//====== Copyright 1996-2004, Valve Corporation, All rights reserved. ======= // // Purpose: // //============================================================================= #include "tier1/utlstring.h" #include "tier1/strtools.h" #include // NOTE: This has to be the last file included! #include "tier0/memdbgon.h" //----------------------------------------------------------------------------- // Base class, containing simple memory management //----------------------------------------------------------------------------- CUtlBinaryBlock::CUtlBinaryBlock( int growSize, int initSize ) { MEM_ALLOC_CREDIT(); m_Memory.Init( growSize, initSize ); m_nActualLength = 0; } CUtlBinaryBlock::CUtlBinaryBlock( void* pMemory, int nSizeInBytes, int nInitialLength ) : m_Memory( (unsigned char*)pMemory, nSizeInBytes ) { m_nActualLength = nInitialLength; } CUtlBinaryBlock::CUtlBinaryBlock( const void* pMemory, int nSizeInBytes ) : m_Memory( (const unsigned char*)pMemory, nSizeInBytes ) { m_nActualLength = nSizeInBytes; } CUtlBinaryBlock::CUtlBinaryBlock( const CUtlBinaryBlock& src ) { Set( src.Get(), src.Length() ); } void CUtlBinaryBlock::Get( void *pValue, int nLen ) const { Assert( nLen > 0 ); if ( m_nActualLength < nLen ) { nLen = m_nActualLength; } if ( nLen > 0 ) { memcpy( pValue, m_Memory.Base(), nLen ); } } void CUtlBinaryBlock::SetLength( int nLength ) { MEM_ALLOC_CREDIT(); Assert( !m_Memory.IsReadOnly() ); m_nActualLength = nLength; if ( nLength > m_Memory.NumAllocated() ) { int nOverFlow = nLength - m_Memory.NumAllocated(); m_Memory.Grow( nOverFlow ); // If the reallocation failed, clamp length if ( nLength > m_Memory.NumAllocated() ) { m_nActualLength = m_Memory.NumAllocated(); } } #ifdef _DEBUG if ( m_Memory.NumAllocated() > m_nActualLength ) { memset( ( ( char * )m_Memory.Base() ) + m_nActualLength, 0xEB, m_Memory.NumAllocated() - m_nActualLength ); } #endif } void CUtlBinaryBlock::Set( const void *pValue, int nLen ) { Assert( !m_Memory.IsReadOnly() ); if ( !pValue ) { nLen = 0; } SetLength( nLen ); if ( m_nActualLength ) { if ( ( ( const char * )m_Memory.Base() ) >= ( ( const char * )pValue ) + nLen || ( ( const char * )m_Memory.Base() ) + m_nActualLength <= ( ( const char * )pValue ) ) { memcpy( m_Memory.Base(), pValue, m_nActualLength ); } else { memmove( m_Memory.Base(), pValue, m_nActualLength ); } } } CUtlBinaryBlock &CUtlBinaryBlock::operator=( const CUtlBinaryBlock &src ) { Assert( !m_Memory.IsReadOnly() ); Set( src.Get(), src.Length() ); return *this; } bool CUtlBinaryBlock::operator==( const CUtlBinaryBlock &src ) const { if ( src.Length() != Length() ) return false; return !memcmp( src.Get(), Get(), Length() ); } //----------------------------------------------------------------------------- // Simple string class. //----------------------------------------------------------------------------- CUtlString::CUtlString() { } CUtlString::CUtlString( const char *pString ) { Set( pString ); } CUtlString::CUtlString( const CUtlString& string ) { Set( string.Get() ); } // Attaches the string to external memory. Useful for avoiding a copy CUtlString::CUtlString( void* pMemory, int nSizeInBytes, int nInitialLength ) : m_Storage( pMemory, nSizeInBytes, nInitialLength ) { } CUtlString::CUtlString( const void* pMemory, int nSizeInBytes ) : m_Storage( pMemory, nSizeInBytes ) { } //----------------------------------------------------------------------------- // Purpose: Set directly and don't look for a null terminator in pValue. //----------------------------------------------------------------------------- void CUtlString::SetDirect( const char *pValue, int nChars ) { if ( nChars > 0 ) { m_Storage.SetLength( nChars+1 ); m_Storage.Set( pValue, nChars ); m_Storage[nChars] = 0; } else { m_Storage.SetLength( 0 ); } } void CUtlString::Set( const char *pValue ) { Assert( !m_Storage.IsReadOnly() ); int nLen = pValue ? V_strlen(pValue) + 1 : 0; m_Storage.Set( pValue, nLen ); } // Returns strlen int CUtlString::Length() const { return m_Storage.Length() ? m_Storage.Length() - 1 : 0; } // Sets the length (used to serialize into the buffer ) void CUtlString::SetLength( int nLen ) { Assert( !m_Storage.IsReadOnly() ); // Add 1 to account for the NULL m_Storage.SetLength( nLen > 0 ? nLen + 1 : 0 ); } const char *CUtlString::Get( ) const { if ( m_Storage.Length() == 0 ) { return ""; } return reinterpret_cast< const char* >( m_Storage.Get() ); } // Converts to c-strings CUtlString::operator const char*() const { return Get(); } char *CUtlString::Get() { Assert( !m_Storage.IsReadOnly() ); if ( m_Storage.Length() == 0 ) { // In general, we optimise away small mallocs for empty strings // but if you ask for the non-const bytes, they must be writable // so we can't return "" here, like we do for the const version - jd m_Storage.SetLength( 1 ); m_Storage[ 0 ] = '\0'; } return reinterpret_cast< char* >( m_Storage.Get() ); } void CUtlString::Purge() { m_Storage.Purge(); } void CUtlString::ToLower() { for( int nLength = Length() - 1; nLength >= 0; nLength-- ) { m_Storage[ nLength ] = tolower( m_Storage[ nLength ] ); } } CUtlString &CUtlString::operator=( const CUtlString &src ) { Assert( !m_Storage.IsReadOnly() ); m_Storage = src.m_Storage; return *this; } CUtlString &CUtlString::operator=( const char *src ) { Assert( !m_Storage.IsReadOnly() ); Set( src ); return *this; } bool CUtlString::operator==( const CUtlString &src ) const { return m_Storage == src.m_Storage; } bool CUtlString::operator==( const char *src ) const { return ( strcmp( Get(), src ) == 0 ); } CUtlString &CUtlString::operator+=( const CUtlString &rhs ) { Assert( !m_Storage.IsReadOnly() ); const int lhsLength( Length() ); const int rhsLength( rhs.Length() ); const int requestedLength( lhsLength + rhsLength ); SetLength( requestedLength ); const int allocatedLength( Length() ); const int copyLength( allocatedLength - lhsLength < rhsLength ? allocatedLength - lhsLength : rhsLength ); memcpy( Get() + lhsLength, rhs.Get(), copyLength ); m_Storage[ allocatedLength ] = '\0'; return *this; } CUtlString &CUtlString::operator+=( const char *rhs ) { Assert( !m_Storage.IsReadOnly() ); const int lhsLength( Length() ); const int rhsLength( V_strlen( rhs ) ); const int requestedLength( lhsLength + rhsLength ); SetLength( requestedLength ); const int allocatedLength( Length() ); const int copyLength( allocatedLength - lhsLength < rhsLength ? allocatedLength - lhsLength : rhsLength ); memcpy( Get() + lhsLength, rhs, copyLength ); m_Storage[ allocatedLength ] = '\0'; return *this; } CUtlString &CUtlString::operator+=( char c ) { Assert( !m_Storage.IsReadOnly() ); int nLength = Length(); SetLength( nLength + 1 ); m_Storage[ nLength ] = c; m_Storage[ nLength+1 ] = '\0'; return *this; } CUtlString &CUtlString::operator+=( int rhs ) { Assert( !m_Storage.IsReadOnly() ); Assert( sizeof( rhs ) == 4 ); char tmpBuf[ 12 ]; // Sufficient for a signed 32 bit integer [ -2147483648 to +2147483647 ] V_snprintf( tmpBuf, sizeof( tmpBuf ), "%d", rhs ); tmpBuf[ sizeof( tmpBuf ) - 1 ] = '\0'; return operator+=( tmpBuf ); } CUtlString &CUtlString::operator+=( double rhs ) { Assert( !m_Storage.IsReadOnly() ); char tmpBuf[ 256 ]; // How big can doubles be??? Dunno. V_snprintf( tmpBuf, sizeof( tmpBuf ), "%lg", rhs ); tmpBuf[ sizeof( tmpBuf ) - 1 ] = '\0'; return operator+=( tmpBuf ); } bool CUtlString::MatchesPattern( const CUtlString &Pattern, int nFlags ) const { const char *pszSource = String(); const char *pszPattern = Pattern.String(); bool bExact = true; while( 1 ) { if ( ( *pszPattern ) == 0 ) { return ( (*pszSource ) == 0 ); } if ( ( *pszPattern ) == '*' ) { pszPattern++; if ( ( *pszPattern ) == 0 ) { return true; } bExact = false; continue; } int nLength = 0; while( ( *pszPattern ) != '*' && ( *pszPattern ) != 0 ) { nLength++; pszPattern++; } while( 1 ) { const char *pszStartPattern = pszPattern - nLength; const char *pszSearch = pszSource; for( int i = 0; i < nLength; i++, pszSearch++, pszStartPattern++ ) { if ( ( *pszSearch ) == 0 ) { return false; } if ( ( *pszSearch ) != ( *pszStartPattern ) ) { break; } } if ( pszSearch - pszSource == nLength ) { break; } if ( bExact == true ) { return false; } if ( ( nFlags & PATTERN_DIRECTORY ) != 0 ) { if ( ( *pszPattern ) != '/' && ( *pszSource ) == '/' ) { return false; } } pszSource++; } pszSource += nLength; } } int CUtlString::Format( const char *pFormat, ... ) { Assert( !m_Storage.IsReadOnly() ); char tmpBuf[ 4096 ]; //< Nice big 4k buffer, as much memory as my first computer had, a Radio Shack Color Computer va_list marker; va_start( marker, pFormat ); #ifdef _WIN32 int len = _vsnprintf( tmpBuf, sizeof( tmpBuf ) - 1, pFormat, marker ); #elif POSIX int len = vsnprintf( tmpBuf, sizeof( tmpBuf ) - 1, pFormat, marker ); #else #error "define vsnprintf type." #endif va_end( marker ); // Len > maxLen represents an overflow on POSIX, < 0 is an overflow on windows if( len < 0 || len >= sizeof( tmpBuf ) - 1 ) { len = sizeof( tmpBuf ) - 1; tmpBuf[sizeof( tmpBuf ) - 1] = 0; } Set( tmpBuf ); return len; } //----------------------------------------------------------------------------- // Strips the trailing slash //----------------------------------------------------------------------------- void CUtlString::StripTrailingSlash() { if ( IsEmpty() ) return; int nLastChar = Length() - 1; char c = m_Storage[ nLastChar ]; if ( c == '\\' || c == '/' ) { m_Storage[ nLastChar ] = 0; m_Storage.SetLength( m_Storage.Length() - 1 ); } } CUtlString CUtlString::Slice( int32 nStart, int32 nEnd ) const { if ( nStart < 0 ) nStart = Length() - (-nStart % Length()); else if ( nStart >= Length() ) nStart = Length(); if ( nEnd == INT32_MAX ) nEnd = Length(); else if ( nEnd < 0 ) nEnd = Length() - (-nEnd % Length()); else if ( nEnd >= Length() ) nEnd = Length(); if ( nStart >= nEnd ) return CUtlString( "" ); const char *pIn = String(); CUtlString ret; ret.m_Storage.SetLength( nEnd - nStart + 1 ); char *pOut = (char*)ret.m_Storage.Get(); memcpy( ret.m_Storage.Get(), &pIn[nStart], nEnd - nStart ); pOut[nEnd - nStart] = 0; return ret; } // Grab a substring starting from the left or the right side. CUtlString CUtlString::Left( int32 nChars ) const { return Slice( 0, nChars ); } CUtlString CUtlString::Right( int32 nChars ) const { return Slice( -nChars ); } CUtlString CUtlString::Replace( char cFrom, char cTo ) const { CUtlString ret = *this; int len = ret.Length(); for ( int i=0; i < len; i++ ) { if ( ret.m_Storage[i] == cFrom ) ret.m_Storage[i] = cTo; } return ret; } CUtlString CUtlString::AbsPath( const char *pStartingDir ) const { char szNew[MAX_PATH]; V_MakeAbsolutePath( szNew, sizeof( szNew ), this->String(), pStartingDir ); return CUtlString( szNew ); } CUtlString CUtlString::UnqualifiedFilename() const { const char *pFilename = V_UnqualifiedFileName( this->String() ); return CUtlString( pFilename ); } CUtlString CUtlString::DirName() const { CUtlString ret( this->String() ); V_StripLastDir( (char*)ret.m_Storage.Get(), ret.m_Storage.Length() ); V_StripTrailingSlash( (char*)ret.m_Storage.Get() ); return ret; } CUtlString CUtlString::PathJoin( const char *pStr1, const char *pStr2 ) { char szPath[MAX_PATH]; V_ComposeFileName( pStr1, pStr2, szPath, sizeof( szPath ) ); return CUtlString( szPath ); } CUtlString CUtlString::operator+( const char *pOther ) const { CUtlString s = *this; s += pOther; return s; } //----------------------------------------------------------------------------- // Purpose: concatenate the provided string to our current content //----------------------------------------------------------------------------- void CUtlString::Append( const char *pchAddition ) { CUtlString s = *this; s += pchAddition; }