//========= Copyright Valve Corporation, All rights reserved. ============// // // Purpose: // //============================================================================= #include "pch_tier0.h" #include "tier1/strtools.h" #include "tier0/dynfunction.h" #if defined( _WIN32 ) && !defined( _X360 ) #define WIN32_LEAN_AND_MEAN #include #endif #ifdef _WIN32 #include #ifdef IS_WINDOWS_PC #include #pragma comment(lib, "winmm.lib") #endif // IS_WINDOWS_PC #elif defined(POSIX) #if !defined(OSX) #include #include #define sem_unlink( arg ) #define OS_TO_PTHREAD(x) (x) #else #define pthread_yield pthread_yield_np #include #include #define OS_TO_PTHREAD(x) pthread_from_mach_thread_np( x ) #endif // !OSX #ifdef LINUX #include // RTLD_NEXT #endif typedef int (*PTHREAD_START_ROUTINE)( void *lpThreadParameter ); typedef PTHREAD_START_ROUTINE LPTHREAD_START_ROUTINE; #include #include #include #include #include #include #define GetLastError() errno typedef void *LPVOID; #endif #include "tier0/valve_minmax_off.h" #include #include "tier0/valve_minmax_on.h" #include "tier0/threadtools.h" #include "tier0/vcrmode.h" #ifdef _X360 #include "xbox/xbox_win32stubs.h" #endif #include "tier0/vprof_telemetry.h" // Must be last header... #include "tier0/memdbgon.h" #define THREADS_DEBUG 1 // Need to ensure initialized before other clients call in for main thread ID #ifdef _WIN32 #pragma warning(disable:4073) #pragma init_seg(lib) #endif #ifdef _WIN32 ASSERT_INVARIANT(TT_SIZEOF_CRITICALSECTION == sizeof(CRITICAL_SECTION)); ASSERT_INVARIANT(TT_INFINITE == INFINITE); #endif //----------------------------------------------------------------------------- // Simple thread functions. // Because _beginthreadex uses stdcall, we need to convert to cdecl //----------------------------------------------------------------------------- struct ThreadProcInfo_t { ThreadProcInfo_t( ThreadFunc_t pfnThread, void *pParam ) : pfnThread( pfnThread), pParam( pParam ) { } ThreadFunc_t pfnThread; void * pParam; }; //--------------------------------------------------------- #ifdef _WIN32 static unsigned __stdcall ThreadProcConvert( void *pParam ) #elif defined(POSIX) static void *ThreadProcConvert( void *pParam ) #else #error #endif { ThreadProcInfo_t info = *((ThreadProcInfo_t *)pParam); delete ((ThreadProcInfo_t *)pParam); #ifdef _WIN32 return (*info.pfnThread)(info.pParam); #elif defined(POSIX) return (void *)(*info.pfnThread)(info.pParam); #else #error #endif } //--------------------------------------------------------- ThreadHandle_t CreateSimpleThread( ThreadFunc_t pfnThread, void *pParam, ThreadId_t *pID, unsigned stackSize ) { #ifdef _WIN32 ThreadId_t idIgnored; if ( !pID ) pID = &idIgnored; HANDLE h = VCRHook_CreateThread(NULL, stackSize, (LPTHREAD_START_ROUTINE)ThreadProcConvert, new ThreadProcInfo_t( pfnThread, pParam ), CREATE_SUSPENDED, pID); if ( h != INVALID_HANDLE_VALUE ) { Plat_ApplyHardwareDataBreakpointsToNewThread( *pID ); ResumeThread( h ); } return (ThreadHandle_t)h; #elif defined(POSIX) pthread_t tid; // If we need to create threads that are detached right out of the gate, we would need to do something like this: // pthread_attr_t attr; // int rc = pthread_attr_init(&attr); // rc = pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED); // ... pthread_create( &tid, &attr, ... ) ... // rc = pthread_attr_destroy(&attr); // ... pthread_join will now fail int ret = pthread_create( &tid, NULL, ThreadProcConvert, new ThreadProcInfo_t( pfnThread, pParam ) ); if ( ret ) { // There are only PTHREAD_THREADS_MAX number of threads, and we're probably leaking handles if ret == EAGAIN here? Error( "CreateSimpleThread: pthread_create failed. Someone not calling pthread_detach() or pthread_join. Ret:%d\n", ret ); } if ( pID ) *pID = (ThreadId_t)tid; Plat_ApplyHardwareDataBreakpointsToNewThread( (long unsigned int)tid ); return (ThreadHandle_t)tid; #endif } ThreadHandle_t CreateSimpleThread( ThreadFunc_t pfnThread, void *pParam, unsigned stackSize ) { return CreateSimpleThread( pfnThread, pParam, NULL, stackSize ); } PLATFORM_INTERFACE void ThreadDetach( ThreadHandle_t hThread ) { #if defined( POSIX ) // The resources of this thread will be freed immediately when it terminates, // instead of waiting for another thread to perform PTHREAD_JOIN. pthread_t tid = ( pthread_t )hThread; pthread_detach( tid ); #endif } bool ReleaseThreadHandle( ThreadHandle_t hThread ) { #ifdef _WIN32 return ( CloseHandle( hThread ) != 0 ); #else return true; #endif } //----------------------------------------------------------------------------- // // Wrappers for other simple threading operations // //----------------------------------------------------------------------------- void ThreadSleep(unsigned nMilliseconds) { #ifdef _WIN32 #ifdef IS_WINDOWS_PC static bool bInitialized = false; if ( !bInitialized ) { bInitialized = true; // Set the timer resolution to 1 ms (default is 10.0, 15.6, 2.5, 1.0 or // some other value depending on hardware and software) so that we can // use Sleep( 1 ) to avoid wasting CPU time without missing our frame // rate. timeBeginPeriod( 1 ); } #endif // IS_WINDOWS_PC Sleep( nMilliseconds ); #elif defined(POSIX) usleep( nMilliseconds * 1000 ); #endif } //----------------------------------------------------------------------------- #ifndef ThreadGetCurrentId uint ThreadGetCurrentId() { #ifdef _WIN32 return GetCurrentThreadId(); #elif defined(POSIX) return (uint)pthread_self(); #endif } #endif //----------------------------------------------------------------------------- ThreadHandle_t ThreadGetCurrentHandle() { #ifdef _WIN32 return (ThreadHandle_t)GetCurrentThread(); #elif defined(POSIX) return (ThreadHandle_t)pthread_self(); #endif } // On PS3, this will return true for zombie threads bool ThreadIsThreadIdRunning( ThreadId_t uThreadId ) { #ifdef _WIN32 bool bRunning = true; HANDLE hThread = ::OpenThread( THREAD_QUERY_INFORMATION , false, uThreadId ); if ( hThread ) { DWORD dwExitCode; if( !::GetExitCodeThread( hThread, &dwExitCode ) || dwExitCode != STILL_ACTIVE ) bRunning = false; CloseHandle( hThread ); } else { bRunning = false; } return bRunning; #elif defined( _PS3 ) // will return CELL_OK for zombie threads int priority; return (sys_ppu_thread_get_priority( uThreadId, &priority ) == CELL_OK ); #elif defined(POSIX) pthread_t thread = OS_TO_PTHREAD(uThreadId); if ( thread ) { int iResult = pthread_kill( thread, 0 ); if ( iResult == 0 ) return true; } else { // We really ought not to be passing NULL in to here AssertMsg( false, "ThreadIsThreadIdRunning received a null thread ID" ); } return false; #endif } //----------------------------------------------------------------------------- int ThreadGetPriority( ThreadHandle_t hThread ) { if ( !hThread ) { hThread = ThreadGetCurrentHandle(); } #ifdef _WIN32 return ::GetThreadPriority( (HANDLE)hThread ); #else struct sched_param thread_param; int policy; pthread_getschedparam( (pthread_t)hThread, &policy, &thread_param ); return thread_param.sched_priority; #endif } //----------------------------------------------------------------------------- bool ThreadSetPriority( ThreadHandle_t hThread, int priority ) { if ( !hThread ) { hThread = ThreadGetCurrentHandle(); } #ifdef _WIN32 return ( SetThreadPriority(hThread, priority) != 0 ); #elif defined(POSIX) struct sched_param thread_param; thread_param.sched_priority = priority; pthread_setschedparam( (pthread_t)hThread, SCHED_OTHER, &thread_param ); return true; #endif } //----------------------------------------------------------------------------- void ThreadSetAffinity( ThreadHandle_t hThread, int nAffinityMask ) { if ( !hThread ) { hThread = ThreadGetCurrentHandle(); } #ifdef _WIN32 SetThreadAffinityMask( hThread, nAffinityMask ); #elif defined(POSIX) // cpu_set_t cpuSet; // CPU_ZERO( cpuSet ); // for( int i = 0 ; i < 32; i++ ) // if ( nAffinityMask & ( 1 << i ) ) // CPU_SET( cpuSet, i ); // sched_setaffinity( hThread, sizeof( cpuSet ), &cpuSet ); #endif } //----------------------------------------------------------------------------- uint InitMainThread() { #ifndef LINUX // Skip doing the setname on Linux for the main thread. Here is why... // From Pierre-Loup e-mail about why pthread_setname_np() on the main thread // in Linux will cause some tools to display "MainThrd" as the executable name: // // You have two things in procfs, comm and cmdline. Each of the threads have // a different `comm`, which is the value you set through pthread_setname_np // or prctl(PR_SET_NAME). Top can either display cmdline or comm; it // switched to display comm by default; htop still displays cmdline by // default. Top -c will output cmdline rather than comm. // // If you press 'H' while top is running it will display each thread as a // separate process, so you will have different entries for MainThrd, // MatQueue0, etc with their own CPU usage. But when that mode isn't enabled // it just displays the 'comm' name from the first thread. ThreadSetDebugName( "MainThrd" ); #endif #ifdef _WIN32 return ThreadGetCurrentId(); #elif defined(POSIX) return (uint)pthread_self(); #endif } uint g_ThreadMainThreadID = InitMainThread(); bool ThreadInMainThread() { return ( ThreadGetCurrentId() == g_ThreadMainThreadID ); } //----------------------------------------------------------------------------- void DeclareCurrentThreadIsMainThread() { g_ThreadMainThreadID = ThreadGetCurrentId(); } bool ThreadJoin( ThreadHandle_t hThread, unsigned timeout ) { // You should really never be calling this with a NULL thread handle. If you // are then that probably implies a race condition or threading misunderstanding. Assert( hThread ); if ( !hThread ) { return false; } #ifdef _WIN32 DWORD dwWait = VCRHook_WaitForSingleObject((HANDLE)hThread, timeout); if ( dwWait == WAIT_TIMEOUT) return false; if ( dwWait != WAIT_OBJECT_0 && ( dwWait != WAIT_FAILED && GetLastError() != 0 ) ) { Assert( 0 ); return false; } #elif defined(POSIX) if ( pthread_join( (pthread_t)hThread, NULL ) != 0 ) return false; #endif return true; } #ifdef RAD_TELEMETRY_ENABLED void TelemetryThreadSetDebugName( ThreadId_t id, const char *pszName ); #endif //----------------------------------------------------------------------------- void ThreadSetDebugName( ThreadId_t id, const char *pszName ) { if( !pszName ) return; #ifdef RAD_TELEMETRY_ENABLED TelemetryThreadSetDebugName( id, pszName ); #endif #ifdef _WIN32 if ( Plat_IsInDebugSession() ) { #define MS_VC_EXCEPTION 0x406d1388 typedef struct tagTHREADNAME_INFO { DWORD dwType; // must be 0x1000 LPCSTR szName; // pointer to name (in same addr space) DWORD dwThreadID; // thread ID (-1 caller thread) DWORD dwFlags; // reserved for future use, most be zero } THREADNAME_INFO; THREADNAME_INFO info; info.dwType = 0x1000; info.szName = pszName; info.dwThreadID = id; info.dwFlags = 0; __try { RaiseException(MS_VC_EXCEPTION, 0, sizeof(info) / sizeof(DWORD), (ULONG_PTR *)&info); } __except (EXCEPTION_CONTINUE_EXECUTION) { } } #elif defined( _LINUX ) // As of glibc v2.12, we can use pthread_setname_np. typedef int (pthread_setname_np_func)(pthread_t, const char *); static pthread_setname_np_func *s_pthread_setname_np_func = (pthread_setname_np_func *)dlsym(RTLD_DEFAULT, "pthread_setname_np"); if ( s_pthread_setname_np_func ) { if ( id == (uint32)-1 ) id = pthread_self(); /* pthread_setname_np() in phthread_setname.c has the following code: #define TASK_COMM_LEN 16 size_t name_len = strlen (name); if (name_len >= TASK_COMM_LEN) return ERANGE; So we need to truncate the threadname to 16 or the call will just fail. */ char szThreadName[ 16 ]; strncpy( szThreadName, pszName, ARRAYSIZE( szThreadName ) ); szThreadName[ ARRAYSIZE( szThreadName ) - 1 ] = 0; (*s_pthread_setname_np_func)( id, szThreadName ); } #endif } //----------------------------------------------------------------------------- #ifdef _WIN32 ASSERT_INVARIANT( TW_FAILED == WAIT_FAILED ); ASSERT_INVARIANT( TW_TIMEOUT == WAIT_TIMEOUT ); ASSERT_INVARIANT( WAIT_OBJECT_0 == 0 ); int ThreadWaitForObjects( int nEvents, const HANDLE *pHandles, bool bWaitAll, unsigned timeout ) { return VCRHook_WaitForMultipleObjects( nEvents, pHandles, bWaitAll, timeout ); } #endif //----------------------------------------------------------------------------- // Used to thread LoadLibrary on the 360 //----------------------------------------------------------------------------- static ThreadedLoadLibraryFunc_t s_ThreadedLoadLibraryFunc = 0; PLATFORM_INTERFACE void SetThreadedLoadLibraryFunc( ThreadedLoadLibraryFunc_t func ) { s_ThreadedLoadLibraryFunc = func; } PLATFORM_INTERFACE ThreadedLoadLibraryFunc_t GetThreadedLoadLibraryFunc() { return s_ThreadedLoadLibraryFunc; } //----------------------------------------------------------------------------- // //----------------------------------------------------------------------------- CThreadSyncObject::CThreadSyncObject() #ifdef _WIN32 : m_hSyncObject( NULL ), m_bCreatedHandle(false) #elif defined(POSIX) : m_bInitalized( false ) #endif { } //--------------------------------------------------------- CThreadSyncObject::~CThreadSyncObject() { #ifdef _WIN32 if ( m_hSyncObject && m_bCreatedHandle ) { if ( !CloseHandle(m_hSyncObject) ) { Assert( 0 ); } } #elif defined(POSIX) if ( m_bInitalized ) { pthread_cond_destroy( &m_Condition ); pthread_mutex_destroy( &m_Mutex ); m_bInitalized = false; } #endif } //--------------------------------------------------------- bool CThreadSyncObject::operator!() const { #ifdef _WIN32 return !m_hSyncObject; #elif defined(POSIX) return !m_bInitalized; #endif } //--------------------------------------------------------- void CThreadSyncObject::AssertUseable() { #ifdef THREADS_DEBUG #ifdef _WIN32 AssertMsg( m_hSyncObject, "Thread synchronization object is unuseable" ); #elif defined(POSIX) AssertMsg( m_bInitalized, "Thread synchronization object is unuseable" ); #endif #endif } //--------------------------------------------------------- bool CThreadSyncObject::Wait( uint32 dwTimeout ) { #ifdef THREADS_DEBUG AssertUseable(); #endif #ifdef _WIN32 return ( VCRHook_WaitForSingleObject( m_hSyncObject, dwTimeout ) == WAIT_OBJECT_0 ); #elif defined(POSIX) pthread_mutex_lock( &m_Mutex ); bool bRet = false; if ( m_cSet > 0 ) { bRet = true; m_bWakeForEvent = false; } else { volatile int ret = 0; while ( !m_bWakeForEvent && ret != ETIMEDOUT ) { struct timeval tv; gettimeofday( &tv, NULL ); volatile struct timespec tm; uint64 actualTimeout = dwTimeout; if ( dwTimeout == TT_INFINITE && m_bManualReset ) actualTimeout = 10; // just wait 10 msec at most for manual reset events and loop instead volatile uint64 nNanoSec = (uint64)tv.tv_usec*1000 + (uint64)actualTimeout*1000000; tm.tv_sec = tv.tv_sec + nNanoSec /1000000000; tm.tv_nsec = nNanoSec % 1000000000; do { ret = pthread_cond_timedwait( &m_Condition, &m_Mutex, (const timespec *)&tm ); } while( ret == EINTR ); bRet = ( ret == 0 ); if ( m_bManualReset ) { if ( m_cSet ) break; if ( dwTimeout == TT_INFINITE && ret == ETIMEDOUT ) ret = 0; // force the loop to spin back around } } if ( bRet ) m_bWakeForEvent = false; } if ( !m_bManualReset && bRet ) m_cSet = 0; pthread_mutex_unlock( &m_Mutex ); return bRet; #endif } //----------------------------------------------------------------------------- // //----------------------------------------------------------------------------- CThreadEvent::CThreadEvent( bool bManualReset ) { #ifdef _WIN32 m_hSyncObject = CreateEvent( NULL, bManualReset, FALSE, NULL ); m_bCreatedHandle = true; AssertMsg1(m_hSyncObject, "Failed to create event (error 0x%x)", GetLastError() ); #elif defined( POSIX ) pthread_mutexattr_t Attr; pthread_mutexattr_init( &Attr ); pthread_mutex_init( &m_Mutex, &Attr ); pthread_mutexattr_destroy( &Attr ); pthread_cond_init( &m_Condition, NULL ); m_bInitalized = true; m_cSet = 0; m_bWakeForEvent = false; m_bManualReset = bManualReset; #else #error "Implement me" #endif } #ifdef _WIN32 CThreadEvent::CThreadEvent( HANDLE hHandle ) { m_hSyncObject = hHandle; m_bCreatedHandle = false; AssertMsg(m_hSyncObject, "Null event passed into constructor" ); } #endif //----------------------------------------------------------------------------- // //----------------------------------------------------------------------------- //--------------------------------------------------------- bool CThreadEvent::Set() { AssertUseable(); #ifdef _WIN32 return ( SetEvent( m_hSyncObject ) != 0 ); #elif defined(POSIX) pthread_mutex_lock( &m_Mutex ); m_cSet = 1; m_bWakeForEvent = true; int ret = pthread_cond_signal( &m_Condition ); pthread_mutex_unlock( &m_Mutex ); return ret == 0; #endif } //--------------------------------------------------------- bool CThreadEvent::Reset() { #ifdef THREADS_DEBUG AssertUseable(); #endif #ifdef _WIN32 return ( ResetEvent( m_hSyncObject ) != 0 ); #elif defined(POSIX) pthread_mutex_lock( &m_Mutex ); m_cSet = 0; m_bWakeForEvent = false; pthread_mutex_unlock( &m_Mutex ); return true; #endif } //--------------------------------------------------------- bool CThreadEvent::Check() { #ifdef THREADS_DEBUG AssertUseable(); #endif return Wait( 0 ); } bool CThreadEvent::Wait( uint32 dwTimeout ) { return CThreadSyncObject::Wait( dwTimeout ); } #ifdef _WIN32 //----------------------------------------------------------------------------- // // CThreadSemaphore // // To get Posix implementation, try http://www-128.ibm.com/developerworks/eserver/library/es-win32linux-sem.html // //----------------------------------------------------------------------------- CThreadSemaphore::CThreadSemaphore( long initialValue, long maxValue ) { if ( maxValue ) { AssertMsg( maxValue > 0, "Invalid max value for semaphore" ); AssertMsg( initialValue >= 0 && initialValue <= maxValue, "Invalid initial value for semaphore" ); m_hSyncObject = CreateSemaphore( NULL, initialValue, maxValue, NULL ); AssertMsg1(m_hSyncObject, "Failed to create semaphore (error 0x%x)", GetLastError()); } else { m_hSyncObject = NULL; } } //--------------------------------------------------------- bool CThreadSemaphore::Release( long releaseCount, long *pPreviousCount ) { #ifdef THRDTOOL_DEBUG AssertUseable(); #endif return ( ReleaseSemaphore( m_hSyncObject, releaseCount, pPreviousCount ) != 0 ); } //----------------------------------------------------------------------------- // //----------------------------------------------------------------------------- CThreadFullMutex::CThreadFullMutex( bool bEstablishInitialOwnership, const char *pszName ) { m_hSyncObject = CreateMutex( NULL, bEstablishInitialOwnership, pszName ); AssertMsg1( m_hSyncObject, "Failed to create mutex (error 0x%x)", GetLastError() ); } //--------------------------------------------------------- bool CThreadFullMutex::Release() { #ifdef THRDTOOL_DEBUG AssertUseable(); #endif return ( ReleaseMutex( m_hSyncObject ) != 0 ); } #endif //----------------------------------------------------------------------------- // //----------------------------------------------------------------------------- CThreadLocalBase::CThreadLocalBase() { #ifdef _WIN32 m_index = TlsAlloc(); AssertMsg( m_index != 0xFFFFFFFF, "Bad thread local" ); if ( m_index == 0xFFFFFFFF ) Error( "Out of thread local storage!\n" ); #elif defined(POSIX) if ( pthread_key_create( &m_index, NULL ) != 0 ) Error( "Out of thread local storage!\n" ); #endif } //--------------------------------------------------------- CThreadLocalBase::~CThreadLocalBase() { #ifdef _WIN32 if ( m_index != 0xFFFFFFFF ) TlsFree( m_index ); m_index = 0xFFFFFFFF; #elif defined(POSIX) pthread_key_delete( m_index ); #endif } //--------------------------------------------------------- void * CThreadLocalBase::Get() const { #ifdef _WIN32 if ( m_index != 0xFFFFFFFF ) return TlsGetValue( m_index ); AssertMsg( 0, "Bad thread local" ); return NULL; #elif defined(POSIX) void *value = pthread_getspecific( m_index ); return value; #endif } //--------------------------------------------------------- void CThreadLocalBase::Set( void *value ) { #ifdef _WIN32 if (m_index != 0xFFFFFFFF) TlsSetValue(m_index, value); else AssertMsg( 0, "Bad thread local" ); #elif defined(POSIX) if ( pthread_setspecific( m_index, value ) != 0 ) AssertMsg( 0, "Bad thread local" ); #endif } //----------------------------------------------------------------------------- //----------------------------------------------------------------------------- #ifdef _WIN32 #ifdef _X360 #define TO_INTERLOCK_PARAM(p) ((long *)p) #define TO_INTERLOCK_PTR_PARAM(p) ((void **)p) #else #define TO_INTERLOCK_PARAM(p) (p) #define TO_INTERLOCK_PTR_PARAM(p) (p) #endif #ifndef USE_INTRINSIC_INTERLOCKED long ThreadInterlockedIncrement( long volatile *pDest ) { Assert( (size_t)pDest % 4 == 0 ); return InterlockedIncrement( TO_INTERLOCK_PARAM(pDest) ); } long ThreadInterlockedDecrement( long volatile *pDest ) { Assert( (size_t)pDest % 4 == 0 ); return InterlockedDecrement( TO_INTERLOCK_PARAM(pDest) ); } long ThreadInterlockedExchange( long volatile *pDest, long value ) { Assert( (size_t)pDest % 4 == 0 ); return InterlockedExchange( TO_INTERLOCK_PARAM(pDest), value ); } long ThreadInterlockedExchangeAdd( long volatile *pDest, long value ) { Assert( (size_t)pDest % 4 == 0 ); return InterlockedExchangeAdd( TO_INTERLOCK_PARAM(pDest), value ); } long ThreadInterlockedCompareExchange( long volatile *pDest, long value, long comperand ) { Assert( (size_t)pDest % 4 == 0 ); return InterlockedCompareExchange( TO_INTERLOCK_PARAM(pDest), value, comperand ); } bool ThreadInterlockedAssignIf( long volatile *pDest, long value, long comperand ) { Assert( (size_t)pDest % 4 == 0 ); #if !(defined(_WIN64) || defined (_X360)) __asm { mov eax,comperand mov ecx,pDest mov edx,value lock cmpxchg [ecx],edx mov eax,0 setz al } #else return ( InterlockedCompareExchange( TO_INTERLOCK_PARAM(pDest), value, comperand ) == comperand ); #endif } #endif #if !defined( USE_INTRINSIC_INTERLOCKED ) || defined( _WIN64 ) void *ThreadInterlockedExchangePointer( void * volatile *pDest, void *value ) { Assert( (size_t)pDest % 4 == 0 ); return InterlockedExchangePointer( TO_INTERLOCK_PARAM(pDest), value ); } void *ThreadInterlockedCompareExchangePointer( void * volatile *pDest, void *value, void *comperand ) { Assert( (size_t)pDest % 4 == 0 ); return InterlockedCompareExchangePointer( TO_INTERLOCK_PTR_PARAM(pDest), value, comperand ); } bool ThreadInterlockedAssignPointerIf( void * volatile *pDest, void *value, void *comperand ) { Assert( (size_t)pDest % 4 == 0 ); #if !(defined(_WIN64) || defined (_X360)) __asm { mov eax,comperand mov ecx,pDest mov edx,value lock cmpxchg [ecx],edx mov eax,0 setz al } #else return ( InterlockedCompareExchangePointer( TO_INTERLOCK_PTR_PARAM(pDest), value, comperand ) == comperand ); #endif } #endif int64 ThreadInterlockedCompareExchange64( int64 volatile *pDest, int64 value, int64 comperand ) { Assert( (size_t)pDest % 8 == 0 ); #if defined(_WIN64) || defined (_X360) return InterlockedCompareExchange64( pDest, value, comperand ); #else __asm { lea esi,comperand; lea edi,value; mov eax,[esi]; mov edx,4[esi]; mov ebx,[edi]; mov ecx,4[edi]; mov esi,pDest; lock CMPXCHG8B [esi]; } #endif } bool ThreadInterlockedAssignIf64(volatile int64 *pDest, int64 value, int64 comperand ) { Assert( (size_t)pDest % 8 == 0 ); #if defined(PLATFORM_WINDOWS_PC32 ) __asm { lea esi,comperand; lea edi,value; mov eax,[esi]; mov edx,4[esi]; mov ebx,[edi]; mov ecx,4[edi]; mov esi,pDest; lock CMPXCHG8B [esi]; mov eax,0; setz al; } #else return ( ThreadInterlockedCompareExchange64( pDest, value, comperand ) == comperand ); #endif } #if defined( PLATFORM_64BITS ) #if _MSC_VER < 1500 // This intrinsic isn't supported on VS2005. extern "C" unsigned char _InterlockedCompareExchange128( int64 volatile * Destination, int64 ExchangeHigh, int64 ExchangeLow, int64 * ComparandResult ); #endif bool ThreadInterlockedAssignIf128( volatile int128 *pDest, const int128 &value, const int128 &comperand ) { Assert( ( (size_t)pDest % 16 ) == 0 ); volatile int64 *pDest64 = ( volatile int64 * )pDest; int64 *pValue64 = ( int64 * )&value; int64 *pComperand64 = ( int64 * )&comperand; // Description: // The CMPXCHG16B instruction compares the 128-bit value in the RDX:RAX and RCX:RBX registers // with a 128-bit memory location. If the values are equal, the zero flag (ZF) is set, // and the RCX:RBX value is copied to the memory location. // Otherwise, the ZF flag is cleared, and the memory value is copied to RDX:RAX. // _InterlockedCompareExchange128: http://msdn.microsoft.com/en-us/library/bb514094.aspx return _InterlockedCompareExchange128( pDest64, pValue64[1], pValue64[0], pComperand64 ) == 1; } #endif // PLATFORM_64BITS int64 ThreadInterlockedIncrement64( int64 volatile *pDest ) { Assert( (size_t)pDest % 8 == 0 ); int64 Old; do { Old = *pDest; } while (ThreadInterlockedCompareExchange64(pDest, Old + 1, Old) != Old); return Old + 1; } int64 ThreadInterlockedDecrement64( int64 volatile *pDest ) { Assert( (size_t)pDest % 8 == 0 ); int64 Old; do { Old = *pDest; } while (ThreadInterlockedCompareExchange64(pDest, Old - 1, Old) != Old); return Old - 1; } int64 ThreadInterlockedExchange64( int64 volatile *pDest, int64 value ) { Assert( (size_t)pDest % 8 == 0 ); int64 Old; do { Old = *pDest; } while (ThreadInterlockedCompareExchange64(pDest, value, Old) != Old); return Old; } int64 ThreadInterlockedExchangeAdd64( int64 volatile *pDest, int64 value ) { Assert( (size_t)pDest % 8 == 0 ); int64 Old; do { Old = *pDest; } while (ThreadInterlockedCompareExchange64(pDest, Old + value, Old) != Old); return Old; } #elif defined(GNUC) #ifdef OSX #include #endif long ThreadInterlockedIncrement( long volatile *pDest ) { return __sync_fetch_and_add( pDest, 1 ) + 1; } long ThreadInterlockedDecrement( long volatile *pDest ) { return __sync_fetch_and_sub( pDest, 1 ) - 1; } long ThreadInterlockedExchange( long volatile *pDest, long value ) { return __sync_lock_test_and_set( pDest, value ); } long ThreadInterlockedExchangeAdd( long volatile *pDest, long value ) { return __sync_fetch_and_add( pDest, value ); } long ThreadInterlockedCompareExchange( long volatile *pDest, long value, long comperand ) { return __sync_val_compare_and_swap( pDest, comperand, value ); } bool ThreadInterlockedAssignIf( long volatile *pDest, long value, long comperand ) { return __sync_bool_compare_and_swap( pDest, comperand, value ); } void *ThreadInterlockedExchangePointer( void * volatile *pDest, void *value ) { return __sync_lock_test_and_set( pDest, value ); } void *ThreadInterlockedCompareExchangePointer( void *volatile *pDest, void *value, void *comperand ) { return __sync_val_compare_and_swap( pDest, comperand, value ); } bool ThreadInterlockedAssignPointerIf( void * volatile *pDest, void *value, void *comperand ) { return __sync_bool_compare_and_swap( pDest, comperand, value ); } int64 ThreadInterlockedCompareExchange64( int64 volatile *pDest, int64 value, int64 comperand ) { #if defined(OSX) int64 retVal = *pDest; if ( OSAtomicCompareAndSwap64( comperand, value, pDest ) ) retVal = *pDest; return retVal; #else return __sync_val_compare_and_swap( pDest, comperand, value ); #endif } bool ThreadInterlockedAssignIf64( int64 volatile * pDest, int64 value, int64 comperand ) { return __sync_bool_compare_and_swap( pDest, comperand, value ); } int64 ThreadInterlockedExchange64( int64 volatile *pDest, int64 value ) { Assert( (size_t)pDest % 8 == 0 ); int64 Old; do { Old = *pDest; } while (ThreadInterlockedCompareExchange64(pDest, value, Old) != Old); return Old; } #else // This will perform horribly, #error "Falling back to mutexed interlocked operations, you really don't have intrinsics you can use?"ß CThreadMutex g_InterlockedMutex; long ThreadInterlockedIncrement( long volatile *pDest ) { AUTO_LOCK( g_InterlockedMutex ); return ++(*pDest); } long ThreadInterlockedDecrement( long volatile *pDest ) { AUTO_LOCK( g_InterlockedMutex ); return --(*pDest); } long ThreadInterlockedExchange( long volatile *pDest, long value ) { AUTO_LOCK( g_InterlockedMutex ); long retVal = *pDest; *pDest = value; return retVal; } void *ThreadInterlockedExchangePointer( void * volatile *pDest, void *value ) { AUTO_LOCK( g_InterlockedMutex ); void *retVal = *pDest; *pDest = value; return retVal; } long ThreadInterlockedExchangeAdd( long volatile *pDest, long value ) { AUTO_LOCK( g_InterlockedMutex ); long retVal = *pDest; *pDest += value; return retVal; } long ThreadInterlockedCompareExchange( long volatile *pDest, long value, long comperand ) { AUTO_LOCK( g_InterlockedMutex ); long retVal = *pDest; if ( *pDest == comperand ) *pDest = value; return retVal; } void *ThreadInterlockedCompareExchangePointer( void * volatile *pDest, void *value, void *comperand ) { AUTO_LOCK( g_InterlockedMutex ); void *retVal = *pDest; if ( *pDest == comperand ) *pDest = value; return retVal; } int64 ThreadInterlockedCompareExchange64( int64 volatile *pDest, int64 value, int64 comperand ) { Assert( (size_t)pDest % 8 == 0 ); AUTO_LOCK( g_InterlockedMutex ); int64 retVal = *pDest; if ( *pDest == comperand ) *pDest = value; return retVal; } int64 ThreadInterlockedExchange64( int64 volatile *pDest, int64 value ) { Assert( (size_t)pDest % 8 == 0 ); int64 Old; do { Old = *pDest; } while (ThreadInterlockedCompareExchange64(pDest, value, Old) != Old); return Old; } bool ThreadInterlockedAssignIf64(volatile int64 *pDest, int64 value, int64 comperand ) { Assert( (size_t)pDest % 8 == 0 ); return ( ThreadInterlockedCompareExchange64( pDest, value, comperand ) == comperand ); } bool ThreadInterlockedAssignIf( long volatile *pDest, long value, long comperand ) { Assert( (size_t)pDest % 4 == 0 ); return ( ThreadInterlockedCompareExchange( pDest, value, comperand ) == comperand ); } #endif //----------------------------------------------------------------------------- #if defined(_WIN32) && defined(THREAD_PROFILER) void ThreadNotifySyncNoop(void *p) {} #define MAP_THREAD_PROFILER_CALL( from, to ) \ void from(void *p) \ { \ static CDynamicFunction dynFunc( "libittnotify.dll", #to, ThreadNotifySyncNoop ); \ (*dynFunc)(p); \ } MAP_THREAD_PROFILER_CALL( ThreadNotifySyncPrepare, __itt_notify_sync_prepare ); MAP_THREAD_PROFILER_CALL( ThreadNotifySyncCancel, __itt_notify_sync_cancel ); MAP_THREAD_PROFILER_CALL( ThreadNotifySyncAcquired, __itt_notify_sync_acquired ); MAP_THREAD_PROFILER_CALL( ThreadNotifySyncReleasing, __itt_notify_sync_releasing ); #endif //----------------------------------------------------------------------------- // // CThreadMutex // //----------------------------------------------------------------------------- #ifndef POSIX CThreadMutex::CThreadMutex() { #ifdef THREAD_MUTEX_TRACING_ENABLED memset( &m_CriticalSection, 0, sizeof(m_CriticalSection) ); #endif InitializeCriticalSectionAndSpinCount((CRITICAL_SECTION *)&m_CriticalSection, 4000); #ifdef THREAD_MUTEX_TRACING_SUPPORTED // These need to be initialized unconditionally in case mixing release & debug object modules // Lock and unlock may be emitted as COMDATs, in which case may get spurious output m_currentOwnerID = m_lockCount = 0; m_bTrace = false; #endif } CThreadMutex::~CThreadMutex() { DeleteCriticalSection((CRITICAL_SECTION *)&m_CriticalSection); } #endif // !POSIX #if defined( _WIN32 ) && !defined( _X360 ) typedef BOOL (WINAPI*TryEnterCriticalSectionFunc_t)(LPCRITICAL_SECTION); static CDynamicFunction DynTryEnterCriticalSection( "Kernel32.dll", "TryEnterCriticalSection" ); #elif defined( _X360 ) #define DynTryEnterCriticalSection TryEnterCriticalSection #endif bool CThreadMutex::TryLock() { #if defined( _WIN32 ) #ifdef THREAD_MUTEX_TRACING_ENABLED uint thisThreadID = ThreadGetCurrentId(); if ( m_bTrace && m_currentOwnerID && ( m_currentOwnerID != thisThreadID ) ) Msg( "Thread %u about to try-wait for lock %p owned by %u\n", ThreadGetCurrentId(), (CRITICAL_SECTION *)&m_CriticalSection, m_currentOwnerID ); #endif if ( DynTryEnterCriticalSection != NULL ) { if ( (*DynTryEnterCriticalSection )( (CRITICAL_SECTION *)&m_CriticalSection ) != FALSE ) { #ifdef THREAD_MUTEX_TRACING_ENABLED if (m_lockCount == 0) { // we now own it for the first time. Set owner information m_currentOwnerID = thisThreadID; if ( m_bTrace ) Msg( "Thread %u now owns lock 0x%p\n", m_currentOwnerID, (CRITICAL_SECTION *)&m_CriticalSection ); } m_lockCount++; #endif return true; } return false; } Lock(); return true; #elif defined( POSIX ) return pthread_mutex_trylock( &m_Mutex ) == 0; #else #error "Implement me!" return true; #endif } //----------------------------------------------------------------------------- // // CThreadFastMutex // //----------------------------------------------------------------------------- #define THREAD_SPIN (8*1024) void CThreadFastMutex::Lock( const uint32 threadId, unsigned nSpinSleepTime ) volatile { int i; if ( nSpinSleepTime != TT_INFINITE ) { for ( i = THREAD_SPIN; i != 0; --i ) { if ( TryLock( threadId ) ) { return; } ThreadPause(); } for ( i = THREAD_SPIN; i != 0; --i ) { if ( TryLock( threadId ) ) { return; } ThreadPause(); if ( i % 1024 == 0 ) { ThreadSleep( 0 ); } } #ifdef _WIN32 if ( !nSpinSleepTime && GetThreadPriority( GetCurrentThread() ) > THREAD_PRIORITY_NORMAL ) { nSpinSleepTime = 1; } else #endif if ( nSpinSleepTime ) { for ( i = THREAD_SPIN; i != 0; --i ) { if ( TryLock( threadId ) ) { return; } ThreadPause(); ThreadSleep( 0 ); } } for ( ;; ) // coded as for instead of while to make easy to breakpoint success { if ( TryLock( threadId ) ) { return; } ThreadPause(); ThreadSleep( nSpinSleepTime ); } } else { for ( ;; ) // coded as for instead of while to make easy to breakpoint success { if ( TryLock( threadId ) ) { return; } ThreadPause(); } } } //----------------------------------------------------------------------------- // // CThreadRWLock // //----------------------------------------------------------------------------- void CThreadRWLock::WaitForRead() { m_nPendingReaders++; do { m_mutex.Unlock(); m_CanRead.Wait(); m_mutex.Lock(); } while (m_nWriters); m_nPendingReaders--; } void CThreadRWLock::LockForWrite() { m_mutex.Lock(); bool bWait = ( m_nWriters != 0 || m_nActiveReaders != 0 ); m_nWriters++; m_CanRead.Reset(); m_mutex.Unlock(); if ( bWait ) { m_CanWrite.Wait(); } } void CThreadRWLock::UnlockWrite() { m_mutex.Lock(); m_nWriters--; if ( m_nWriters == 0) { if ( m_nPendingReaders ) { m_CanRead.Set(); } } else { m_CanWrite.Set(); } m_mutex.Unlock(); } //----------------------------------------------------------------------------- // // CThreadSpinRWLock // //----------------------------------------------------------------------------- void CThreadSpinRWLock::SpinLockForWrite( const uint32 threadId ) { int i; for ( i = 1000; i != 0; --i ) { if ( TryLockForWrite( threadId ) ) { return; } ThreadPause(); } for ( i = 20000; i != 0; --i ) { if ( TryLockForWrite( threadId ) ) { return; } ThreadPause(); ThreadSleep( 0 ); } for ( ;; ) // coded as for instead of while to make easy to breakpoint success { if ( TryLockForWrite( threadId ) ) { return; } ThreadPause(); ThreadSleep( 1 ); } } void CThreadSpinRWLock::LockForRead() { int i; // In order to grab a read lock, the number of readers must not change and no thread can own the write lock LockInfo_t oldValue; LockInfo_t newValue; oldValue.m_nReaders = m_lockInfo.m_nReaders; oldValue.m_writerId = 0; newValue.m_nReaders = oldValue.m_nReaders + 1; newValue.m_writerId = 0; if( m_nWriters == 0 && AssignIf( newValue, oldValue ) ) return; ThreadPause(); oldValue.m_nReaders = m_lockInfo.m_nReaders; newValue.m_nReaders = oldValue.m_nReaders + 1; for ( i = 1000; i != 0; --i ) { if( m_nWriters == 0 && AssignIf( newValue, oldValue ) ) return; ThreadPause(); oldValue.m_nReaders = m_lockInfo.m_nReaders; newValue.m_nReaders = oldValue.m_nReaders + 1; } for ( i = 20000; i != 0; --i ) { if( m_nWriters == 0 && AssignIf( newValue, oldValue ) ) return; ThreadPause(); ThreadSleep( 0 ); oldValue.m_nReaders = m_lockInfo.m_nReaders; newValue.m_nReaders = oldValue.m_nReaders + 1; } for ( ;; ) // coded as for instead of while to make easy to breakpoint success { if( m_nWriters == 0 && AssignIf( newValue, oldValue ) ) return; ThreadPause(); ThreadSleep( 1 ); oldValue.m_nReaders = m_lockInfo.m_nReaders; newValue.m_nReaders = oldValue.m_nReaders + 1; } } void CThreadSpinRWLock::UnlockRead() { int i; Assert( m_lockInfo.m_nReaders > 0 && m_lockInfo.m_writerId == 0 ); LockInfo_t oldValue; LockInfo_t newValue; oldValue.m_nReaders = m_lockInfo.m_nReaders; oldValue.m_writerId = 0; newValue.m_nReaders = oldValue.m_nReaders - 1; newValue.m_writerId = 0; if( AssignIf( newValue, oldValue ) ) return; ThreadPause(); oldValue.m_nReaders = m_lockInfo.m_nReaders; newValue.m_nReaders = oldValue.m_nReaders - 1; for ( i = 500; i != 0; --i ) { if( AssignIf( newValue, oldValue ) ) return; ThreadPause(); oldValue.m_nReaders = m_lockInfo.m_nReaders; newValue.m_nReaders = oldValue.m_nReaders - 1; } for ( i = 20000; i != 0; --i ) { if( AssignIf( newValue, oldValue ) ) return; ThreadPause(); ThreadSleep( 0 ); oldValue.m_nReaders = m_lockInfo.m_nReaders; newValue.m_nReaders = oldValue.m_nReaders - 1; } for ( ;; ) // coded as for instead of while to make easy to breakpoint success { if( AssignIf( newValue, oldValue ) ) return; ThreadPause(); ThreadSleep( 1 ); oldValue.m_nReaders = m_lockInfo.m_nReaders; newValue.m_nReaders = oldValue.m_nReaders - 1; } } void CThreadSpinRWLock::UnlockWrite() { Assert( m_lockInfo.m_writerId == ThreadGetCurrentId() && m_lockInfo.m_nReaders == 0 ); static const LockInfo_t newValue = { 0, 0 }; #if defined(_X360) // X360TBD: Serious Perf implications, not yet. __sync(); #endif ThreadInterlockedExchange64( (int64 *)&m_lockInfo, *((int64 *)&newValue) ); m_nWriters--; } //----------------------------------------------------------------------------- // // CThread // //----------------------------------------------------------------------------- CThreadLocalPtr g_pCurThread; //--------------------------------------------------------- CThread::CThread() : #ifdef _WIN32 m_hThread( NULL ), #endif m_threadId( 0 ), m_result( 0 ), m_flags( 0 ) { m_szName[0] = 0; } //--------------------------------------------------------- CThread::~CThread() { #ifdef _WIN32 if (m_hThread) #elif defined(POSIX) if ( m_threadId ) #endif { if ( IsAlive() ) { Msg( "Illegal termination of worker thread! Threads must negotiate an end to the thread before the CThread object is destroyed.\n" ); #ifdef _WIN32 DoNewAssertDialog( __FILE__, __LINE__, "Illegal termination of worker thread! Threads must negotiate an end to the thread before the CThread object is destroyed.\n" ); #endif if ( GetCurrentCThread() == this ) { Stop(); // BUGBUG: Alfred - this doesn't make sense, this destructor fires from the hosting thread not the thread itself!! } } #ifdef _WIN32 // Now that the worker thread has exited (which we know because we presumably waited // on the thread handle for it to exit) we can finally close the thread handle. We // cannot do this any earlier, and certainly not in CThread::ThreadProc(). CloseHandle( m_hThread ); #endif } } //--------------------------------------------------------- const char *CThread::GetName() { AUTO_LOCK( m_Lock ); if ( !m_szName[0] ) { #ifdef _WIN32 _snprintf( m_szName, sizeof(m_szName) - 1, "Thread(%p/%p)", this, m_hThread ); #elif defined(POSIX) _snprintf( m_szName, sizeof(m_szName) - 1, "Thread(0x%x/0x%x)", (uint)this, (uint)m_threadId ); #endif m_szName[sizeof(m_szName) - 1] = 0; } return m_szName; } //--------------------------------------------------------- void CThread::SetName(const char *pszName) { AUTO_LOCK( m_Lock ); strncpy( m_szName, pszName, sizeof(m_szName) - 1 ); m_szName[sizeof(m_szName) - 1] = 0; } //--------------------------------------------------------- bool CThread::Start( unsigned nBytesStack ) { AUTO_LOCK( m_Lock ); if ( IsAlive() ) { AssertMsg( 0, "Tried to create a thread that has already been created!" ); return false; } bool bInitSuccess = false; CThreadEvent createComplete; ThreadInit_t init = { this, &createComplete, &bInitSuccess }; #ifdef _WIN32 HANDLE hThread; m_hThread = hThread = (HANDLE)VCRHook_CreateThread( NULL, nBytesStack, (LPTHREAD_START_ROUTINE)GetThreadProc(), new ThreadInit_t(init), CREATE_SUSPENDED, &m_threadId ); if ( !hThread ) { AssertMsg1( 0, "Failed to create thread (error 0x%x)", GetLastError() ); return false; } Plat_ApplyHardwareDataBreakpointsToNewThread( m_threadId ); ResumeThread( hThread ); #elif defined(POSIX) pthread_attr_t attr; pthread_attr_init( &attr ); // From http://www.kernel.org/doc/man-pages/online/pages/man3/pthread_attr_setstacksize.3.html // A thread's stack size is fixed at the time of thread creation. Only the main thread can dynamically grow its stack. pthread_attr_setstacksize( &attr, MAX( nBytesStack, 1024u*1024 ) ); if ( pthread_create( &m_threadId, &attr, (void *(*)(void *))GetThreadProc(), new ThreadInit_t( init ) ) != 0 ) { AssertMsg1( 0, "Failed to create thread (error 0x%x)", GetLastError() ); return false; } Plat_ApplyHardwareDataBreakpointsToNewThread( (long unsigned int)m_threadId ); bInitSuccess = true; #endif #if !defined( OSX ) ThreadSetDebugName( m_threadId, m_szName ); #endif if ( !WaitForCreateComplete( &createComplete ) ) { Msg( "Thread failed to initialize\n" ); #ifdef _WIN32 CloseHandle( m_hThread ); m_hThread = NULL; m_threadId = 0; #elif defined(POSIX) m_threadId = 0; #endif return false; } if ( !bInitSuccess ) { Msg( "Thread failed to initialize\n" ); #ifdef _WIN32 CloseHandle( m_hThread ); m_hThread = NULL; m_threadId = 0; #elif defined(POSIX) m_threadId = 0; #endif return false; } #ifdef _WIN32 if ( !m_hThread ) { Msg( "Thread exited immediately\n" ); } #endif #ifdef _WIN32 return !!m_hThread; #elif defined(POSIX) return !!m_threadId; #endif } //--------------------------------------------------------- // // Return true if the thread exists. false otherwise // bool CThread::IsAlive() { #ifdef _WIN32 DWORD dwExitCode; return ( m_hThread && GetExitCodeThread( m_hThread, &dwExitCode ) && dwExitCode == STILL_ACTIVE ); #elif defined(POSIX) return m_threadId; #endif } //--------------------------------------------------------- bool CThread::Join(unsigned timeout) { #ifdef _WIN32 if ( m_hThread ) #elif defined(POSIX) if ( m_threadId ) #endif { AssertMsg(GetCurrentCThread() != this, _T("Thread cannot be joined with self")); #ifdef _WIN32 return ThreadJoin( (ThreadHandle_t)m_hThread ); #elif defined(POSIX) return ThreadJoin( (ThreadHandle_t)m_threadId ); #endif } return true; } //--------------------------------------------------------- #ifdef _WIN32 HANDLE CThread::GetThreadHandle() { return m_hThread; } #endif #if defined( _WIN32 ) || defined( LINUX ) //--------------------------------------------------------- uint CThread::GetThreadId() { return m_threadId; } #endif //--------------------------------------------------------- int CThread::GetResult() { return m_result; } //--------------------------------------------------------- // // Forcibly, abnormally, but relatively cleanly stop the thread // void CThread::Stop(int exitCode) { if ( !IsAlive() ) return; if ( GetCurrentCThread() == this ) { m_result = exitCode; if ( !( m_flags & SUPPORT_STOP_PROTOCOL ) ) { OnExit(); g_pCurThread = (int)NULL; #ifdef _WIN32 CloseHandle( m_hThread ); m_hThread = NULL; #endif Cleanup(); } throw exitCode; } else AssertMsg( 0, "Only thread can stop self: Use a higher-level protocol"); } //--------------------------------------------------------- int CThread::GetPriority() const { #ifdef _WIN32 return GetThreadPriority(m_hThread); #elif defined(POSIX) struct sched_param thread_param; int policy; pthread_getschedparam( m_threadId, &policy, &thread_param ); return thread_param.sched_priority; #endif } //--------------------------------------------------------- bool CThread::SetPriority(int priority) { #ifdef _WIN32 return ThreadSetPriority( (ThreadHandle_t)m_hThread, priority ); #else return ThreadSetPriority( (ThreadHandle_t)m_threadId, priority ); #endif } //--------------------------------------------------------- void CThread::SuspendCooperative() { if ( ThreadGetCurrentId() == (ThreadId_t)m_threadId ) { m_SuspendEventSignal.Set(); m_nSuspendCount = 1; m_SuspendEvent.Wait(); m_nSuspendCount = 0; } else { Assert( !"Suspend not called from worker thread, this would be a bug" ); } } //--------------------------------------------------------- void CThread::ResumeCooperative() { Assert( m_nSuspendCount == 1 ); m_SuspendEvent.Set(); } void CThread::BWaitForThreadSuspendCooperative() { m_SuspendEventSignal.Wait(); } #ifndef LINUX //--------------------------------------------------------- unsigned int CThread::Suspend() { #ifdef _WIN32 return ( SuspendThread(m_hThread) != 0 ); #elif defined(OSX) int susCount = m_nSuspendCount++; while ( thread_suspend( pthread_mach_thread_np(m_threadId) ) != KERN_SUCCESS ) { }; return ( susCount) != 0; #else #error #endif } //--------------------------------------------------------- unsigned int CThread::Resume() { #ifdef _WIN32 return ( ResumeThread(m_hThread) != 0 ); #elif defined(OSX) int susCount = m_nSuspendCount++; while ( thread_resume( pthread_mach_thread_np(m_threadId) ) != KERN_SUCCESS ) { }; return ( susCount - 1) != 0; #else #error #endif } #endif //--------------------------------------------------------- bool CThread::Terminate(int exitCode) { #ifndef _X360 #ifdef _WIN32 // I hope you know what you're doing! if (!TerminateThread(m_hThread, exitCode)) return false; CloseHandle( m_hThread ); m_hThread = NULL; Cleanup(); #elif defined(POSIX) pthread_kill( m_threadId, SIGKILL ); Cleanup(); #endif return true; #else AssertMsg( 0, "Cannot terminate a thread on the Xbox!" ); return false; #endif } //--------------------------------------------------------- // // Get the Thread object that represents the current thread, if any. // Can return NULL if the current thread was not created using // CThread // CThread *CThread::GetCurrentCThread() { return g_pCurThread; } //--------------------------------------------------------- // // Offer a context switch. Under Win32, equivalent to Sleep(0) // void CThread::Yield() { #ifdef _WIN32 ::Sleep(0); #elif defined(POSIX) pthread_yield(); #endif } //--------------------------------------------------------- // // This method causes the current thread to yield and not to be // scheduled for further execution until a certain amount of real // time has elapsed, more or less. // void CThread::Sleep(unsigned duration) { #ifdef _WIN32 ::Sleep(duration); #elif defined(POSIX) usleep( duration * 1000 ); #endif } //--------------------------------------------------------- bool CThread::Init() { return true; } //--------------------------------------------------------- void CThread::OnExit() { } //--------------------------------------------------------- void CThread::Cleanup() { m_threadId = 0; } //--------------------------------------------------------- bool CThread::WaitForCreateComplete(CThreadEvent * pEvent) { // Force serialized thread creation... if (!pEvent->Wait(60000)) { AssertMsg( 0, "Probably deadlock or failure waiting for thread to initialize." ); return false; } return true; } //--------------------------------------------------------- bool CThread::IsThreadRunning() { #ifdef _PS3 // ThreadIsThreadIdRunning() doesn't work on PS3 if the thread is in a zombie state return m_eventTheadExit.Check(); #else return ThreadIsThreadIdRunning( (ThreadId_t)m_threadId ); #endif } //--------------------------------------------------------- CThread::ThreadProc_t CThread::GetThreadProc() { return ThreadProc; } //--------------------------------------------------------- unsigned __stdcall CThread::ThreadProc(LPVOID pv) { std::auto_ptr pInit((ThreadInit_t *)pv); #ifdef _X360 // Make sure all threads are consistent w.r.t floating-point math SetupFPUControlWord(); #endif CThread *pThread = pInit->pThread; g_pCurThread = pThread; g_pCurThread->m_pStackBase = AlignValue( &pThread, 4096 ); pInit->pThread->m_result = -1; bool bInitSuccess = true; if ( pInit->pfInitSuccess ) *(pInit->pfInitSuccess) = false; try { bInitSuccess = pInit->pThread->Init(); } catch (...) { pInit->pInitCompleteEvent->Set(); throw; } if ( pInit->pfInitSuccess ) *(pInit->pfInitSuccess) = bInitSuccess; pInit->pInitCompleteEvent->Set(); if (!bInitSuccess) return 0; if ( pInit->pThread->m_flags & SUPPORT_STOP_PROTOCOL ) { try { pInit->pThread->m_result = pInit->pThread->Run(); } catch (...) { } } else { pInit->pThread->m_result = pInit->pThread->Run(); } pInit->pThread->OnExit(); g_pCurThread = (int)NULL; pInit->pThread->Cleanup(); return pInit->pThread->m_result; } //----------------------------------------------------------------------------- // //----------------------------------------------------------------------------- CWorkerThread::CWorkerThread() : m_EventSend(true), // must be manual-reset for PeekCall() m_EventComplete(true), // must be manual-reset to handle multiple wait with thread properly m_Param(0), m_pParamFunctor(NULL), m_ReturnVal(0) { } //--------------------------------------------------------- int CWorkerThread::CallWorker(unsigned dw, unsigned timeout, bool fBoostWorkerPriorityToMaster, CFunctor *pParamFunctor) { return Call(dw, timeout, fBoostWorkerPriorityToMaster, NULL, pParamFunctor); } //--------------------------------------------------------- int CWorkerThread::CallMaster(unsigned dw, unsigned timeout) { return Call(dw, timeout, false); } //--------------------------------------------------------- CThreadEvent &CWorkerThread::GetCallHandle() { return m_EventSend; } //--------------------------------------------------------- unsigned CWorkerThread::GetCallParam( CFunctor **ppParamFunctor ) const { if( ppParamFunctor ) *ppParamFunctor = m_pParamFunctor; return m_Param; } //--------------------------------------------------------- int CWorkerThread::BoostPriority() { int iInitialPriority = GetPriority(); const int iNewPriority = ThreadGetPriority( (ThreadHandle_t)GetThreadID() ); if (iNewPriority > iInitialPriority) ThreadSetPriority( (ThreadHandle_t)GetThreadID(), iNewPriority); return iInitialPriority; } //--------------------------------------------------------- static uint32 __stdcall DefaultWaitFunc( int nEvents, CThreadEvent * const *pEvents, int bWaitAll, uint32 timeout ) { return ThreadWaitForEvents( nEvents, pEvents, bWaitAll!=0, timeout ); // return VCRHook_WaitForMultipleObjects( nHandles, (const void **)pHandles, bWaitAll, timeout ); } int CWorkerThread::Call(unsigned dwParam, unsigned timeout, bool fBoostPriority, WaitFunc_t pfnWait, CFunctor *pParamFunctor) { AssertMsg(!m_EventSend.Check(), "Cannot perform call if there's an existing call pending" ); AUTO_LOCK( m_Lock ); if (!IsAlive()) return WTCR_FAIL; int iInitialPriority = 0; if (fBoostPriority) { iInitialPriority = BoostPriority(); } // set the parameter, signal the worker thread, wait for the completion to be signaled m_Param = dwParam; m_pParamFunctor = pParamFunctor; m_EventComplete.Reset(); m_EventSend.Set(); WaitForReply( timeout, pfnWait ); // MWD: Investigate why setting thread priorities is killing the 360 #ifndef _X360 if (fBoostPriority) SetPriority(iInitialPriority); #endif return m_ReturnVal; } //--------------------------------------------------------- // // Wait for a request from the client // //--------------------------------------------------------- int CWorkerThread::WaitForReply( unsigned timeout ) { return WaitForReply( timeout, NULL ); } int CWorkerThread::WaitForReply( unsigned timeout, WaitFunc_t pfnWait ) { if (!pfnWait) { pfnWait = DefaultWaitFunc; } #ifdef WIN32 CThreadEvent threadEvent( GetThreadHandle() ); #endif CThreadEvent *waits[] = { #ifdef WIN32 &threadEvent, #endif &m_EventComplete }; unsigned result; bool bInDebugger = Plat_IsInDebugSession(); do { #ifdef WIN32 // Make sure the thread handle hasn't been closed if ( !GetThreadHandle() ) { result = WAIT_OBJECT_0 + 1; break; } #endif result = (*pfnWait)((sizeof(waits) / sizeof(waits[0])), waits, false, (timeout != TT_INFINITE) ? timeout : 30000); AssertMsg(timeout != TT_INFINITE || result != WAIT_TIMEOUT, "Possible hung thread, call to thread timed out"); } while ( bInDebugger && ( timeout == TT_INFINITE && result == WAIT_TIMEOUT ) ); if ( result != WAIT_OBJECT_0 + 1 ) { if (result == WAIT_TIMEOUT) m_ReturnVal = WTCR_TIMEOUT; else if (result == WAIT_OBJECT_0) { DevMsg( 2, "Thread failed to respond, probably exited\n"); m_EventSend.Reset(); m_ReturnVal = WTCR_TIMEOUT; } else { m_EventSend.Reset(); m_ReturnVal = WTCR_THREAD_GONE; } } return m_ReturnVal; } //--------------------------------------------------------- // // Wait for a request from the client // //--------------------------------------------------------- bool CWorkerThread::WaitForCall(unsigned * pResult) { return WaitForCall(TT_INFINITE, pResult); } //--------------------------------------------------------- bool CWorkerThread::WaitForCall(unsigned dwTimeout, unsigned * pResult) { bool returnVal = m_EventSend.Wait(dwTimeout); if (pResult) *pResult = m_Param; return returnVal; } //--------------------------------------------------------- // // is there a request? // bool CWorkerThread::PeekCall(unsigned * pParam, CFunctor **ppParamFunctor) { if (!m_EventSend.Check()) { return false; } else { if (pParam) { *pParam = m_Param; } if( ppParamFunctor ) { *ppParamFunctor = m_pParamFunctor; } return true; } } //--------------------------------------------------------- // // Reply to the request // void CWorkerThread::Reply(unsigned dw) { m_Param = 0; m_ReturnVal = dw; // The request is now complete so PeekCall() should fail from // now on // // This event should be reset BEFORE we signal the client m_EventSend.Reset(); // Tell the client we're finished m_EventComplete.Set(); } //-----------------------------------------------------------------------------