloffInterpolatorTypes[0], headDelta ); blend[1].Init( this, headDelta ); blend[2].Init( this, params.m_nTimes[ TS_FALLOFF(1) ], params.m_nTimes[ TS_HOLD(1) ], false, params.m_nFalloffInterpolatorTypes[1], headDelta ); // The algorithm we're going to use is to add samples in the following places: // 1) At each time selection transition point (start, end of falloff regions) // NOTE: If a falloff region has 0 size, we'll add points right outside the transition // 2) At the resample point (we're going to base this so the resamples always occur at the same spots) // 3) At any existing sample position // 4) Any time we switch from clamped to not clamped // By doing this, we will guarantee no bogus slope changes // First, compute times for transition regions DmeTime_t tTransitionTimes[TS_TIME_COUNT]; memcpy( &tTransitionTimes, ¶ms.m_nTimes, sizeof(params.m_nTimes) ); if ( tTransitionTimes[TS_LEFT_FALLOFF] == tTransitionTimes[TS_LEFT_HOLD] ) { tTransitionTimes[TS_LEFT_FALLOFF] -= DMETIME_MINDELTA; } if ( tTransitionTimes[TS_RIGHT_FALLOFF] == tTransitionTimes[TS_RIGHT_HOLD] ) { tTransitionTimes[TS_RIGHT_FALLOFF] += DMETIME_MINDELTA; } DmeTime_t tStartTime = params.m_nTimes[ TS_LEFT_FALLOFF ]; // Next, compute the first resample time for each region DmeTime_t tResampleStartTime[TS_TIME_COUNT]; tResampleStartTime[TS_LEFT_FALLOFF] = DMETIME_MAXTIME; tResampleStartTime[TS_LEFT_HOLD] = ComputeResampleStartTime( params, 0 ); tResampleStartTime[TS_RIGHT_HOLD] = DMETIME_MAXTIME; tResampleStartTime[TS_RIGHT_FALLOFF] = ComputeResampleStartTime( params, 1 ); // Finally, figure out which layer we're reading from, // where the next key is, and when we must stop reading from it int nReadLayer = FindLayerForTimeSkippingTopmost( tStartTime ); CDmeTypedLogLayer< T > *pReadLayer = GetLayer( nReadLayer ); int nLayerSampleIndex = pReadLayer->FindKey( tStartTime ) + 1; DmeTime_t tLayerEndTime = pReadLayer->GetEndTime(); // NOTE: This can happen after reading off the end of layer 0 if ( tLayerEndTime <= tStartTime ) { tLayerEndTime = DMETIME_MAXTIME; } DmeTime_t tNextSampleTime = nLayerSampleIndex >= pReadLayer->GetKeyCount() ? tLayerEndTime : pReadLayer->GetKeyTime( nLayerSampleIndex ); if ( tNextSampleTime > tLayerEndTime ) { tNextSampleTime = tLayerEndTime; } // Now keep going until we've hit the end point // NOTE: We use tTransitionTimes, *not* params.m_nTimes, so that we can get a single // sample before zero-width left falloff regions DmeTime_t tCurrent = tTransitionTimes[TS_LEFT_FALLOFF]; int nNextTransition = TS_LEFT_HOLD; DmeTime_t tResampleTime = tResampleStartTime[nNextTransition]; const T* pInterpTarget = bPerformInterpolation ? &interpTarget : NULL; if ( bSpew ) { Msg( "Stamp key at head resample: %s\n", GetName() ); } LogClampHelper_t clampHelper; while( nNextTransition < TS_TIME_COUNT ) { // Stamp the key at the current time if ( !bSkipToHead || ( tCurrent >= tHeadPosition ) ) { blend[nNextTransition-1].StampKey( pWriteLayer, tCurrent, pReadLayer, params.m_flIntensity, clampHelper, bSpew, pInterpTarget ); } // Update the read layer sample if ( tCurrent == tNextSampleTime ) { ++nLayerSampleIndex; tNextSampleTime = nLayerSampleIndex >= pReadLayer->GetKeyCount() ? tLayerEndTime : pReadLayer->GetKeyTime( nLayerSampleIndex ); } // Update the read layer if ( tCurrent == tLayerEndTime ) { nReadLayer = FindLayerForTimeSkippingTopmost( tCurrent + DMETIME_MINDELTA ); pReadLayer = GetLayer( nReadLayer ); nLayerSampleIndex = pReadLayer->FindKey( tCurrent ) + 1; tLayerEndTime = pReadLayer->GetEndTime(); // NOTE: This can happen after reading off the end of layer 0 if ( tLayerEndTime <= tCurrent ) { tLayerEndTime = DMETIME_MAXTIME; } tNextSampleTime = nLayerSampleIndex >= pReadLayer->GetKeyCount() ? tLayerEndTime : pReadLayer->GetKeyTime( nLayerSampleIndex ); if ( tNextSampleTime > tLayerEndTime ) { tNextSampleTime = tLayerEndTime; } } // Update the transition time if ( tCurrent == tTransitionTimes[nNextTransition] ) { // NOTE: This is necessary because each blend region has different 'deltas' // to avoid overdriving in the falloff regions. Therefore, the 'previous value' // used in the clamping operation will be different if ( nNextTransition < ARRAYSIZE(blend) ) { blend[nNextTransition].UpdateClampHelper( tCurrent, pReadLayer, params.m_flIntensity, clampHelper, pInterpTarget ); } // Also need to update the 'previous' value stored in the ++nNextTransition; if ( nNextTransition >= ARRAYSIZE(tResampleStartTime) ) break; // Update the first resample time tResampleTime = tResampleStartTime[nNextTransition]; if ( bSpew ) { Msg( " Entering region %d\n", nNextTransition-1 ); } } // Update the resample time if ( tCurrent == tResampleTime ) { tResampleTime += params.m_nResampleInterval; } // Now that the key is stamped, update current time. tCurrent = tTransitionTimes[nNextTransition]; if ( tResampleTime < tCurrent ) { tCurrent = tResampleTime; } if ( tNextSampleTime < tCurrent ) { tCurrent = tNextSampleTime; } } } //----------------------------------------------------------------------------- // In this case, we actually stamp a key right at the head position unlike the above method //----------------------------------------------------------------------------- template< class T > void CDmeTypedLog< T >::_StampKeyFilteredByTimeSelection( CDmeTypedLogLayer< T > *pWriteLayer, DmeTime_t t, const DmeLog_TimeSelection_t ¶ms, const T& value, bool bForce ) { // Found a key which needs to be modulated upward float flFraction = params.GetAmountForTime( t ) * params.m_flIntensity; if ( flFraction <= 0.0f && !bForce ) return; // When dragging preset fader, eveything get's blended in by the amount of the preset being applied bool bUsePresetRules = ( RECORD_PRESET == params.GetRecordingMode() ); // FIXME: Preset value should never be NULL. We need to grab it from the attribute const T& interpTarget = ( bUsePresetRules && params.m_pPresetValue ) ? params.m_pPresetValue->GetValue() : value; T oldVal = GetValueSkippingTopmostLayer( t ); T newVal = Interpolate( flFraction, oldVal, interpTarget ); T writeVal = ClampValue( newVal ); pWriteLayer->InsertKey( t, writeVal, IsUsingCurveTypes() ? GetDefaultCurveType() : CURVE_DEFAULT ); } //----------------------------------------------------------------------------- // In this case, we actually stamp a key right at the head position unlike the above method //----------------------------------------------------------------------------- template< class T > void CDmeTypedLog< T >::_StampKeyAtHeadFilteredByTimeSelection( DmeTime_t tHeadPosition, DmeTime_t tPreviousHeadPosition, const DmeLog_TimeSelection_t ¶ms, const T& value ) { // Should be in "layer recording" mode!!! Assert( GetNumLayers() >= 2 ); int nBestLayer = GetTopmostLayer(); // Topmost should be at least layer # 1 (0 is the base layer) if ( nBestLayer < 1 ) return; CDmeTypedLogLayer< T > *pWriteLayer = GetLayer( nBestLayer ); Assert( pWriteLayer ); if ( !pWriteLayer ) return; // NOTE: This little trickery is necessary to generate samples right outside the // transition region in the case of zero length falloff regions DmeLog_TimeSelection_t tempParams = params; if ( tempParams.m_nTimes[TS_LEFT_FALLOFF] == tempParams.m_nTimes[TS_LEFT_HOLD] ) { tempParams.m_nTimes[TS_LEFT_FALLOFF] -= DMETIME_MINDELTA; } if ( tempParams.m_nTimes[TS_RIGHT_FALLOFF] == tempParams.m_nTimes[TS_RIGHT_HOLD] ) { tempParams.m_nTimes[TS_RIGHT_FALLOFF] += DMETIME_MINDELTA; } int nPrevRegion = tempParams.ComputeRegionForTime( tPreviousHeadPosition ); int nCurrRegion = tempParams.ComputeRegionForTime( tHeadPosition ); // Test for backward performance! if ( nCurrRegion < nPrevRegion ) { V_swap( nCurrRegion, nPrevRegion ); } // Insert samples at each transition point we skipped over for ( int i = nPrevRegion; i < nCurrRegion; ++i ) { _StampKeyFilteredByTimeSelection( pWriteLayer, tempParams.m_nTimes[i], params, value, true ); } _StampKeyFilteredByTimeSelection( pWriteLayer, tHeadPosition, params, value ); } template< class T > void CDmeTypedLog< T >::RemoveKeys( DmeTime_t starttime ) { int bestLayer = GetTopmostLayer(); if ( bestLayer < 0 ) return; GetLayer( bestLayer )->RemoveKeys( starttime ); } template< class T > void CDmeTypedLog< T >::RemoveKey( int nKeyIndex, int nNumKeysToRemove /*= 1*/ ) { int bestLayer = GetTopmostLayer(); if ( bestLayer < 0 ) return; GetLayer( bestLayer )->RemoveKey( nKeyIndex, nNumKeysToRemove ); } template< class T > void CDmeTypedLog< T >::ClearKeys() { int bestLayer = GetTopmostLayer(); if ( bestLayer < 0 ) return; GetLayer( bestLayer )->ClearKeys(); } //----------------------------------------------------------------------------- // Returns a specific key's value //----------------------------------------------------------------------------- template< class T > DmeTime_t CDmeTypedLog< T >::GetKeyTime( int nKeyIndex ) const { int bestLayer = GetTopmostLayer(); if ( bestLayer < 0 ) return DmeTime_t::MinTime(); return GetLayer( bestLayer )->GetKeyTime( nKeyIndex ); } template< class T > void CDmeTypedLog< T >::SetKeyTime( int nKeyIndex, DmeTime_t keyTime ) { int bestLayer = GetTopmostLayer(); if ( bestLayer < 0 ) return; return GetLayer( bestLayer )->SetKeyTime( nKeyIndex, keyTime ); } //----------------------------------------------------------------------------- // Returns the index of a particular key //----------------------------------------------------------------------------- template< class T > int CDmeTypedLog< T >::FindKeyWithinTolerance( DmeTime_t nTime, DmeTime_t nTolerance ) { int bestLayer = GetTopmostLayer(); if ( bestLayer < 0 ) return -1; return GetLayer( bestLayer )->FindKeyWithinTolerance( nTime, nTolerance ); } //----------------------------------------------------------------------------- // tests whether two values differ by more than the threshold //----------------------------------------------------------------------------- template<> bool CDmeTypedLog< Vector >::ValuesDiffer( const Vector& a, const Vector& b ) const { return a.DistToSqr( b ) > m_threshold * m_threshold; } template<> bool CDmeTypedLog< QAngle >::ValuesDiffer( const QAngle& a, const QAngle& b ) const { return ( a - b ).LengthSqr() > m_threshold * m_threshold; } template<> bool CDmeTypedLog< Quaternion >::ValuesDiffer( const Quaternion& a, const Quaternion& b ) const { return QuaternionAngleDiff( a, b ) > m_threshold; } template<> bool CDmeTypedLog< float >::ValuesDiffer( const float& a, const float& b ) const { return fabs( a - b ) > m_threshold; } template< class T > bool CDmeTypedLog< T >::ValuesDiffer( const T& a, const T& b ) const { return a != b; } //----------------------------------------------------------------------------- // Sets a key, removes all keys after this time //----------------------------------------------------------------------------- template< class T > void CDmeTypedLog< T >::SetKey( DmeTime_t time, const T& value, int curveType /*=CURVE_DEFAULT*/) { int bestLayer = GetTopmostLayer(); if ( bestLayer < 0 ) return; GetLayer( bestLayer )->SetKey( time, value, curveType ); } template< class T > CDmeTypedLogLayer< T > *CDmeTypedLog< T >::GetLayer( int index ) { if ( index < 0 ) return NULL; return static_cast< CDmeTypedLogLayer< T > * >( m_Layers[ index ] ); } template< class T > const CDmeTypedLogLayer< T > *CDmeTypedLog< T >::GetLayer( int index ) const { if ( index < 0 ) return NULL; return static_cast< CDmeTypedLogLayer< T > * >( m_Layers[ index ] ); } //----------------------------------------------------------------------------- // Finds a key within tolerance, or adds one //----------------------------------------------------------------------------- template< class T > int CDmeTypedLog< T >::FindOrAddKey( DmeTime_t nTime, DmeTime_t nTolerance, const T& value, int curveType /*=CURVE_DEFAULT*/ ) { int bestLayer = GetTopmostLayer(); if ( bestLayer == -1 ) return -1; return GetLayer( bestLayer )->FindOrAddKey( nTime, nTolerance, value, curveType ); } //----------------------------------------------------------------------------- // This inserts a key. Unlike SetKey, this will *not* delete keys after the specified time //----------------------------------------------------------------------------- template < class T > int CDmeTypedLog< T >::InsertKey( DmeTime_t nTime, const T& value, int curveType /*=CURVE_DEFAULT*/ ) { int bestLayer = GetTopmostLayer(); if ( bestLayer == -1 ) return -1; return GetLayer( bestLayer )->InsertKey( nTime, value, curveType ); } template < class T > int CDmeTypedLog< T >::InsertKeyAtTime( DmeTime_t nTime, int curveType /*=CURVE_DEFAULT*/ ) { int bestLayer = GetTopmostLayer(); if ( bestLayer == -1 ) return -1; return GetLayer( bestLayer )->InsertKeyAtTime( nTime, curveType ); } template< class T > const T& CDmeTypedLog< T >::GetValue( DmeTime_t time ) const { int bestLayer = FindLayerForTime( time ); if ( bestLayer < 0 ) { static T s_value; CDmAttributeInfo< T >::SetDefaultValue( s_value ); // TODO - create GetDefaultValue that returns a default T, to avoid rebuilding every time return s_value; } return GetLayer( bestLayer )->GetValue( time ); } template< class T > const T& CDmeTypedLog< T >::GetValueSkippingTopmostLayer( DmeTime_t time ) const { int nLayer = FindLayerForTimeSkippingTopmost( time ); if ( nLayer < 0 ) return GetValue( time ); return GetLayer( nLayer )->GetValue( time ); } template< class T > void CDmeTypedLog< T >::SetKey( DmeTime_t time, const CDmAttribute *pAttr, uint index, int curveType /*= CURVE_DEFAULT*/ ) { int bestLayer = GetTopmostLayer(); if ( bestLayer == -1 ) return; GetLayer( bestLayer )->SetKey( time, pAttr, index, curveType ); } template< class T > bool CDmeTypedLog< T >::SetDuplicateKeyAtTime( DmeTime_t time ) { int bestLayer = GetTopmostLayer(); if ( bestLayer == -1 ) return false; return GetLayer( bestLayer )->SetDuplicateKeyAtTime( time ); } //----------------------------------------------------------------------------- // Returns a specific key's value //----------------------------------------------------------------------------- template< class T > const T& CDmeTypedLog< T >::GetKeyValue( int nKeyIndex ) const { int bestLayer = GetTopmostLayer(); if ( bestLayer == -1 ) { static T s_value; CDmAttributeInfo< T >::SetDefaultValue( s_value ); // TODO - create GetDefaultValue that returns a default T, to avoid rebuilding every time return s_value; } return GetLayer( bestLayer )->GetKeyValue( nKeyIndex ); } template< class T > void CDmeTypedLog< T >::GetValue( DmeTime_t time, CDmAttribute *pAttr, uint index ) const { int bestLayer = FindLayerForTime( time ); if ( bestLayer < 0 ) { T value; CDmAttributeInfo< T >::SetDefaultValue( value ); // TODO - create GetDefaultValue that returns a default T, to avoid rebuilding every time pAttr->SetValue( CDmAttributeInfo< T >::AttributeType(), &value ); } return GetLayer( bestLayer )->GetValue( time, pAttr, index ); } template< class T > void CDmeTypedLog< T >::GetValueSkippingTopmostLayer( DmeTime_t time, CDmAttribute *pAttr, uint index = 0 ) const { CUtlVector< int > layers; FindLayersForTime( time, layers ); int layerCount = layers.Count(); if ( layerCount <= 1 ) { return GetValue( time, pAttr, index ); } int topMostLayer = GetTopmostLayer(); int useLayer = layers[ layerCount - 1 ]; if ( topMostLayer == useLayer ) { useLayer = layers[ layerCount - 2 ]; } Assert( useLayer >= 0 ); return GetLayer( useLayer )->GetValue( time, pAttr, index ); } template< class T > float CDmeTypedLog< T >::GetComponent( DmeTime_t time, int componentIndex ) const { return ::GetComponent( GetValue( time ), componentIndex ); } //----------------------------------------------------------------------------- // resampling and filtering //----------------------------------------------------------------------------- template< class T > void CDmeTypedLog< T >::Resample( DmeFramerate_t samplerate ) { int c = m_Layers.Count(); for ( int i = 0; i < c; ++i ) { GetLayer( i )->Resample( samplerate ); } } template< class T > void CDmeTypedLog< T >::Filter( int nSampleRadius ) { int c = m_Layers.Count(); for ( int i = 0; i < c; ++i ) { GetLayer( i )->Filter( nSampleRadius ); } } template< class T > void CDmeTypedLog< T >::Filter2( DmeTime_t sampleRadius ) { int c = m_Layers.Count(); for ( int i = 0; i < c; ++i ) { GetLayer( i )->Filter2( sampleRadius ); } } template< class T > void CDmeTypedLog< T >::OnAttributeArrayElementAdded( CDmAttribute *pAttribute, int nFirstElem, int nLastElem ) { BaseClass::OnAttributeArrayElementAdded( pAttribute, nFirstElem, nLastElem ); if ( pAttribute == m_Layers.GetAttribute() ) { for ( int i = nFirstElem; i <= nLastElem; ++i ) { m_Layers[i]->SetOwnerLog( this ); } return; } } template< class T > void CDmeTypedLog< T >::SetUseEdgeInfo( bool state ) { Assert( IsUsingCurveTypes() ); GetTypedCurveInfo()->SetUseEdgeInfo( state ); } template< class T > bool CDmeTypedLog< T >::IsUsingEdgeInfo() const { Assert( IsUsingCurveTypes() ); return GetTypedCurveInfo()->IsUsingEdgeInfo(); } template< class T > void CDmeTypedLog< T >::SetEdgeInfo( int edge, bool active, const T& val, int curveType ) { Assert( IsUsingCurveTypes() ); GetTypedCurveInfo()->SetEdgeInfo( edge, active, val, curveType ); } template< class T > void CDmeTypedLog< T >::SetDefaultEdgeZeroValue( const T& val ) { Assert( IsUsingCurveTypes() ); GetTypedCurveInfo()->SetDefaultEdgeZeroValue( val ); } template< class T > const T& CDmeTypedLog< T >::GetDefaultEdgeZeroValue() const { Assert( IsUsingCurveTypes() ); return GetTypedCurveInfo()->GetDefaultEdgeZeroValue(); } template< class T > void CDmeTypedLog< T >::SetRightEdgeTime( DmeTime_t time ) { Assert( IsUsingCurveTypes() ); GetTypedCurveInfo()->SetRightEdgeTime( time ); } template< class T > DmeTime_t CDmeTypedLog< T >::GetRightEdgeTime() const { Assert( IsUsingCurveTypes() ); return GetTypedCurveInfo()->GetRightEdgeTime(); } template< class T > void CDmeTypedLog< T >::GetEdgeInfo( int edge, bool& active, T& val, int& curveType ) const { Assert( IsUsingCurveTypes() ); GetTypedCurveInfo()->GetEdgeInfo( edge, active, val, curveType ); } template< class T > int CDmeTypedLog< T >::GetEdgeCurveType( int edge ) const { Assert( IsUsingCurveTypes() ); return GetTypedCurveInfo()->GetEdgeCurveType( edge ); } template< class T > void CDmeTypedLog< T >::GetZeroValue( int side, T& val ) const { Assert( IsUsingCurveTypes() ); GetTypedCurveInfo()->GetZeroValue( side, val ); } template< class T > bool CDmeTypedLog< T >::IsEdgeActive( int edge ) const { Assert( IsUsingCurveTypes() ); return GetTypedCurveInfo()->IsEdgeActive( edge ); } template< class T > void CDmeTypedLog< T >::GetEdgeValue( int edge, T& val ) const { Assert( IsUsingCurveTypes() ); GetTypedCurveInfo()->GetEdgeValue( edge, val ); } template< class T > void CDmeTypedLog< T >::BlendTimesUsingTimeSelection( const CDmeLogLayer *firstLayer, const CDmeLogLayer *secondLayer, CDmeLogLayer *outputLayer, const DmeLog_TimeSelection_t ¶ms, DmeTime_t tStartOffset ) { const CDmeTypedLogLayer< T > *topLayer = static_cast< const CDmeTypedLogLayer< T > * >( secondLayer ); if ( !topLayer ) return; const CDmeTypedLogLayer< T > *baseLayer = static_cast< const CDmeTypedLogLayer< T > * >( firstLayer ); if ( !baseLayer ) return; CDmeTypedLogLayer< T > *newLayer = static_cast< CDmeTypedLogLayer< T > * >( outputLayer ); if ( !newLayer ) return; Assert( topLayer->GetKeyCount() == baseLayer->GetKeyCount() ); int i; // Resample everything in the base layer first int kc = baseLayer->GetKeyCount(); newLayer->ClearKeys(); for ( i = 0; i < kc; ++i ) { DmeTime_t baseKeyTime = baseLayer->GetKeyTime( i ); DmeTime_t checkTime = baseKeyTime + tStartOffset; if ( checkTime < params.m_nTimes[ TS_LEFT_FALLOFF ] ) continue; if ( checkTime > params.m_nTimes[ TS_RIGHT_FALLOFF ] ) break; float frac = params.GetAmountForTime( checkTime ); float frac2 = params.m_flIntensity; float flInterp = frac2 * frac; DmeTime_t targetKeyTime = topLayer->GetKeyTime( i ); DmeTime_t blendedKeyTime = Lerp( flInterp, baseKeyTime, targetKeyTime ) + tStartOffset; T baseVal = baseLayer->GetKeyValue( i ); newLayer->InsertKey( blendedKeyTime, baseVal ); } } template< class T > void CDmeTypedLog< T >::BlendLayersUsingTimeSelection( const CDmeLogLayer *firstLayer, const CDmeLogLayer *secondLayer, CDmeLogLayer *outputLayer, const DmeLog_TimeSelection_t ¶ms, bool bUseBaseLayerSamples, DmeTime_t tStartOffset ) { const CDmeTypedLogLayer< T > *topLayer = static_cast< const CDmeTypedLogLayer< T > * >( secondLayer ); if ( !topLayer ) return; const CDmeTypedLogLayer< T > *baseLayer = static_cast< const CDmeTypedLogLayer< T > * >( firstLayer ); if ( !baseLayer ) return; CDmeTypedLogLayer< T > *newLayer = static_cast< CDmeTypedLogLayer< T > * >( outputLayer ); if ( !newLayer ) return; int i; // Resample everything in the base layer first int kc = baseLayer->GetKeyCount(); if ( bUseBaseLayerSamples ) { for ( i = 0; i < kc; ++i ) { DmeTime_t keyTime = baseLayer->GetKeyTime( i ); if ( keyTime < params.m_nTimes[ TS_LEFT_FALLOFF ] ) continue; if ( keyTime > params.m_nTimes[ TS_RIGHT_FALLOFF ] ) break; float frac = params.GetAmountForTime( keyTime ); float frac2 = params.m_flIntensity; T baseVal = baseLayer->GetKeyValue( i ); T newVal = topLayer->GetValue( keyTime ); T blended = Interpolate( frac2 * frac, baseVal, newVal ); newLayer->SetKey( keyTime + tStartOffset, blended ); } } kc = topLayer->GetKeyCount(); for ( i = 0; i < kc; ++i ) { DmeTime_t keyTime = topLayer->GetKeyTime( i ); DmeTime_t finalKeyTime = keyTime + tStartOffset; if ( finalKeyTime < params.m_nTimes[ TS_LEFT_FALLOFF ] ) continue; if ( finalKeyTime > params.m_nTimes[ TS_RIGHT_FALLOFF ] ) break; float frac = params.GetAmountForTime( finalKeyTime ); float frac2 = params.m_flIntensity; T baseVal = baseLayer->GetValue( keyTime ); T newVal = topLayer->GetKeyValue( i ); T blended = Interpolate( frac2 *frac, baseVal, newVal ); newLayer->InsertKey( finalKeyTime, blended ); } if ( g_pDmElementFramework->GetPhase() == PH_EDIT ) { newLayer->RemoveRedundantKeys( params.m_flThreshold ); } } template< class T > void CDmeTypedLog< T >::BlendLayersUsingTimeSelection( const DmeLog_TimeSelection_t ¶ms ) { Assert( GetNumLayers() >= 2 ); int bestLayer = GetTopmostLayer(); // Topmost should be at least layer # 1 (0 is the base layer) if ( bestLayer <= 0 ) return; Assert( params.m_nResampleInterval > DmeTime_t( 0 ) ); if ( params.m_nResampleInterval < DmeTime_t( 0 ) ) return; CDmeTypedLogLayer< T > *topLayer = GetLayer( bestLayer ); Assert( topLayer ); if ( !topLayer ) return; CDmeTypedLogLayer< T > *baseLayer = GetLayer( 0 ); if ( !baseLayer ) return; CDmeTypedLogLayer< T > *newLayer = static_cast< CDmeTypedLogLayer< T > * >( CreateLayer< T >( this ) ); if ( !newLayer ) return; BlendLayersUsingTimeSelection( baseLayer, topLayer, newLayer, params, true, DMETIME_ZERO ); // Store it back into the new topmost layer topLayer->CopyLayer( newLayer ); g_pDataModel->DestroyElement( newLayer->GetHandle() ); } template< class T > void CDmeTypedLog< T >::RevealUsingTimeSelection( const DmeLog_TimeSelection_t ¶ms, CDmeLogLayer *savedLayer ) { CDmeTypedLogLayer< T > *saved = static_cast< CDmeTypedLogLayer< T > * >( savedLayer ); if ( !saved ) return; Assert( GetNumLayers() >= 2 ); int bestLayer = GetTopmostLayer(); // Topmost should be at least layer # 1 (0 is the base layer) if ( bestLayer <= 0 ) return; Assert( params.m_nResampleInterval > DmeTime_t( 0 ) ); if ( params.m_nResampleInterval < DmeTime_t( 0 ) ) return; CDmeTypedLogLayer< T > *writeLayer = static_cast< CDmeTypedLogLayer< T > * >( GetLayer( bestLayer ) ); Assert( writeLayer ); if ( !writeLayer ) return; CDmeLogLayer *baseLayer = GetLayer( 0 ); if ( !baseLayer ) return; DmeTime_t resample = 0.5f * params.m_nResampleInterval; // Do a second pass where we bis the keys in the falloff area back toward the original value for ( int t = params.m_nTimes[ TS_LEFT_FALLOFF ].GetTenthsOfMS(); t < params.m_nTimes[ TS_RIGHT_FALLOFF ].GetTenthsOfMS() + resample.GetTenthsOfMS(); t += resample.GetTenthsOfMS() ) { DmeTime_t curtime = DmeTime_t( t ); if ( curtime > params.m_nTimes[ TS_RIGHT_FALLOFF ] ) curtime = params.m_nTimes[ TS_RIGHT_FALLOFF ]; float frac = params.GetAmountForTime( curtime ); frac *= params.m_flIntensity; if ( frac <= 0.0f ) continue; // Get current value in layer T curValue = GetValueSkippingTopmostLayer( curtime ); T revealValue = saved->GetValue( curtime ); T newValue = Interpolate( frac, curValue, revealValue ); // Overwrite key writeLayer->InsertKey( curtime, newValue, IsUsingCurveTypes() ? GetDefaultCurveType() : CURVE_DEFAULT ); } if ( g_pDmElementFramework->GetPhase() == PH_EDIT ) { writeLayer->RemoveRedundantKeys( params.m_flThreshold ); } } template< class T > void RandomValue( const T& average, const T& oldValue, T& newValue ) { newValue = oldValue; } template<> void RandomValue( const Vector& average, const Vector& oldValue, Vector& newValue ) { newValue = oldValue; for ( int i = 0; i < 3; ++i ) { newValue[ i ] += RandomFloat( -fabs( average[ i ] ), fabs( average[ i ] ) ); } } template<> void RandomValue( const Quaternion& average, const Quaternion& oldValue, Quaternion& newValue ) { newValue = oldValue; for ( int i = 0; i < 4; ++i ) { newValue[ i ] += RandomFloat( -fabs( average[ i ] ), fabs( average[ i ] ) ); } } template<> void RandomValue( const Vector4D& average, const Vector4D& oldValue, Vector4D& newValue ) { newValue = oldValue; for ( int i = 0; i < 4; ++i ) { newValue[ i ] += RandomFloat( -fabs( average[ i ] ), fabs( average[ i ] ) ); } } template<> void RandomValue( const Vector2D& average, const Vector2D& oldValue, Vector2D& newValue ) { newValue = oldValue; for ( int i = 0; i < 2; ++i ) { newValue[ i ] += RandomFloat( -fabs( average[ i ] ), fabs( average[ i ] ) ); } } template<> void RandomValue( const float& average, const float& oldValue, float& newValue ) { newValue = oldValue + RandomFloat( -average, average ); } template<> void RandomValue( const int& average, const int& oldValue, int& newValue ) { newValue = oldValue + RandomInt( -average, average ); } // Builds a layer with samples matching the times in reference layer, from the data in pDataLayer, putting the resulting keys into pOutputLayer template< class T > void CDmeTypedLog< T >::BuildCorrespondingLayer( const CDmeLogLayer *pReferenceLayer, const CDmeLogLayer *pDataLayer, CDmeLogLayer *pOutputLayer ) { const CDmeTypedLogLayer< T > *ref = static_cast< const CDmeTypedLogLayer< T > * >( pReferenceLayer ); const CDmeTypedLogLayer< T > *data = static_cast< const CDmeTypedLogLayer< T > * >( pDataLayer ); CDmeTypedLogLayer< T > *out = static_cast< CDmeTypedLogLayer< T > * >( pOutputLayer ); if ( !ref || !data || !out ) { Assert( 0 ); return; } bool usecurvetypes = ref->IsUsingCurveTypes(); out->ClearKeys(); int kc = ref->GetKeyCount(); for ( int i = 0; i < kc; ++i ) { DmeTime_t keyTime = ref->GetKeyTime( i ); T value = data->GetValue( keyTime ); out->InsertKey( keyTime, value, usecurvetypes ? GetDefaultCurveType() : CURVE_DEFAULT ); } } template< class T > void CDmeTypedLog< T >::StaggerUsingTimeSelection( const DmeLog_TimeSelection_t& params, DmeTime_t tStaggerAmount, const CDmeLogLayer *pBaseLayer, CDmeLogLayer *pWriteLayer ) { CDmeTypedLogLayer< T > *writeLayer = static_cast< CDmeTypedLogLayer< T > * >( pWriteLayer ); Assert( writeLayer ); if ( !writeLayer ) return; const CDmeTypedLogLayer< T > *baseLayer = static_cast< const CDmeTypedLogLayer< T > * >( pBaseLayer ); if ( !baseLayer ) return; writeLayer->ClearKeys(); DmeLog_TimeSelection_t newParams; newParams = params; // Move the hold area by the stagger amount float flScaleFactor[ 2 ] = { 1.0f, 1.0f }; newParams.m_nTimes[ TS_LEFT_HOLD ] += tStaggerAmount; newParams.m_nTimes[ TS_RIGHT_HOLD ] += tStaggerAmount; for ( int i = 0; i < 2 ; ++i ) { DmeTime_t dt = params.m_nTimes[ 2 * i + 1 ] - params.m_nTimes[ 2 * i ]; if ( dt > DMETIME_ZERO ) { DmeTime_t newDt = newParams.m_nTimes[ 2 * i + 1 ] - newParams.m_nTimes[ 2 * i ]; flScaleFactor[ i ] = newDt / dt; } } int kc = baseLayer->GetKeyCount(); for ( int i = 0; i < kc; ++i ) { DmeTime_t curtime = baseLayer->GetKeyTime( i ); T oldValue = baseLayer->GetKeyValue( i ); // Classify time if ( curtime <= params.m_nTimes[ TS_LEFT_HOLD ] ) { curtime = curtime * flScaleFactor[ 0 ]; } else if ( curtime >= params.m_nTimes[ TS_RIGHT_HOLD ] ) { curtime = params.m_nTimes[ TS_RIGHT_FALLOFF ] - ( params.m_nTimes[ TS_RIGHT_FALLOFF ] - curtime ) * flScaleFactor[ 1 ]; } else { curtime += tStaggerAmount; } writeLayer->InsertKey( curtime, oldValue, IsUsingCurveTypes() ? GetDefaultCurveType() : CURVE_DEFAULT ); } } template< class T > void CDmeTypedLog< T >::FilterUsingTimeSelection( IUniformRandomStream *random, const DmeLog_TimeSelection_t& params, int filterType, bool bResample, bool bApplyFalloff ) { Assert( GetNumLayers() >= 2 ); int bestLayer = GetTopmostLayer(); // Topmost should be at least layer # 1 (0 is the base layer) if ( bestLayer <= 0 ) return; CDmeTypedLogLayer< T > *writeLayer = GetLayer( bestLayer ); Assert( writeLayer ); if ( !writeLayer ) return; CDmeTypedLogLayer< T > *baseLayer = GetLayer( 0 ); if ( !baseLayer ) return; FilterUsingTimeSelection( random, 1.0f, params, filterType, bResample, bApplyFalloff, baseLayer, writeLayer ); } template< class T > void CDmeTypedLog< T >::FilterUsingTimeSelection( IUniformRandomStream *random, float flScale, const DmeLog_TimeSelection_t& params, int filterType, bool bResample, bool bApplyFalloff, const CDmeLogLayer *pBaseLayer, CDmeLogLayer *pWriteLayer ) { Assert( params.m_nResampleInterval > DmeTime_t( 0 ) ); if ( params.m_nResampleInterval < DmeTime_t( 0 ) ) return; CDmeTypedLogLayer< T > *writeLayer = static_cast< CDmeTypedLogLayer< T > * >( pWriteLayer ); Assert( writeLayer ); if ( !writeLayer ) return; const CDmeTypedLogLayer< T > *baseLayer = static_cast< const CDmeTypedLogLayer< T > * >( pBaseLayer ); if ( !baseLayer ) return; writeLayer->ClearKeys(); DmeTime_t resample = 0.5f * params.m_nResampleInterval; switch ( filterType ) { default: case FILTER_SMOOTH: { int t; if ( bResample ) { for ( t = params.m_nTimes[ TS_LEFT_FALLOFF ].GetTenthsOfMS(); t < params.m_nTimes[ TS_RIGHT_FALLOFF ].GetTenthsOfMS() + resample.GetTenthsOfMS(); t += resample.GetTenthsOfMS() ) { DmeTime_t curtime = DmeTime_t( t ); if ( curtime > params.m_nTimes[ TS_RIGHT_FALLOFF ] ) curtime = params.m_nTimes[ TS_RIGHT_FALLOFF ]; T curValue = baseLayer->GetValue( curtime ); writeLayer->SetKey( curtime, curValue, IsUsingCurveTypes() ? GetDefaultCurveType() : CURVE_DEFAULT ); } } else { // Do a second pass where we bias the keys in the falloff area back toward the original value int kc = baseLayer->GetKeyCount(); for ( int i = 0; i < kc; ++i ) { DmeTime_t curtime = baseLayer->GetKeyTime( i ); if ( curtime < params.m_nTimes[ TS_LEFT_FALLOFF ] ) continue; if ( curtime > params.m_nTimes[ TS_RIGHT_FALLOFF ] ) continue; T oldValue = baseLayer->GetKeyValue( i ); writeLayer->InsertKey( curtime, oldValue, IsUsingCurveTypes() ? GetDefaultCurveType() : CURVE_DEFAULT ); } } writeLayer->Filter2( params.m_nResampleInterval * 0.95f * flScale ); if ( bApplyFalloff ) { if ( bResample ) { // Do a second pass where we bias the keys in the falloff area back toward the original value for ( t = params.m_nTimes[ TS_LEFT_FALLOFF ].GetTenthsOfMS(); t < params.m_nTimes[ TS_RIGHT_FALLOFF ].GetTenthsOfMS() + resample.GetTenthsOfMS(); t += resample.GetTenthsOfMS() ) { DmeTime_t curtime = DmeTime_t( t ); if ( curtime > params.m_nTimes[ TS_RIGHT_FALLOFF ] ) curtime = params.m_nTimes[ TS_RIGHT_FALLOFF ]; T oldValue = baseLayer->GetValue( curtime ); if ( curtime >= params.m_nTimes[ TS_LEFT_HOLD ] && curtime <= params.m_nTimes[ TS_RIGHT_HOLD ] ) continue; // Modulate these keys back down toward the original value T newValue = writeLayer->GetValue( curtime ); float frac = bApplyFalloff ? params.GetAmountForTime( curtime ) : 1.0f; newValue = Interpolate( frac, oldValue, newValue ); // Overwrite key writeLayer->InsertKey( curtime, newValue, IsUsingCurveTypes() ? GetDefaultCurveType() : CURVE_DEFAULT ); } } else { // Do a second pass where we bias the keys in the falloff area back toward the original value int kc = writeLayer->GetKeyCount(); for ( int i = 0; i < kc; ++i ) { DmeTime_t curtime = writeLayer->GetKeyTime( i ); if ( curtime < params.m_nTimes[ TS_LEFT_FALLOFF ] ) continue; if ( curtime > params.m_nTimes[ TS_RIGHT_FALLOFF ] ) continue; if ( curtime >= params.m_nTimes[ TS_LEFT_HOLD ] && curtime <= params.m_nTimes[ TS_RIGHT_HOLD ] ) continue; T oldValue = baseLayer->GetValue( curtime ); // Modulate these keys back down toward the original value T newValue = writeLayer->GetValue( curtime ); float frac = bApplyFalloff ? params.GetAmountForTime( curtime ) : 1.0f; newValue = Interpolate( frac, oldValue, newValue ); // Overwrite key writeLayer->InsertKey( curtime, newValue, IsUsingCurveTypes() ? GetDefaultCurveType() : CURVE_DEFAULT ); } } } if ( bResample ) { writeLayer->RemoveRedundantKeys( params.m_flThreshold ); } } break; case FILTER_JITTER: { // Compute average value in entire log T average = Average( baseLayer->m_values.Base(), baseLayer->m_values.Count() ); average = ScaleValue( average, 0.05f * flScale ); if ( bResample ) { int t; for ( t = params.m_nTimes[ TS_LEFT_FALLOFF ].GetTenthsOfMS(); t < params.m_nTimes[ TS_RIGHT_FALLOFF ].GetTenthsOfMS() + resample.GetTenthsOfMS(); t += resample.GetTenthsOfMS() ) { DmeTime_t curtime = DmeTime_t( t ); if ( curtime > params.m_nTimes[ TS_RIGHT_FALLOFF ] ) curtime = params.m_nTimes[ TS_RIGHT_FALLOFF ]; float frac = bApplyFalloff ? params.GetAmountForTime( curtime ) : 1.0f; T oldValue = baseLayer->GetValue( curtime ); T newValue; RandomValue( average, oldValue, newValue ); newValue = Interpolate( frac, oldValue, newValue ); writeLayer->SetKey( curtime, newValue, IsUsingCurveTypes() ? GetDefaultCurveType() : CURVE_DEFAULT ); } } else { int kc = baseLayer->GetKeyCount(); for ( int i = 0; i < kc; ++i ) { DmeTime_t curtime = baseLayer->GetKeyTime( i ); if ( curtime < params.m_nTimes[ TS_LEFT_FALLOFF ] ) continue; if ( curtime > params.m_nTimes[ TS_RIGHT_FALLOFF ] ) continue; float frac = bApplyFalloff ? params.GetAmountForTime( curtime ) : 1.0f; T oldValue = baseLayer->GetValue( curtime ); T newValue; RandomValue( average, oldValue, newValue ); newValue = Interpolate( frac, oldValue, newValue ); writeLayer->InsertKey( curtime, newValue, IsUsingCurveTypes() ? GetDefaultCurveType() : CURVE_DEFAULT ); } } } break; case FILTER_SHARPEN: case FILTER_SOFTEN: { writeLayer->ClearKeys(); bool bSharpen = filterType == FILTER_SHARPEN; int kc = baseLayer->GetKeyCount(); for ( int i = 0; i < kc; ++i ) { DmeTime_t curtime = baseLayer->GetKeyTime( i ); if ( curtime < params.m_nTimes[ TS_LEFT_FALLOFF ] ) continue; if ( curtime > params.m_nTimes[ TS_RIGHT_FALLOFF ] ) continue; float frac = bApplyFalloff ? params.GetAmountForTime( curtime ) : 1.0f; T oldValue = baseLayer->GetValue( curtime ); T newValue = oldValue; if ( frac != 1.0f ) { T crossingValue[ 2 ] = { oldValue, oldValue }; if ( curtime <= params.m_nTimes[ TS_LEFT_HOLD ] ) { // Get the value at the crossing point (either green edge for sharpen, or left edge for soften...) crossingValue[ 0 ] = baseLayer->GetValue( params.m_nTimes[ TS_LEFT_FALLOFF ] ); crossingValue[ 1 ] = baseLayer->GetValue( params.m_nTimes[ TS_LEFT_HOLD ] ); } else if ( curtime >= params.m_nTimes[ TS_RIGHT_HOLD ] ) { crossingValue[ 0 ] = baseLayer->GetValue( params.m_nTimes[ TS_RIGHT_FALLOFF ] ); crossingValue[ 1 ] = baseLayer->GetValue( params.m_nTimes[ TS_RIGHT_HOLD ] ); } else { Assert( 0 ); } T dynamicRange = Subtract( crossingValue[ 1 ], crossingValue[ 0 ] ); int iType = bSharpen ? INTERPOLATE_EASE_IN : INTERPOLATE_EASE_OUT; Vector points[ 4 ]; points[ 0 ].Init(); points[ 1 ].Init( 0.0, 0.0, 0.0f ); points[ 2 ].Init( 1.0f, 1.0f, 0.0f ); points[ 3 ].Init(); Vector out; Interpolator_CurveInterpolate ( iType, points[ 0 ], // unused points[ 1 ], points[ 2 ], points[ 3 ], // unused frac, out ); float flBias = clamp( out.y, 0.0f, 1.0f ); float dFrac = flScale * ( frac - flBias ); newValue = Add( oldValue, ScaleValue( dynamicRange, dFrac ) ); } writeLayer->InsertKey( curtime, newValue, IsUsingCurveTypes() ? GetDefaultCurveType() : CURVE_DEFAULT ); } } break; } } enum PasteState_t { PASTE_STATE_BEFORE = -1, PASTE_STATE_RAMP_IN = 0, PASTE_STATE_HOLD, PASTE_STATE_RAMP_OUT, PASTE_STATE_COUNT, PASTE_STATE_AFTER = PASTE_STATE_COUNT, }; template static void CountClipboardSamples( int *pCount, CDmeTypedLogLayer< T > *pClipboard, const DmeLog_TimeSelection_t ¶ms ) { pCount[0] = pCount[1] = pCount[2] = 0; int nKeyCount = pClipboard->GetKeyCount(); for ( int i = 0; i < nKeyCount; ++i ) { DmeTime_t tKeyTime = pClipboard->GetKeyTime( i ); int nIndex = params.ComputeRegionForTime( tKeyTime ) - 1; if ( nIndex < 0 || nIndex > 2 ) continue; // Only count interstitial samples.. don't count ones that land exactly on boundaries if ( tKeyTime != params.m_nTimes[nIndex] && tKeyTime != params.m_nTimes[nIndex+1] ) { pCount[nIndex]++; } } } //----------------------------------------------------------------------------- // Used by PasteAndRescaleSamples to determine if it should skip a transition or not //----------------------------------------------------------------------------- static inline bool ShouldSkipTransition( int nTransition, int nZeroField ) { // NOTE: This is pretty tricky. The bits of the 'zero field' are set to true // for each region whose source + dest region size is exactly 0 seconds. // Here's the table this logic is reproducing: // 0,1,2,3 are the time selection m_nTimes, and A,B,C are the regions // 0 1 2 3 // | A | B | C | // // nZeroField bits // C B A Skip transitions // 0 0 0 none // 0 0 1 2 // 0 1 0 2 // 0 1 1 1, 2 // 1 0 0 1 // 1 0 1 1, 2 // 1 1 0 1, 2 // 1 1 1 1, 2, 3 switch( nTransition ) { default: case 0: return false; case 1: return ( (( nZeroField & 0x1 ) != 0 ) || nZeroField >= 5 ); case 2: return ( nZeroField >= 2 ); case 3: return ( nZeroField == 7 ); } } template< class T > void CDmeTypedLog< T >::PasteAndRescaleSamples( const CDmeLogLayer *pBase, const CDmeLogLayer *pDataLayer, CDmeLogLayer *pOutputLayer, const DmeLog_TimeSelection_t& srcParams, const DmeLog_TimeSelection_t& destParams, bool bBlendAreaInFalloffRegion ) { Assert( GetNumLayers() >= 2 ); if ( GetNumLayers() < 2 ) return; CDmeTypedLogLayer< T > *pClipboard = CastElement< CDmeTypedLogLayer< T > >( const_cast< CDmeLogLayer * >( pDataLayer ) ); // Could have passed in layer with wrong attribute type?! Assert( pClipboard ); if ( !pClipboard ) return; CDmeTypedLogLayer< T > *pBaseLayer = CastElement< CDmeTypedLogLayer< T > >( const_cast< CDmeLogLayer * >( pBase ) ); CDmeTypedLogLayer< T > *pWriteLayer = CastElement< CDmeTypedLogLayer< T > >( pOutputLayer ); Assert( pBaseLayer ); Assert( pWriteLayer ); // NOTE: Array index 0 is src (pClipboard), index 1 is dest (pWriteLayer) DmeTime_t tStartTime[ PASTE_STATE_COUNT+1 ][ 2 ] = { { DmeTime_t( srcParams.m_nTimes[ 0 ] ), DmeTime_t( destParams.m_nTimes[ 0 ] ) }, { DmeTime_t( srcParams.m_nTimes[ 1 ] ), DmeTime_t( destParams.m_nTimes[ 1 ] ) }, { DmeTime_t( srcParams.m_nTimes[ 2 ] ), DmeTime_t( destParams.m_nTimes[ 2 ] ) }, { DmeTime_t( srcParams.m_nTimes[ 3 ] ), DmeTime_t( destParams.m_nTimes[ 3 ] ) }, }; // compute rescaling factors int pDuration[ PASTE_STATE_COUNT ][ 2 ]; double pScaleFactor[ PASTE_STATE_COUNT ]; int nZeroField = 0; for ( int i = 0; i < PASTE_STATE_COUNT; ++i ) { for ( int s = 0; s < 2; ++s ) { pDuration[ i ][ s ] = tStartTime[ i+1 ][ s ].GetTenthsOfMS() - tStartTime[ i ][ s ].GetTenthsOfMS(); } // We're building up a bitfield to find which regions have src + dest durations of 0 // for use in determining which regions to completely skip processing if ( pDuration[i][0] == 0 && pDuration[i][1] == 0 ) { nZeroField |= ( 1 << i ); } pScaleFactor[i] = 1.0; if ( pDuration[ i ][ 0 ] > 0 ) { pScaleFactor[i] = 1.0 / ( double )pDuration[ i ][ 0 ]; } } // Compute values used to paste into selection state transitions T pStartValue[ PASTE_STATE_COUNT + 1 ] = { bBlendAreaInFalloffRegion ? pBaseLayer->GetValue( tStartTime[ PASTE_STATE_RAMP_IN ][ 1 ] ) : pClipboard->GetValue( tStartTime[ PASTE_STATE_RAMP_IN ][ 0 ] ), pClipboard->GetValue( tStartTime[ PASTE_STATE_HOLD ][ 0 ] ), pClipboard->GetValue( tStartTime[ PASTE_STATE_RAMP_OUT ][ 0 ] ), bBlendAreaInFalloffRegion ? pBaseLayer->GetValue( tStartTime[ PASTE_STATE_AFTER ][ 1 ] ) : pClipboard->GetValue( tStartTime[ PASTE_STATE_AFTER ][ 0 ] ) }; // Compute state necessary to blend in the ramp in + ramp out regions // NOTE: These computations are only used if bBlendAreaInFalloffRegion is true T pBlendBase[ 2 ]; float pOOBlendLength[ 2 ]; DmeTime_t pBlendTime[ 2 ]; for ( int s = 0; s < 2; ++s ) { pBlendTime[ s ] = destParams.m_nTimes[ TS_FALLOFF(s) ]; pBlendBase[ s ] = pBaseLayer->GetValue( pBlendTime[ s ] ); T holdValue = pBaseLayer->GetValue( destParams.m_nTimes[ TS_HOLD(s) ] ); Vector2D vec; vec.x = destParams.m_nTimes[ TS_HOLD(s) ].GetSeconds() - pBlendTime[ s ].GetSeconds(); vec.y = LengthOf( Subtract( holdValue, pBlendBase[ s ] ) ); pOOBlendLength[ s ] = vec.Length(); if ( pOOBlendLength[ s ] != 0.0f ) { pOOBlendLength[ s ] = 1.0f / pOOBlendLength[ s ]; } } // Count the number of samples on the clipboard in the various regions int pKeyCount[PASTE_STATE_COUNT]; CountClipboardSamples( pKeyCount, pClipboard, srcParams ); // Walk the samples in the clipboard int nKeyCount = pClipboard->GetKeyCount(); int nPrevState = PASTE_STATE_BEFORE; DmeTime_t tLastWrittenTime = DMETIME_MINTIME; DmeTime_t tMaxKeyTime = DMETIME_MAXTIME; bool bCollapseSamples = false; for ( int j = 0 ; j < nKeyCount; ++j ) { DmeTime_t tKeyTime = pClipboard->GetKeyTime( j ); T val = pClipboard->GetKeyValue( j ); // Determine which state we're in // NOTE: Don't use ComputeRegionForTime here because it includes // the endpoint of the hold region into the hold region. int nState; for ( nState = nPrevState; nState < PASTE_STATE_COUNT; ++nState ) { if ( tKeyTime < tStartTime[ nState + 1 ][ 0 ] ) break; } // This logic inserts a key if there is no sample in the clipboard at the transition time bool bForceKey = false; if ( nPrevState < nState ) { nState = ++nPrevState; // This logic will prevent samples at the hold start + end if // the source + dest regions are 0 width and will only do the first and last // if we're squeezing the entire time selection down to a single point. bForceKey = true; if ( nState != PASTE_STATE_AFTER ) { bCollapseSamples = ( pKeyCount[nState] >= pDuration[nState][1] ); tMaxKeyTime = bCollapseSamples ? tStartTime[ nState ][ 1 ] : ( tStartTime[ nState+1 ][ 1 ] - DmeTime_t( pKeyCount[nState] + 1 ) ); } else { bCollapseSamples = false; tMaxKeyTime = DMETIME_MAXTIME; } // NOTE: This has to occur after collapse samples + max key time has been set if ( ShouldSkipTransition( nState, nZeroField ) ) { --j; continue; } // Don't insert an extra key if the current one we're looking at is right at that point if ( tKeyTime != tStartTime[ nPrevState ][ 0 ] ) { tKeyTime = tStartTime[ nPrevState ][ 0 ]; val = pStartValue[nPrevState]; // We want to re-do this key, since we inserted a key beforehand --j; } } if ( nState == PASTE_STATE_BEFORE ) continue; if ( nState == PASTE_STATE_AFTER && !bForceKey ) return; // Compute destination time based on scale + offset double flFactor = ( tKeyTime - tStartTime[ nState ][ 0 ] ).GetTenthsOfMS() * pScaleFactor[ nState ]; // FIXME: Fix the algorithm, then uncomment to get time-scaled falloff regions // if ( nState == PASTE_STATE_RAMP_IN || nState == PASTE_STATE_RAMP_OUT ) // { // int s = ( nState == PASTE_STATE_RAMP_IN ) ? 0 : 1; // flFactor = ComputeInterpolationFactor( flFactor, destParams.m_nFalloffInterpolatorTypes[s] ); // } double flTempTime = flFactor * pDuration[ nState ][ 1 ]; DmeTime_t tDestTime( (int)( flTempTime + 0.5 ) ); tDestTime += tStartTime[ nState ][ 1 ]; // Clamp necessary to not lose samples // NOTE: The !bForceKey check here makes it so we don't clamp points // in time corresponding to transitions of the time selection if ( !bForceKey && ( tDestTime > tMaxKeyTime ) ) { tDestTime = tMaxKeyTime; } if ( tMaxKeyTime != DMETIME_MAXTIME ) { tMaxKeyTime += DMETIME_MINDELTA; } // This logic will cause *all* samples to appear if we have enough room for them if ( !bCollapseSamples ) { bForceKey = true; } // If we'd go outside our region and we're not forcing the key, then skip if ( !bForceKey && tDestTime >= tStartTime[ nState+1 ][ 1 ] ) continue; // Perform blending on ramp in + ramp out regions if ( bBlendAreaInFalloffRegion && ( nState != PASTE_STATE_HOLD ) ) { int nBlendIndex = ( nState < PASTE_STATE_HOLD ) ? 0 : 1; T baseValue = pBaseLayer->GetValue( tDestTime ); Vector2D oldDist; oldDist.x = tDestTime.GetSeconds() - pBlendTime[ nBlendIndex ].GetSeconds(); oldDist.y = LengthOf( Subtract( baseValue, pBlendBase[ nBlendIndex ] ) ); float flDistance = oldDist.Length(); float flFactorBlend = flDistance * pOOBlendLength[ nBlendIndex ]; flFactorBlend = destParams.AdjustFactorForInterpolatorType( flFactorBlend, nBlendIndex ); val = Interpolate( flFactorBlend, baseValue, val ); } // Force key insertion when we transition between states if ( bForceKey && ( tLastWrittenTime >= tDestTime ) ) { tDestTime = tLastWrittenTime + DMETIME_MINDELTA; } // Insert the key into the log if ( tLastWrittenTime < tDestTime ) { pWriteLayer->InsertKey( tDestTime, val ); tLastWrittenTime = tDestTime; } } } template< class T > void CDmeTypedLog< T >::PasteAndRescaleSamples( const CDmeLogLayer *src, // clipboard data const DmeLog_TimeSelection_t& srcParams, // clipboard time selection const DmeLog_TimeSelection_t& destParams, // current time selection bool bBlendAreaInFalloffRegion ) // blending behavior in falloff area of current time selection { CDmeLogLayer *pBaseLayer = GetLayer( 0 ); CDmeLogLayer *pWriteLayer = GetLayer( GetTopmostLayer() ); PasteAndRescaleSamples( pBaseLayer, src, pWriteLayer, srcParams, destParams, bBlendAreaInFalloffRegion ); } template<> void CDmeTypedLog< Vector >::BuildNormalizedLayer( CDmeTypedLogLayer< float > *target ) { Assert( target ); Assert( GetDataType() != AT_FLOAT ); CDmeTypedLogLayer< Vector > *baseLayer = static_cast< CDmeTypedLogLayer< Vector > * >( GetLayer( 0 ) ); if ( !baseLayer ) return; float flMin = FLT_MAX; float flMax = FLT_MIN; int kc = baseLayer->GetKeyCount(); for ( int i = 0; i < kc; ++i ) { DmeTime_t keyTime = baseLayer->GetKeyTime( i ); Vector keyValue = baseLayer->GetKeyValue( i ); float len = keyValue.Length(); if ( len < flMin ) { flMin = len; } if ( len > flMax ) { flMax = len; } target->InsertKey( keyTime, len ); } for ( int i = 0; i < kc; ++i ) { float keyValue = target->GetKeyValue( i ); float normalized = RemapVal( keyValue, flMin, flMax, 0.0f, 1.0f ); target->SetKeyValue( i, normalized ); } if ( HasDefaultValue() ) { target->GetTypedOwnerLog()->SetDefaultValue( RemapVal( GetDefaultValue().Length(), flMin, flMax, 0.0f, 1.0f ) ); } } template<> void CDmeTypedLog< Vector2D >::BuildNormalizedLayer( CDmeTypedLogLayer< float > *target ) { Assert( target ); Assert( GetDataType() != AT_FLOAT ); CDmeTypedLogLayer< Vector2D > *baseLayer = static_cast< CDmeTypedLogLayer< Vector2D > * >( GetLayer( 0 ) ); if ( !baseLayer ) return; float flMin = FLT_MAX; float flMax = FLT_MIN; int kc = baseLayer->GetKeyCount(); for ( int i = 0; i < kc; ++i ) { DmeTime_t keyTime = baseLayer->GetKeyTime( i ); Vector2D keyValue = baseLayer->GetKeyValue( i ); float len = keyValue.Length(); if ( len < flMin ) { flMin = len; } if ( len > flMax ) { flMax = len; } target->InsertKey( keyTime, len ); } for ( int i = 0; i < kc; ++i ) { float keyValue = target->GetKeyValue( i ); float normalized = RemapVal( keyValue, flMin, flMax, 0.0f, 1.0f ); target->SetKeyValue( i, normalized ); } if ( HasDefaultValue() ) { target->GetTypedOwnerLog()->SetDefaultValue( RemapVal( GetDefaultValue().Length(), flMin, flMax, 0.0f, 1.0f ) ); } } template<> void CDmeTypedLog< Vector4D >::BuildNormalizedLayer( CDmeTypedLogLayer< float > *target ) { Assert( target ); Assert( GetDataType() != AT_FLOAT ); CDmeTypedLogLayer< Vector4D > *baseLayer = static_cast< CDmeTypedLogLayer< Vector4D > * >( GetLayer( 0 ) ); if ( !baseLayer ) return; float flMin = FLT_MAX; float flMax = FLT_MIN; int kc = baseLayer->GetKeyCount(); for ( int i = 0; i < kc; ++i ) { DmeTime_t keyTime = baseLayer->GetKeyTime( i ); Vector4D keyValue = baseLayer->GetKeyValue( i ); float len = keyValue.Length(); if ( len < flMin ) { flMin = len; } if ( len > flMax ) { flMax = len; } target->InsertKey( keyTime, len ); } for ( int i = 0; i < kc; ++i ) { float keyValue = target->GetKeyValue( i ); float normalized = RemapVal( keyValue, flMin, flMax, 0.0f, 1.0f ); target->SetKeyValue( i, normalized ); } if ( HasDefaultValue() ) { target->GetTypedOwnerLog()->SetDefaultValue( RemapVal( GetDefaultValue().Length(), flMin, flMax, 0.0f, 1.0f ) ); } } template<> void CDmeTypedLog< int >::BuildNormalizedLayer( CDmeTypedLogLayer< float > *target ) { Assert( target ); Assert( GetDataType() != AT_FLOAT ); CDmeTypedLogLayer< int > *baseLayer = static_cast< CDmeTypedLogLayer< int > * >( GetLayer( 0 ) ); if ( !baseLayer ) return; float flMin = FLT_MAX; float flMax = FLT_MIN; int kc = baseLayer->GetKeyCount(); for ( int i = 0; i < kc; ++i ) { DmeTime_t keyTime = baseLayer->GetKeyTime( i ); int keyValue = baseLayer->GetKeyValue( i ); float len = (float)keyValue; if ( len < flMin ) { flMin = len; } if ( len > flMax ) { flMax = len; } target->InsertKey( keyTime, len ); } for ( int i = 0; i < kc; ++i ) { float keyValue = target->GetKeyValue( i ); float normalized = RemapVal( keyValue, flMin, flMax, 0.0f, 1.0f ); target->SetKeyValue( i, normalized ); } if ( HasDefaultValue() ) { target->GetTypedOwnerLog()->SetDefaultValue( RemapVal( GetDefaultValue(), flMin, flMax, 0.0f, 1.0f ) ); } } template<> void CDmeTypedLog< float >::BuildNormalizedLayer( CDmeTypedLogLayer< float > *target ) { Assert( target ); Assert( GetDataType() != AT_FLOAT ); CDmeTypedLogLayer< float > *baseLayer = static_cast< CDmeTypedLogLayer< float > * >( GetLayer( 0 ) ); if ( !baseLayer ) return; float flMin = FLT_MAX; float flMax = FLT_MIN; int kc = baseLayer->GetKeyCount(); for ( int i = 0; i < kc; ++i ) { DmeTime_t keyTime = baseLayer->GetKeyTime( i ); int keyValue = baseLayer->GetKeyValue( i ); float len = (float)keyValue; if ( len < flMin ) { flMin = len; } if ( len > flMax ) { flMax = len; } target->InsertKey( keyTime, len ); } for ( int i = 0; i < kc; ++i ) { float keyValue = target->GetKeyValue( i ); float normalized = RemapVal( keyValue, flMin, flMax, 0.0f, 1.0f ); target->SetKeyValue( i, normalized ); } if ( HasDefaultValue() ) { target->GetTypedOwnerLog()->SetDefaultValue( RemapVal( GetDefaultValue(), flMin, flMax, 0.0f, 1.0f ) ); } } //----------------------------------------------------------------------------- // Creates a log of a specific type //----------------------------------------------------------------------------- CDmeLog *CDmeLog::CreateLog( DmAttributeType_t type, DmFileId_t fileid ) { switch ( type ) { case AT_INT: case AT_INT_ARRAY: return CreateElement< CDmeIntLog >( "int log", fileid ); case AT_FLOAT: case AT_FLOAT_ARRAY: return CreateElement< CDmeFloatLog >( "float log", fileid ); case AT_BOOL: case AT_BOOL_ARRAY: return CreateElement< CDmeBoolLog >( "bool log", fileid ); case AT_COLOR: case AT_COLOR_ARRAY: return CreateElement< CDmeColorLog >( "color log", fileid ); case AT_VECTOR2: case AT_VECTOR2_ARRAY: return CreateElement< CDmeVector2Log >( "vector2 log", fileid ); case AT_VECTOR3: case AT_VECTOR3_ARRAY: return CreateElement< CDmeVector3Log >( "vector3 log", fileid ); case AT_VECTOR4: case AT_VECTOR4_ARRAY: return CreateElement< CDmeVector4Log >( "vector4 log", fileid ); case AT_QANGLE: case AT_QANGLE_ARRAY: return CreateElement< CDmeQAngleLog >( "qangle log", fileid ); case AT_QUATERNION: case AT_QUATERNION_ARRAY: return CreateElement< CDmeQuaternionLog >( "quaternion log", fileid ); case AT_VMATRIX: case AT_VMATRIX_ARRAY: return CreateElement< CDmeVMatrixLog >( "vmatrix log", fileid ); case AT_STRING: case AT_STRING_ARRAY: return CreateElement< CDmeStringLog >( "string log", fileid ); } return NULL; } // Disallowed methods for types //template<> void CDmeTypedLog< bool >::StampKeyAtHead( const DmeLog_TimeSelection_t& params, const bool& value ) { Assert( 0 ); } //template<> void CDmeTypedLog< bool >::_StampKeyAtHeadResample( const DmeLog_TimeSelection_t& params, const bool& value ) { Assert( 0 ); } //template<> void CDmeTypedLog< bool >::StampKeyAtHead( const DmeLog_TimeSelection_t& params, const CDmAttribute *pAttr, uint index /*= 0*/ ) { Assert( 0 ); } //template<> void CDmeTypedLog< bool >::FinishTimeSelection( DmeLog_TimeSelection_t& params ) { Assert( 0 ); } // //template<> void CDmeTypedLog< Color >::StampKeyAtHead( const DmeLog_TimeSelection_t& params, const Color& value ) { Assert( 0 ); } //template<> void CDmeTypedLog< Color >::_StampKeyAtHeadResample( const DmeLog_TimeSelection_t& params, const Color& value ) { Assert( 0 ); } //template<> void CDmeTypedLog< Color >::StampKeyAtHead( const DmeLog_TimeSelection_t& params, const CDmAttribute *pAttr, uint index /*= 0*/ ) { Assert( 0 ); } //template<> void CDmeTypedLog< Color >::FinishTimeSelection( DmeLog_TimeSelection_t& params ) { Assert( 0 ); } // //template<> void CDmeTypedLog< Vector4D >::StampKeyAtHead( const DmeLog_TimeSelection_t& params, const Vector4D& value ) { Assert( 0 ); } //template<> void CDmeTypedLog< Vector4D >::_StampKeyAtHeadResample( const DmeLog_TimeSelection_t& params, const Vector4D& value ) { Assert( 0 ); } //template<> void CDmeTypedLog< Vector4D >::StampKeyAtHead( const DmeLog_TimeSelection_t& params, const CDmAttribute *pAttr, uint index /*= 0*/ ) { Assert( 0 ); } //template<> void CDmeTypedLog< Vector4D >::FinishTimeSelection( DmeLog_TimeSelection_t& params ) { Assert( 0 ); } // //template<> void CDmeTypedLog< Vector2D >::StampKeyAtHead( const DmeLog_TimeSelection_t& params, const Vector2D& value ) { Assert( 0 ); } //template<> void CDmeTypedLog< Vector2D >::_StampKeyAtHeadResample( const DmeLog_TimeSelection_t& params, const Vector2D& value ) { Assert( 0 ); } //template<> void CDmeTypedLog< Vector2D >::StampKeyAtHead( const DmeLog_TimeSelection_t& params, const CDmAttribute *pAttr, uint index /*= 0*/ ) { Assert( 0 ); } //template<> void CDmeTypedLog< Vector2D >::FinishTimeSelection( DmeLog_TimeSelection_t& params ) { Assert( 0 ); } //template<> void CDmeTypedLog< Vector >::StampKeyAtHead( const DmeLog_TimeSelection_t& params, const Vector& value ) { Assert( 0 ); } //template<> void CDmeTypedLog< Vector >::_StampKeyAtHeadResample( const DmeLog_TimeSelection_t& params, const Vector& value ) { Assert( 0 ); } //template<> void CDmeTypedLog< Vector >::StampKeyAtHead( const DmeLog_TimeSelection_t& params, const CDmAttribute *pAttr, uint index /*= 0*/ ) { Assert( 0 ); } //template<> void CDmeTypedLog< Vector >::FinishTimeSelection( DmeLog_TimeSelection_t& params ) { Assert( 0 ); } //template<> void CDmeTypedLog< VMatrix >::StampKeyAtHead( const DmeLog_TimeSelection_t& params, const VMatrix& value ) { Assert( 0 ); } //template<> void CDmeTypedLog< VMatrix >::_StampKeyAtHeadResample( const DmeLog_TimeSelection_t& params, const VMatrix& value ) { Assert( 0 ); } //template<> void CDmeTypedLog< VMatrix >::StampKeyAtHead( const DmeLog_TimeSelection_t& params, const CDmAttribute *pAttr, uint index /*= 0*/ ) { Assert( 0 ); } //template<> void CDmeTypedLog< VMatrix >::FinishTimeSelection( DmeLog_TimeSelection_t& params ) { Assert( 0 ); } // //template<> void CDmeTypedLog< Quaternion >::StampKeyAtHead( const DmeLog_TimeSelection_t& params, const Quaternion& value ) { Assert( 0 ); } //template<> void CDmeTypedLog< Quaternion >::_StampKeyAtHeadResample( const DmeLog_TimeSelection_t& params, const Quaternion& value ) { Assert( 0 ); } //template<> void CDmeTypedLog< Quaternion >::StampKeyAtHead( const DmeLog_TimeSelection_t& params, const CDmAttribute *pAttr, uint index /*= 0*/ ) { Assert( 0 ); } //template<> void CDmeTypedLog< Quaternion >::FinishTimeSelection( DmeLog_TimeSelection_t& params ) { Assert( 0 ); } // //template<> void CDmeTypedLog< QAngle >::StampKeyAtHead( const DmeLog_TimeSelection_t& params, const QAngle& value ) { Assert( 0 ); } //template<> void CDmeTypedLog< QAngle >::_StampKeyAtHeadResample( const DmeLog_TimeSelection_t& params, const QAngle& value ) { Assert( 0 ); } //template<> void CDmeTypedLog< QAngle >::StampKeyAtHead( const DmeLog_TimeSelection_t& params, const CDmAttribute *pAttr, uint index /*= 0*/ ) { Assert( 0 ); } //template<> void CDmeTypedLog< QAngle >::FinishTimeSelection( DmeLog_TimeSelection_t& params ) { Assert( 0 ); } //----------------------------------------------------------------------------- // Helpers for particular types of log layers //----------------------------------------------------------------------------- void GenerateRotationLog( CDmeQuaternionLogLayer *pLayer, const Vector &vecAxis, DmeTime_t pTime[4], float pRevolutionsPerSec[4] ) { for ( int i = 1; i < 4; ++i ) { if ( pTime[i] < pTime[i-1] ) { Warning( "Bogus times passed into GenerateRotationLog\n" ); return; } } // Gets the initial value matrix3x4_t initial; Quaternion q = pLayer->GetValue( pTime[0] ); QuaternionMatrix( q, initial ); // Find the max rps, and compute the total rotation in degrees // by the time we reach the transition points. The total rotation = // integral from 0 to t of 360 * ( rate[i] - rate[i-1] ) t / tl + rate[i-1] ) // == 360 * ( ( rate[i] - rate[i-1] ) t^2 / 2 + rate[i-1] t ) float pTotalRotation[4]; float flMaxRPS = pRevolutionsPerSec[0]; pTotalRotation[0] = 0.0f; for ( int i = 1; i < 4; ++i ) { if ( pRevolutionsPerSec[i] > flMaxRPS ) { flMaxRPS = pRevolutionsPerSec[i]; } float dt = pTime[i].GetSeconds() - pTime[i-1].GetSeconds(); float dRot = pRevolutionsPerSec[i] - pRevolutionsPerSec[i-1]; pTotalRotation[i] = 360.0f * ( dRot * dt * 0.5 + pRevolutionsPerSec[i-1] * dt ) + pTotalRotation[i-1]; } // We need to compute how long a single rotation takes, then create samples // at 1/4 the frequency of that amount of time VMatrix rot; matrix3x4_t total; QAngle angles; float flMaxRotationTime = (flMaxRPS != 0.0f) ? ( 0.125f / flMaxRPS ) : ( pTime[3].GetSeconds() - pTime[0].GetSeconds() ); DmeTime_t dt( flMaxRotationTime ); for ( DmeTime_t t = pTime[0]; t <= pTime[3]; t += dt ) { int i = ( t < pTime[1] ) ? 1 : ( ( t < pTime[2] ) ? 2 : 3 ); float flInterval = t.GetSeconds() - pTime[i-1].GetSeconds(); float flOOSegmentDur = pTime[i].GetSeconds() - pTime[i-1].GetSeconds(); if ( flOOSegmentDur == 0.0f ) { Assert( flInterval == 0.0f ); flOOSegmentDur = 1.0f; } else { flOOSegmentDur = 1.0f / flOOSegmentDur; } float dRot = pRevolutionsPerSec[i] - pRevolutionsPerSec[i-1]; float flRotation = 360.0f * ( dRot * flInterval * flInterval * 0.5f * flOOSegmentDur + pRevolutionsPerSec[i-1] * flInterval ) + pTotalRotation[i-1]; MatrixBuildRotationAboutAxis( rot, vecAxis, flRotation ); ConcatTransforms( initial, rot.As3x4(), total ); MatrixToAngles( total, angles ); AngleQuaternion( angles, q ); pLayer->SetKey( t, q ); } } //----------------------------------------------------------------------------- // Transforms a position log //----------------------------------------------------------------------------- void RotatePositionLog( CDmeVector3LogLayer *pPositionLog, const matrix3x4_t& matrix ) { Assert( fabs( matrix[0][3] ) < 1e-3 && fabs( matrix[1][3] ) < 1e-3 && fabs( matrix[2][3] ) < 1e-3 ); Vector position; int nCount = pPositionLog->GetKeyCount(); for ( int i = 0; i < nCount; ++i ) { const Vector &srcPosition = pPositionLog->GetKeyValue( i ); VectorTransform( srcPosition, matrix, position ); pPositionLog->SetKeyValue( i, position ); } } //----------------------------------------------------------------------------- // Transforms a orientation log //----------------------------------------------------------------------------- void RotateOrientationLog( CDmeQuaternionLogLayer *pOrientationLog, const matrix3x4_t& matrix, bool bPreMultiply = false ) { Assert( fabs( matrix[0][3] ) < 1e-3 && fabs( matrix[1][3] ) < 1e-3 && fabs( matrix[2][3] ) < 1e-3 ); matrix3x4_t orientation, newOrientation; Quaternion q; int nCount = pOrientationLog->GetKeyCount(); for ( int i = 0; i < nCount; ++i ) { const Quaternion &srcQuat = pOrientationLog->GetKeyValue( i ); QuaternionMatrix( srcQuat, orientation ); if ( bPreMultiply ) { ConcatTransforms( matrix, orientation, newOrientation ); } else { ConcatTransforms( orientation, matrix, newOrientation ); } MatrixQuaternion( newOrientation, q ); pOrientationLog->SetKeyValue( i, q ); } }