//========= Copyright Valve Corporation, All rights reserved. ============// // // Purpose: Main control for any streaming sound output device. // //===========================================================================// #include "audio_pch.h" #include "const.h" #include "cdll_int.h" #include "client_class.h" #include "icliententitylist.h" #include "tier0/vcrmode.h" #include "con_nprint.h" #include "tier0/icommandline.h" #include "vox_private.h" #include "../../traceinit.h" #include "../../cmd.h" #include "toolframework/itoolframework.h" #include "vstdlib/random.h" #include "vstdlib/jobthread.h" #include "vaudio/ivaudio.h" #include "../../client.h" #include "../../cl_main.h" #include "utldict.h" #include "mempool.h" #include "../../enginetrace.h" // for traceline #include "../../public/bspflags.h" // for traceline #include "../../public/gametrace.h" // for traceline #include "vphysics_interface.h" // for surface props #include "../../ispatialpartitioninternal.h" // for entity enumerator #include "../../debugoverlay.h" #include "icliententity.h" #include "../../cmodel_engine.h" #include "../../staticpropmgr.h" #include "../../server.h" #include "edict.h" #include "../../pure_server.h" #include "filesystem/IQueuedLoader.h" #include "voice.h" #if defined( _X360 ) #include "xbox/xbox_console.h" #include "xmp.h" #endif #include "replay/iclientreplaycontext.h" #include "replay/ireplaymovierenderer.h" #include "video/ivideoservices.h" extern IVideoServices *g_pVideo; /* #include "gl_model_private.h" #include "world.h" #include "vphysics_interface.h" #include "client_class.h" #include "server_class.h" */ // memdbgon must be the last include file in a .cpp file!!! #include "tier0/memdbgon.h" /////////////////////////////////// // DEBUGGING // // Turn this on to print channel output msgs. // //#define DEBUG_CHANNELS #define SNDLVL_TO_DIST_MULT( sndlvl ) ( sndlvl ? ((pow( 10.0f, snd_refdb.GetFloat() / 20 ) / pow( 10.0f, (float)sndlvl / 20 )) / snd_refdist.GetFloat()) : 0 ) #define DIST_MULT_TO_SNDLVL( dist_mult ) (soundlevel_t)(int)( dist_mult ? ( 20 * log10( pow( 10.0f, snd_refdb.GetFloat() / 20 ) / (dist_mult * snd_refdist.GetFloat()) ) ) : 0 ) extern ConVar dsp_spatial; extern IPhysicsSurfaceProps *physprop; extern bool IsReplayRendering(); static void S_Play( const CCommand &args ); static void S_PlayVol( const CCommand &args ); void S_SoundList(void); static void S_Say ( const CCommand &args ); void S_Update_(float); void S_StopAllSounds(bool clear); void S_StopAllSoundsC(void); void S_ShutdownMixThread(); const char *GetClientClassname( SoundSource soundsource ); float SND_GetGainObscured( channel_t *ch, bool fplayersound, bool flooping, bool bAttenuated ); void DSP_ChangePresetValue( int idsp, int channel, int iproc, float value ); bool DSP_CheckDspAutoEnabled( void ); void DSP_SetDspAuto( int dsp_preset ); float dB_To_Radius ( float db ); int dsp_room_GetInt ( void ); bool MXR_LoadAllSoundMixers( void ); void MXR_ReleaseMemory( void ); int MXR_GetMixGroupListFromDirName( const char *pDirname, byte *pList, int listMax ); void MXR_GetMixGroupFromSoundsource( channel_t *pchan, SoundSource soundsource, soundlevel_t soundlevel); float MXR_GetVolFromMixGroup( int rgmixgroupid[8], int *plast_mixgroupid ); char *MXR_GetGroupnameFromId( int mixgroupid ); int MXR_GetMixgroupFromName( const char *pszgroupname ); void MXR_DebugShowMixVolumes( void ); #ifdef _DEBUG static void MXR_DebugSetMixGroupVolume( const CCommand &args ); #endif //_DEBUG void MXR_UpdateAllDuckerVolumes( void ); void ChannelSetVolTargets( channel_t *pch, int *pvolumes, int ivol_offset, int cvol ); void ChannelUpdateVolXfade( channel_t *pch ); void ChannelClearVolumes( channel_t *pch ); float VOX_GetChanVol(channel_t *ch); void ConvertListenerVectorTo2D( Vector *pvforward, Vector *pvright ); int ChannelGetMaxVol( channel_t *pch ); // Forceably ends voice tweak mode (only occurs during snd_restart void VoiceTweak_EndVoiceTweakMode(); bool VoiceTweak_IsStillTweaking(); // Only does anything for voice tweak channel so if view entity changes it doesn't fade out to zero volume void Voice_Spatialize( channel_t *channel ); // ======================================================================= // Internal sound data & structures // ======================================================================= channel_t channels[MAX_CHANNELS]; int total_channels; CActiveChannels g_ActiveChannels; static double g_LastSoundFrame = 0.0f; // last full frame of sound static double g_LastMixTime = 0.0f; // last time we did mixing static float g_EstFrameTime = 0.1f; // estimated frame time running average // x360 override to fade out game music when the user is playing music through the dashboard static float g_DashboardMusicMixValue = 1.0f; static float g_DashboardMusicMixTarget = 1.0f; const float g_DashboardMusicFadeRate = 0.5f; // Fades one half full-scale volume per second (two seconds for complete fadeout) // sound mixers int g_csoundmixers = 0; // total number of soundmixers found int g_cgrouprules = 0; // total number of group rules found int g_cgroupclass = 0; // this is used to enable/disable music playback on x360 when the user selects his own soundtrack to play void S_EnableMusic( bool bEnable ) { if ( bEnable ) { g_DashboardMusicMixTarget = 1.0f; } else { g_DashboardMusicMixTarget = 0.0f; } } bool IsSoundSourceLocalPlayer( int soundsource ) { if ( soundsource == SOUND_FROM_UI_PANEL ) return true; return ( soundsource == g_pSoundServices->GetViewEntity() ); } CThreadMutex g_SndMutex; #define THREAD_LOCK_SOUND() AUTO_LOCK( g_SndMutex ) const int MASK_BLOCK_AUDIO = CONTENTS_SOLID|CONTENTS_MOVEABLE|CONTENTS_WINDOW; void CActiveChannels::Add( channel_t *pChannel ) { Assert( pChannel->activeIndex == 0 ); m_list[m_count] = pChannel - channels; m_count++; pChannel->activeIndex = m_count; } void CActiveChannels::Remove( channel_t *pChannel ) { if ( pChannel->activeIndex == 0 ) return; int activeIndex = pChannel->activeIndex - 1; Assert( activeIndex >= 0 && activeIndex < m_count ); Assert( pChannel == &channels[m_list[activeIndex]] ); m_count--; // Not the last one? Swap the last one with this one and fix its index if ( activeIndex < m_count ) { m_list[activeIndex] = m_list[m_count]; channels[m_list[activeIndex]].activeIndex = activeIndex+1; } pChannel->activeIndex = 0; } void CActiveChannels::GetActiveChannels( CChannelList &list ) { list.m_count = m_count; if ( m_count ) { Q_memcpy( list.m_list, m_list, sizeof(m_list[0])*m_count ); } for ( int i = SOUND_BUFFER_SPECIAL_START; i < g_paintBuffers.Count(); ++i ) { paintbuffer_t *pSpecialBuffer = MIX_GetPPaintFromIPaint( i ); if ( pSpecialBuffer->nSpecialDSP != 0 ) { list.m_nSpecialDSPs.AddToTail( pSpecialBuffer->nSpecialDSP ); } } list.m_hasSpeakerChannels = true; list.m_has11kChannels = true; list.m_has22kChannels = true; list.m_has44kChannels = true; list.m_hasDryChannels = true; } void CActiveChannels::Init() { m_count = 0; } bool snd_initialized = false; Vector listener_origin; static Vector listener_forward; Vector listener_right; static Vector listener_up; static bool s_bIsListenerUnderwater; static vec_t sound_nominal_clip_dist=SOUND_NORMAL_CLIP_DIST; // @TODO (toml 05-08-02): put this somewhere more reasonable vec_t S_GetNominalClipDist() { return sound_nominal_clip_dist; } int g_soundtime = 0; // sample PAIRS output since start int g_paintedtime = 0; // sample PAIRS mixed since start float g_ReplaySoundTimeFracAccumulator = 0.0f; // Used by replay float g_ClockSyncArray[NUM_CLOCK_SYNCS] = {0}; int g_SoundClockPaintTime[NUM_CLOCK_SYNCS] = {0}; // default 10ms ConVar snd_delay_sound_shift("snd_delay_sound_shift","0.01"); // this forces the clock to resync on the next delayed/sync sound void S_SyncClockAdjust( clocksync_index_t syncIndex ) { g_ClockSyncArray[syncIndex] = 0; g_SoundClockPaintTime[syncIndex] = 0; } float S_ComputeDelayForSoundtime( float soundtime, clocksync_index_t syncIndex ) { // reset clock and return 0 if ( g_ClockSyncArray[syncIndex] == 0 ) { // Put the current time marker one tick back to impose a minimum delay on the first sample // this shifts the drift over so the sounds are more likely to delay (rather than skip) // over the burst // NOTE: The first sound after a sync MUST have a non-zero delay for the delay channel // detection logic to work (otherwise we keep resetting the clock) g_ClockSyncArray[syncIndex] = soundtime - host_state.interval_per_tick; g_SoundClockPaintTime[syncIndex] = g_paintedtime; } // how much time has passed in the game since we did a clock sync? float gameDeltaTime = soundtime - g_ClockSyncArray[syncIndex]; // how many samples have been mixed since we did a clock sync? int paintedSamples = g_paintedtime - g_SoundClockPaintTime[syncIndex]; int dmaSpeed = g_AudioDevice->DeviceDmaSpeed(); int gameSamples = (gameDeltaTime * dmaSpeed); int delaySamples = gameSamples - paintedSamples; float delay = delaySamples / float(dmaSpeed); if ( gameDeltaTime < 0 || fabs(delay) > 0.500f ) { // Note that the equations assume a correlation between game time and real time // some kind of clock error. This can happen with large host_timescale or when the // framerate hitches drastically (game time is a smaller clamped value wrt real time). // The current sync estimate has probably drifted due to this or some other problem, recompute. //Msg("Clock ERROR!: %.2f %.2f\n", gameDeltaTime, delay); S_SyncClockAdjust(syncIndex); return 0; } return delay + snd_delay_sound_shift.GetFloat(); } static int s_buffers = 0; static int s_oldsampleOutCount = 0; static float s_lastsoundtime = 0.0f; bool s_bOnLoadScreen = false; static CClassMemoryPool< CSfxTable > s_SoundPool( MAX_SFX ); struct SfxDictEntry { CSfxTable *pSfx; }; static CUtlMap< FileNameHandle_t, SfxDictEntry > s_Sounds( 0, 0, DefLessFunc( FileNameHandle_t ) ); class CDummySfx : public CSfxTable { public: virtual const char *getname() { return name; } void setname( const char *pName ) { Q_strncpy( name, pName, sizeof( name ) ); OnNameChanged(name); } private: char name[MAX_PATH]; }; static CDummySfx dummySfx; // returns true if ok to procede with TraceRay calls bool SND_IsInGame( void ) { return cl.IsActive(); } CSfxTable::CSfxTable() { m_namePoolIndex = s_Sounds.InvalidIndex(); pSource = NULL; m_bUseErrorFilename = false; m_bIsUISound = false; m_bIsLateLoad = false; m_bMixGroupsCached = false; m_pDebugName = NULL; } void CSfxTable::SetNamePoolIndex( int index ) { m_namePoolIndex = index; if ( m_namePoolIndex != s_Sounds.InvalidIndex() ) { OnNameChanged(getname()); } #ifdef _DEBUG m_pDebugName = strdup( getname() ); #endif } void CSfxTable::OnNameChanged( const char *pName ) { if ( pName && g_cgrouprules ) { char szString[MAX_PATH]; Q_strncpy( szString, pName, sizeof(szString) ); Q_FixSlashes( szString, '/' ); m_mixGroupCount = MXR_GetMixGroupListFromDirName( szString, m_mixGroupList, ARRAYSIZE(m_mixGroupList) ); m_bMixGroupsCached = true; } } //----------------------------------------------------------------------------- // Purpose: Wrapper for sfxtable->getname() // Output : char const //----------------------------------------------------------------------------- const char *CSfxTable::getname() { if ( s_Sounds.InvalidIndex() != m_namePoolIndex ) { char* pString = tmpstr512(); if ( g_pFileSystem ) g_pFileSystem->String( s_Sounds.Key( m_namePoolIndex ), pString, 512 ); else { pString[0] = 0; } return pString; } return NULL; } FileNameHandle_t CSfxTable::GetFileNameHandle() { if ( s_Sounds.InvalidIndex() != m_namePoolIndex ) { return s_Sounds.Key( m_namePoolIndex ); } return NULL; } const char *CSfxTable::GetFileName() { if ( IsX360() && m_bUseErrorFilename ) { // Redirecting error sounds to a valid empty wave, prevents a bad loading retry pattern during gameplay // which may event sounds skipped by preload, because they don't exist. return "common/null.wav"; } const char *pName = getname(); return pName ? PSkipSoundChars( pName ) : NULL; } bool CSfxTable::IsPrecachedSound() { const char *pName = getname(); if ( sv.IsActive() ) { // Server uses zero to mark invalid sounds return sv.LookupSoundIndex( pName ) != 0 ? true : false; } // Client uses -1 // WE SHOULD FIX THIS!!! return ( cl.LookupSoundIndex( pName ) != -1 ) ? true : false; } float g_DuckScale = 1.0f; // Structure used for fading in and out client sound volume. typedef struct { float initial_percent; // How far to adjust client's volume down by. float percent; // GetHostTime() when we started adjusting volume float starttime; // # of seconds to get to faded out state float fadeouttime; // # of seconds to hold float holdtime; // # of seconds to restore float fadeintime; } soundfade_t; static soundfade_t soundfade; // Client sound fading singleton object // 0)headphones 2)stereo speakers 4)quad 5)5point1 // autodetected from windows settings ConVar snd_surround( "snd_surround_speakers", "-1", FCVAR_INTERNAL_USE ); ConVar snd_legacy_surround( "snd_legacy_surround", "0", FCVAR_ARCHIVE ); ConVar snd_noextraupdate( "snd_noextraupdate", "0" ); ConVar snd_show( "snd_show", "0", FCVAR_CHEAT, "Show sounds info" ); ConVar snd_visualize ("snd_visualize", "0", FCVAR_CHEAT, "Show sounds location in world" ); ConVar snd_pitchquality( "snd_pitchquality", "1", FCVAR_ARCHIVE ); // 1) use high quality pitch shifters // master volume static ConVar volume( "volume", "1.0", FCVAR_ARCHIVE | FCVAR_ARCHIVE_XBOX, "Sound volume", true, 0.0f, true, 1.0f ); // user configurable music volume ConVar snd_musicvolume( "snd_musicvolume", "1.0", FCVAR_ARCHIVE | FCVAR_ARCHIVE_XBOX, "Music volume", true, 0.0f, true, 1.0f ); ConVar snd_mixahead( "snd_mixahead", "0.1", FCVAR_ARCHIVE ); ConVar snd_mix_async( "snd_mix_async", "0" ); #ifdef _DEBUG static ConCommand snd_mixvol("snd_mixvol", MXR_DebugSetMixGroupVolume, "Set named Mixgroup to mix volume."); #endif // vaudio DLL IVAudio *vaudio = NULL; CSysModule *g_pVAudioModule = NULL; //----------------------------------------------------------------------------- // Resource loading for sound //----------------------------------------------------------------------------- class CResourcePreloadSound : public CResourcePreload { public: CResourcePreloadSound() : m_SoundNames( 0, 0, true ) { } virtual bool CreateResource( const char *pName ) { CSfxTable *pSfx = S_PrecacheSound( pName ); if ( !pSfx ) { return false; } m_SoundNames.AddString( pSfx->GetFileName() ); return true; } virtual void PurgeUnreferencedResources() { bool bSpew = ( g_pQueuedLoader->GetSpewDetail() & LOADER_DETAIL_PURGES ) != 0; for ( int i = s_Sounds.FirstInorder(); i != s_Sounds.InvalidIndex(); i = s_Sounds.NextInorder( i ) ) { // the master sound table grows forever // remove sound sources from the master sound table that were not in the preload list CSfxTable *pSfx = s_Sounds[i].pSfx; if ( pSfx && pSfx->pSource ) { if ( pSfx->m_bIsUISound ) { // never purge ui continue; } UtlSymId_t symbol = m_SoundNames.Find( pSfx->GetFileName() ); if ( symbol == UTL_INVAL_SYMBOL ) { // sound was not part of preload, purge it if ( bSpew ) { Msg( "CResourcePreloadSound: Purging: %s\n", pSfx->GetFileName() ); } pSfx->pSource->CacheUnload(); delete pSfx->pSource; pSfx->pSource = NULL; } } } m_SoundNames.RemoveAll(); if ( !g_pQueuedLoader->IsSameMapLoading() ) { wavedatacache->Flush(); } } virtual void PurgeAll() { bool bSpew = ( g_pQueuedLoader->GetSpewDetail() & LOADER_DETAIL_PURGES ) != 0; for ( int i = s_Sounds.FirstInorder(); i != s_Sounds.InvalidIndex(); i = s_Sounds.NextInorder( i ) ) { // the master sound table grows forever // remove sound sources from the master sound table that were not in the preload list CSfxTable *pSfx = s_Sounds[i].pSfx; if ( pSfx && pSfx->pSource ) { if ( pSfx->m_bIsUISound ) { // never purge ui if ( bSpew ) { Msg( "CResourcePreloadSound: Skipping: %s\n", pSfx->GetFileName() ); } continue; } // sound was not part of preload, purge it if ( bSpew ) { Msg( "CResourcePreloadSound: Purging: %s\n", pSfx->GetFileName() ); } pSfx->pSource->CacheUnload(); delete pSfx->pSource; pSfx->pSource = NULL; } } m_SoundNames.RemoveAll(); wavedatacache->Flush(); } private: CUtlSymbolTable m_SoundNames; }; static CResourcePreloadSound s_ResourcePreloadSound; //----------------------------------------------------------------------------- // Purpose: // Output : float //----------------------------------------------------------------------------- float S_GetMasterVolume( void ) { float scale = 1.0f; if ( soundfade.percent != 0 ) { scale = clamp( (float)soundfade.percent / 100.0f, 0.0f, 1.0f ); scale = 1.0f - scale; } return volume.GetFloat() * scale; } void S_SoundInfo_f(void) { if ( !g_AudioDevice->IsActive() ) { Msg( "Sound system not started\n" ); return; } Msg( "Sound Device: %s\n", g_AudioDevice->DeviceName() ); Msg( " Channels: %d\n", g_AudioDevice->DeviceChannels() ); Msg( " Samples: %d\n", g_AudioDevice->DeviceSampleCount() ); Msg( " Bits/Sample: %d\n", g_AudioDevice->DeviceSampleBits() ); Msg( " Rate: %d\n", g_AudioDevice->DeviceDmaSpeed() ); Msg( "total_channels: %d\n", total_channels); if ( IsX360() ) { // dump a glimpse of the mixing state CChannelList list; g_ActiveChannels.GetActiveChannels( list ); Msg( "\nActive Channels: (%d)\n", list.Count() ); for ( int i = 0; i < list.Count(); i++ ) { channel_t *pChannel = list.GetChannel(i); Msg( "%s (Mixer: 0x%p)\n", pChannel->sfx->GetFileName(), pChannel->pMixer ); } } } /* ================ S_Startup ================ */ void S_Startup( void ) { if ( !snd_initialized ) return; if ( !g_AudioDevice || g_AudioDevice == Audio_GetNullDevice() ) { g_AudioDevice = IAudioDevice::AutoDetectInit( CommandLine()->CheckParm( "-wavonly" ) != 0 ); if ( !g_AudioDevice ) { Error( "Unable to init audio" ); } } } static ConCommand play("play", S_Play, "Play a sound.", FCVAR_SERVER_CAN_EXECUTE ); static ConCommand playflush( "playflush", S_Play, "Play a sound, reloading from disk in case of changes." ); static ConCommand playvol( "playvol", S_PlayVol, "Play a sound at a specified volume." ); static ConCommand speak( "speak", S_Say, "Play a constructed sentence." ); static ConCommand stopsound( "stopsound", S_StopAllSoundsC, 0, FCVAR_CHEAT); // Marked cheat because it gives an advantage to players minimising ambient noise. static ConCommand soundlist( "soundlist", S_SoundList, "List all known sounds." ); static ConCommand soundinfo( "soundinfo", S_SoundInfo_f, "Describe the current sound device." ); bool IsValidSampleRate( int rate ) { return rate == SOUND_11k || rate == SOUND_22k || rate == SOUND_44k; } void VAudioInit() { if ( IsPC() ) { if ( !IsPosix() ) { // vaudio_miles.dll will load this... g_pFileSystem->GetLocalCopy( "mss32.dll" ); } g_pVAudioModule = FileSystem_LoadModule( "vaudio_miles" ); if ( g_pVAudioModule ) { CreateInterfaceFn vaudioFactory = Sys_GetFactory( g_pVAudioModule ); vaudio = (IVAudio *)vaudioFactory( VAUDIO_INTERFACE_VERSION, NULL ); } } } /* ================ S_Init ================ */ void S_Init( void ) { if ( sv.IsDedicated() && !CommandLine()->CheckParm( "-forcesound" ) ) return; DevMsg( "Sound Initialization: Start\n" ); // KDB: init sentence array TRACEINIT( VOX_Init(), VOX_Shutdown() ); VAudioInit(); if ( CommandLine()->CheckParm( "-nosound" ) ) { g_AudioDevice = Audio_GetNullDevice(); TRACEINIT( audiosourcecache->Init( host_parms.memsize >> 2 ), audiosourcecache->Shutdown() ); return; } snd_initialized = true; g_ActiveChannels.Init(); S_Startup(); MIX_InitAllPaintbuffers(); SND_InitScaletable(); MXR_LoadAllSoundMixers(); S_StopAllSounds( true ); TRACEINIT( audiosourcecache->Init( host_parms.memsize >> 2 ), audiosourcecache->Shutdown() ); AllocDsps( true ); if ( IsX360() ) { g_pQueuedLoader->InstallLoader( RESOURCEPRELOAD_SOUND, &s_ResourcePreloadSound ); } DevMsg( "Sound Initialization: Finish, Sampling Rate: %i\n", g_AudioDevice->DeviceDmaSpeed() ); #ifdef _X360 BOOL bPlaybackControl; // get initial state of the x360 media player if ( XMPTitleHasPlaybackControl( &bPlaybackControl ) == ERROR_SUCCESS ) { S_EnableMusic(bPlaybackControl!=0); } Assert( g_pVideo != NULL ); if ( g_pVideo != NULL ) { if ( g_pVideo->SoundDeviceCommand( VideoSoundDeviceOperation::HOOK_X_AUDIO, NULL ) != VideoResult::SUCCESS ) { Assert( 0 ); } } #endif } // ======================================================================= // Shutdown sound engine // ======================================================================= void S_Shutdown(void) { #if !defined( _X360 ) if ( VoiceTweak_IsStillTweaking() ) { VoiceTweak_EndVoiceTweakMode(); } #endif S_StopAllSounds( true ); S_ShutdownMixThread(); TRACESHUTDOWN( audiosourcecache->Shutdown() ); SNDDMA_Shutdown(); for ( int i = s_Sounds.FirstInorder(); i != s_Sounds.InvalidIndex(); i = s_Sounds.NextInorder( i ) ) { if ( s_Sounds[i].pSfx ) { delete s_Sounds[i].pSfx->pSource; s_Sounds[i].pSfx->pSource = NULL; } } s_Sounds.RemoveAll(); s_SoundPool.Clear(); // release DSP resources FreeDsps( true ); MXR_ReleaseMemory(); // release sentences resources TRACESHUTDOWN( VOX_Shutdown() ); if ( IsPC() ) { // shutdown vaudio if ( vaudio ) delete vaudio; FileSystem_UnloadModule( g_pVAudioModule ); g_pVAudioModule = NULL; vaudio = NULL; } MIX_FreeAllPaintbuffers(); snd_initialized = false; g_paintedtime = 0; g_soundtime = 0; g_ReplaySoundTimeFracAccumulator = 0.0f; s_buffers = 0; s_oldsampleOutCount = 0; s_lastsoundtime = 0.0f; #if !defined( _X360 ) Voice_Deinit(); #endif } bool S_IsInitted() { return snd_initialized; } // ======================================================================= // Load a sound // ======================================================================= //----------------------------------------------------------------------------- // Return sfx and set pfInCache to 1 if // name is in name cache. Otherwise, alloc // a new spot in name cache and return 0 // in pfInCache. //----------------------------------------------------------------------------- CSfxTable *S_FindName( const char *szName, int *pfInCache ) { int i; CSfxTable *sfx = NULL; char szBuff[MAX_PATH]; const char *pName; if ( !szName ) { Error( "S_FindName: NULL\n" ); } pName = szName; if ( IsX360() ) { Q_strncpy( szBuff, pName, sizeof( szBuff ) ); int len = Q_strlen( szBuff )-4; if ( len > 0 && !Q_strnicmp( szBuff+len, ".mp3", 4 ) ) { // convert unsupported .mp3 to .wav Q_strcpy( szBuff+len, ".wav" ); } pName = szBuff; if ( pName[0] == CHAR_STREAM ) { // streaming (or not) is hardcoded to alternate criteria // prevent the same sound from creating disparate instances pName++; } } // see if already loaded FileNameHandle_t fnHandle = g_pFileSystem->FindOrAddFileName( pName ); i = s_Sounds.Find( fnHandle ); if ( i != s_Sounds.InvalidIndex() ) { sfx = s_Sounds[i].pSfx; Assert( sfx ); if ( pfInCache ) { // indicate whether or not sound is currently in the cache. *pfInCache = ( sfx->pSource && sfx->pSource->IsCached() ) ? 1 : 0; } return sfx; } else { SfxDictEntry entry; entry.pSfx = ( CSfxTable * )s_SoundPool.Alloc(); Assert( entry.pSfx ); i = s_Sounds.Insert( fnHandle, entry ); sfx = s_Sounds[i].pSfx; sfx->SetNamePoolIndex( i ); sfx->pSource = NULL; if ( pfInCache ) { *pfInCache = 0; } } return sfx; } //----------------------------------------------------------------------------- // S_LoadSound // // Check to see if wave data is in the cache. If so, return pointer to data. // If not, allocate cache space for wave data, load wave file into temporary heap // space, and dump/convert file data into cache. //----------------------------------------------------------------------------- double g_flAccumulatedSoundLoadTime = 0.0f; CAudioSource *S_LoadSound( CSfxTable *pSfx, channel_t *ch ) { tmZone( TELEMETRY_LEVEL0, TMZF_NONE, "%s", __FUNCTION__ ); VPROF("S_LoadSound"); if ( !pSfx->pSource ) { if ( IsX360() ) { if ( SND_IsInGame() && !g_pQueuedLoader->IsMapLoading() ) { // sound should be present (due to reslists), but NOT allowing a load hitch during gameplay // loading a sound during gameplay is a bad experience, causes a very expensive sync i/o to fetch the header // and in the case of a memory wave, the actual audio data bool bFound = false; if ( !pSfx->m_bIsLateLoad ) { if ( pSfx->getname() != PSkipSoundChars( pSfx->getname() ) ) { // the sound might already exist as an undecorated audio source FileNameHandle_t fnHandle = g_pFileSystem->FindOrAddFileName( pSfx->GetFileName() ); int i = s_Sounds.Find( fnHandle ); if ( i != s_Sounds.InvalidIndex() ) { CSfxTable *pOtherSfx = s_Sounds[i].pSfx; Assert( pOtherSfx ); CAudioSource *pOtherSource = pOtherSfx->pSource; if ( pOtherSource && pOtherSource->IsCached() ) { // Can safely let the "load" continue because the headers are expected to be in the preload // that are now persisted and the wave data cache will find an existing audio buffer match, // so no sync i/o should occur from either. bFound = true; } } } if ( !bFound ) { // warn once DevWarning( "S_LoadSound: Late load '%s', skipping.\n", pSfx->getname() ); pSfx->m_bIsLateLoad = true; } } if ( !bFound ) { return NULL; } } else if ( pSfx->m_bIsLateLoad ) { // outside of gameplay, let the load happen pSfx->m_bIsLateLoad = false; } } double st = Plat_FloatTime(); bool bStream = false; bool bUserVox = false; // sound chars can explicitly categorize usage bStream = TestSoundChar( pSfx->getname(), CHAR_STREAM ); if ( !bStream ) { bUserVox = TestSoundChar( pSfx->getname(), CHAR_USERVOX ); } // override streaming if ( IsX360() ) { const char *s_CriticalSounds[] = { "common", "items", "physics", "player", "ui", "weapons", }; // stream everything but critical sounds bStream = true; const char *pFileName = pSfx->GetFileName(); for ( int i = 0; ipSource = Audio_CreateStreamedWave( pSfx ); } else { if ( bUserVox ) { if ( !IsX360() ) { pSfx->pSource = Voice_SetupAudioSource( ch->soundsource, ch->entchannel ); } else { // not supporting Assert( 0 ); } } else { // load all into memory directly pSfx->pSource = Audio_CreateMemoryWave( pSfx ); } } double ed = Plat_FloatTime(); g_flAccumulatedSoundLoadTime += ( ed - st ); } else { pSfx->pSource->CheckAudioSourceCache(); } if ( !pSfx->pSource ) { return NULL; } // first time to load? Create the mixer if ( ch && !ch->pMixer ) { ch->pMixer = pSfx->pSource->CreateMixer( ch->initialStreamPosition ); if ( !ch->pMixer ) { return NULL; } } return pSfx->pSource; } //----------------------------------------------------------------------------- // S_PrecacheSound // // Reserve space for the name of the sound in a global array. // Load the data for the non-streaming sound. Streaming sounds // defer loading of data until just before playback. //----------------------------------------------------------------------------- CSfxTable *S_PrecacheSound( const char *name ) { tmZone( TELEMETRY_LEVEL0, TMZF_NONE, "%s", __FUNCTION__ ); if ( !g_AudioDevice ) return NULL; if ( !g_AudioDevice->IsActive() ) return NULL; CSfxTable *sfx = S_FindName( name, NULL ); if ( sfx ) { // cache sound S_LoadSound( sfx, NULL ); } else { Assert( !"S_PrecacheSound: Failed to create sfx" ); } return sfx; } void S_InternalReloadSound( CSfxTable *sfx ) { if ( !sfx || !sfx->pSource ) return; sfx->pSource->CacheUnload(); delete sfx->pSource; sfx->pSource = NULL; char pExt[10]; Q_ExtractFileExtension( sfx->getname(), pExt, sizeof(pExt) ); int nSource = !Q_stricmp( pExt, "mp3" ) ? CAudioSource::AUDIO_SOURCE_MP3 : CAudioSource::AUDIO_SOURCE_WAV; // audiosourcecache->RebuildCacheEntry( nSource, sfx->IsPrecachedSound(), sfx ); audiosourcecache->GetInfo( nSource, sfx->IsPrecachedSound(), sfx ); // Do a size/date check and rebuild the cache entry if necessary. } //----------------------------------------------------------------------------- // Refresh a sound in the cache //----------------------------------------------------------------------------- void S_ReloadSound( const char *name ) { if ( IsX360() ) { // not supporting Assert( 0 ); return; } if ( !g_AudioDevice ) return; if ( !g_AudioDevice->IsActive() ) return; CSfxTable *sfx = S_FindName( name, NULL ); #ifdef _DEBUG if ( sfx ) { Assert( Q_stricmp( sfx->getname(), name ) == 0 ); } #endif S_InternalReloadSound( sfx ); } // See comments on CL_HandlePureServerWhitelist for details of what we're doing here. void S_ReloadFilesInList( IFileList *pFilesToReload ) { if ( !IsPC() ) return; S_StopAllSounds( true ); wavedatacache->Flush(); audiosourcecache->ForceRecheckDiskInfo(); // Force all cached audio data to recheck size/date info next time it's accessed. CUtlVector< CSfxTable * > processed; int iLast = s_Sounds.LastInorder(); for ( int i = s_Sounds.FirstInorder(); i != iLast; i = s_Sounds.NextInorder( i ) ) { FileNameHandle_t fnHandle = s_Sounds.Key( i ); char filename[MAX_PATH * 3]; if ( !g_pFileSystem->String( fnHandle, filename, sizeof( filename ) ) ) { Assert( !"S_HandlePureServerWhitelist - can't get a filename." ); continue; } // If the file isn't cached in yet, then the filesystem hasn't touched its file, so don't bother. CSfxTable *sfx = s_Sounds[i].pSfx; if ( sfx && ( processed.Find( sfx ) == processed.InvalidIndex() ) ) { char fullFilename[MAX_PATH*2]; if ( IsSoundChar( filename[0] ) ) Q_snprintf( fullFilename, sizeof( fullFilename ), "sound/%s", &filename[1] ); else Q_snprintf( fullFilename, sizeof( fullFilename ), "sound/%s", filename ); if ( !pFilesToReload->IsFileInList( fullFilename ) ) continue; processed.AddToTail( sfx ); S_InternalReloadSound( sfx ); } } } //----------------------------------------------------------------------------- // Unfortunate confusing terminology. // Here prefetching means hinting to the audio source (which may be a stream) // to get its async data in flight. //----------------------------------------------------------------------------- void S_PrefetchSound( char const *name, bool bPlayOnce ) { CSfxTable *sfx; if ( !g_AudioDevice ) return; if ( !g_AudioDevice->IsActive() ) return; sfx = S_FindName( name, NULL ); if ( sfx ) { // cache sound S_LoadSound( sfx, NULL ); } if ( !sfx || !sfx->pSource ) { return; } // hint the sound to start loading sfx->pSource->Prefetch(); if ( bPlayOnce ) { sfx->pSource->SetPlayOnce( true ); } } void S_MarkUISound( CSfxTable *pSfx ) { pSfx->m_bIsUISound = true; } unsigned int RemainingSamples( channel_t *pChannel ) { if ( !pChannel || !pChannel->sfx || !pChannel->sfx->pSource ) return 0; unsigned int timeleft = pChannel->sfx->pSource->SampleCount(); if ( pChannel->sfx->pSource->IsLooped() ) { return pChannel->sfx->pSource->SampleRate(); } if ( pChannel->pMixer ) { timeleft -= pChannel->pMixer->GetSamplePosition(); } return timeleft; } // chooses the voice stealing algorithm ConVar voice_steal("voice_steal", "2"); /* ================= SND_StealDynamicChannel Select a channel from the dynamic channel allocation area. For the given entity, override any other sound playing on the same channel (see code comments below for exceptions). ================= */ channel_t *SND_StealDynamicChannel(SoundSource soundsource, int entchannel, const Vector &origin, CSfxTable *sfx, float flDelay, bool bDoNotOverwriteExisting) { int canSteal[MAX_DYNAMIC_CHANNELS]; int canStealCount = 0; int sameSoundCount = 0; unsigned int sameSoundRemaining = 0xFFFFFFFF; int sameSoundIndex = -1; int sameVol = 0xFFFF; int availableChannel = -1; bool bDelaySame = false; int nExactMatch[MAX_DYNAMIC_CHANNELS]; int nExactCount = 0; // first pass to replace sounds on same ent/channel, and search for free or stealable channels otherwise for ( int ch_idx = 0; ch_idx < MAX_DYNAMIC_CHANNELS ; ch_idx++) { channel_t *ch = &channels[ch_idx]; if ( ch->activeIndex ) { // channel CHAN_AUTO never overrides sounds on same channel if ( entchannel != CHAN_AUTO ) { int checkChannel = entchannel; if ( checkChannel == -1 ) { if ( ch->entchannel != CHAN_STREAM && ch->entchannel != CHAN_VOICE && ch->entchannel != CHAN_VOICE2 ) { checkChannel = ch->entchannel; } } if ( ch->soundsource == soundsource && (soundsource != -1) && ch->entchannel == checkChannel ) { // we found an exact match for this entity and this channel, but the sound we want to play is considered // low priority so instead of stomping this entry pretend we couldn't find a free slot to play and let // the existing sound keep going if ( bDoNotOverwriteExisting ) return NULL; if ( ch->flags.delayed_start ) { nExactMatch[nExactCount] = ch_idx; nExactCount++; continue; } return ch; // always override sound from same entity } } // Never steal the channel of a streaming sound that is currently playing or // voice over IP data that is playing or any sound on CHAN_VOICE( acting ) if ( ch->entchannel == CHAN_STREAM || ch->entchannel == CHAN_VOICE || ch->entchannel == CHAN_VOICE2 ) continue; // don't let monster sounds override player sounds if ( g_pSoundServices->IsPlayer( ch->soundsource ) && !g_pSoundServices->IsPlayer(soundsource) ) continue; if ( ch->sfx == sfx ) { bDelaySame = ch->flags.delayed_start ? true : bDelaySame; sameSoundCount++; int maxVolume = ChannelGetMaxVol( ch ); unsigned int remaining = RemainingSamples(ch); if ( maxVolume < sameVol || (maxVolume == sameVol && remaining < sameSoundRemaining) ) { sameSoundIndex = ch_idx; sameVol = maxVolume; sameSoundRemaining = remaining; } } canSteal[canStealCount++] = ch_idx; } else { if ( availableChannel < 0 ) { availableChannel = ch_idx; } } } // coalesce the timeline for this channel if ( nExactCount > 0 ) { uint nFreeSampleTime = g_paintedtime + (flDelay * SOUND_DMA_SPEED); channel_t *pReturn = &channels[nExactMatch[0]]; uint nMinRemaining = RemainingSamples( pReturn ); if ( pReturn->nFreeChannelAtSampleTime == 0 || pReturn->nFreeChannelAtSampleTime > nFreeSampleTime ) { pReturn->nFreeChannelAtSampleTime = nFreeSampleTime; } for ( int i = 1; i < nExactCount; i++ ) { channel_t *pChannel = &channels[nExactMatch[i]]; if ( pChannel->nFreeChannelAtSampleTime == 0 || pChannel->nFreeChannelAtSampleTime > nFreeSampleTime ) { pChannel->nFreeChannelAtSampleTime = nFreeSampleTime; } uint nRemain = RemainingSamples( pChannel ); if ( nRemain < nMinRemaining ) { pReturn = pChannel; nMinRemaining = nRemain; } } // if there's only one, mark it to be freed but don't reuse it. // otherwise mark all others to be freed and use the closest one to being done if ( nExactCount > 1 ) { return pReturn; } } // Limit the number of times a given sfx/wave can play simultaneously if ( voice_steal.GetInt() > 1 && sameSoundIndex >= 0 ) { // if sounds of this type are normally delayed, then add an extra slot for stealing // NOTE: In HL2 these are usually NPC gunshot sounds - and stealing too soon will cut // them off early. This is a safe heuristic to avoid that problem. There's probably a better // long-term solution involving only counting channels that are actually going to play (delay included) // at the same time as this one. int maxSameSounds = bDelaySame ? 5 : 4; float distSqr = 0.0f; if ( sfx->pSource ) { distSqr = origin.DistToSqr(listener_origin); if ( sfx->pSource->IsLooped() ) { maxSameSounds = 3; } } // don't play more than N copies of the same sound, steal the quietest & closest one otherwise if ( sameSoundCount >= maxSameSounds ) { channel_t *ch = &channels[sameSoundIndex]; // you're already playing a closer version of this sound, don't steal if ( distSqr > 0.0f && ch->origin.DistToSqr(listener_origin) < distSqr && entchannel != CHAN_WEAPON ) return NULL; //Msg("Sound playing %d copies, stole %s (%d)\n", sameSoundCount, ch->sfx->getname(), sameVol ); return ch; } } // if there's a free channel, just take that one - don't steal if ( availableChannel >= 0 ) return &channels[availableChannel]; // Still haven't found a suitable channel, so choose the one with the least amount of time left to play float life_left = FLT_MAX; int first_to_die = -1; bool bAllowVoiceSteal = voice_steal.GetBool(); for ( int i = 0; i < canStealCount; i++ ) { int ch_idx = canSteal[i]; channel_t *ch = &channels[ch_idx]; float timeleft = 0; if ( bAllowVoiceSteal ) { int maxVolume = ChannelGetMaxVol( ch ); if ( maxVolume < 5 ) { //Msg("Sound quiet, stole %s for %s\n", ch->sfx->getname(), sfx->getname() ); return ch; } if ( ch->sfx && ch->sfx->pSource ) { unsigned int sampleCount = RemainingSamples( ch ); timeleft = (float)sampleCount / (float)ch->sfx->pSource->SampleRate(); } } else { // UNDONE: Kill this when voice_steal 0,1,2 has been tested // UNDONE: This is the old buggy code that we're trying to replace if ( ch->sfx ) { // basically steals the first one you come to timeleft = 1; //ch->end - paintedtime } } if ( timeleft < life_left ) { life_left = timeleft; first_to_die = ch_idx; } } if ( first_to_die >= 0 ) { //Msg("Stole %s, timeleft %d\n", channels[first_to_die].sfx->getname(), life_left ); return &channels[first_to_die]; } return NULL; } channel_t *SND_PickDynamicChannel(SoundSource soundsource, int entchannel, const Vector &origin, CSfxTable *sfx, float flDelay, bool bDoNotOverwriteExisting) { channel_t *pChannel = SND_StealDynamicChannel( soundsource, entchannel, origin, sfx, flDelay, bDoNotOverwriteExisting ); if ( !pChannel ) return NULL; if (pChannel->sfx) { // Don't restart looping sounds for the same entity CAudioSource *pSource = pChannel->sfx->pSource; if ( pSource ) { if ( pSource->IsLooped() ) { if ( pChannel->soundsource == soundsource && pChannel->entchannel == entchannel && pChannel->sfx == sfx ) { // same looping sound, same ent, same channel, don't restart the sound return NULL; } } } // be sure and release previous channel // if sentence. // ("Stealing channel from %s\n", channels[first_to_die].sfx->getname() ); S_FreeChannel(pChannel); } return pChannel; } /* ===================== SND_PickStaticChannel ===================== Pick an empty channel from the static sound area, or allocate a new channel. Only fails if we're at max_channels (128!!!) or if we're trying to allocate a channel for a stream sound that is already playing. */ channel_t *SND_PickStaticChannel(int soundsource, CSfxTable *pSfx) { int i; channel_t *ch = NULL; // Check for replacement sound, or find the best one to replace for (i = MAX_DYNAMIC_CHANNELS; i 0.0) { // sound has radius, within which spatialization becomes mono: // mono is 0.0 -> 1.0, from radius 100% to radius 50% // at radius * 0.5, dotRight is 0 (ie: sound centered left/right) // at radius * 1.0, dotRight == dotRight dotRight *= (1.0 - mono); } rscale = 1.0 + dotRight; lscale = 1.0 - dotRight; // add in distance effect scale = gain * rscale / 2; pVolume[IFRONT_RIGHT] = (int) (master_vol * scale); scale = gain * lscale / 2; pVolume[IFRONT_LEFT] = (int) (master_vol * scale); pVolume[IFRONT_RIGHT] = clamp( pVolume[IFRONT_RIGHT], 0, 255 ); pVolume[IFRONT_LEFT] = clamp( pVolume[IFRONT_LEFT], 0, 255 ); } bool S_IsMusic( channel_t *pChannel ) { if ( !pChannel->flags.bdry ) return false; CSfxTable *sfx = pChannel->sfx; if ( !sfx ) return false; CAudioSource *source = sfx->pSource; if ( !source ) return false; // Don't save restore looping sounds as you can end up with an entity restarting them again and have // them accumulate, etc. if ( source->IsLooped() ) return false; CAudioMixer *pMixer = pChannel->pMixer; if ( !pMixer ) return false; for ( int i = 0; i < 8; i++ ) { if ( pChannel->mixgroups[i] != -1 ) { char *pGroupName = MXR_GetGroupnameFromId( pChannel->mixgroups[i] ); if ( !Q_strcmp( pGroupName, "Music" ) ) { return true; } } } return false; } //----------------------------------------------------------------------------- // Purpose: For save/restore of currently playing music // Input : list - //----------------------------------------------------------------------------- void S_GetCurrentlyPlayingMusic( CUtlVector< musicsave_t >& musiclist ) { CChannelList list; g_ActiveChannels.GetActiveChannels( list ); for ( int i = 0; i < list.Count(); i++ ) { channel_t *pChannel = &channels[list.GetChannelIndex(i)]; if ( !S_IsMusic( pChannel ) ) continue; musicsave_t song; Q_strncpy( song.songname, pChannel->sfx->getname(), sizeof( song.songname ) ); song.sampleposition = pChannel->pMixer->GetPositionForSave(); song.master_volume = pChannel->master_vol; musiclist.AddToTail( song ); } } //----------------------------------------------------------------------------- // Purpose: // Input : *song - //----------------------------------------------------------------------------- void S_RestartSong( const musicsave_t *song ) { Assert( song ); // Start the song CSfxTable *pSound = S_PrecacheSound( song->songname ); if ( pSound ) { StartSoundParams_t params; params.staticsound = true; params.soundsource = SOUND_FROM_WORLD; params.entchannel = CHAN_STATIC; params.pSfx = pSound; params.origin = vec3_origin; params.fvol = ( (float)song->master_volume / 255.0f ); params.soundlevel = SNDLVL_NONE; params.flags = SND_NOFLAGS; params.pitch = PITCH_NORM; params.initialStreamPosition = song->sampleposition; S_StartSound( params ); if ( IsPC() ) { // Now find the channel this went on and skip ahead in the mixer for (int i = 0; i < total_channels; i++) { channel_t *ch = &channels[i]; if ( !ch->pMixer || !ch->pMixer->GetSource() ) { continue; } if ( ch->pMixer->GetSource() != pSound->pSource ) { continue; } ch->pMixer->SetPositionFromSaved( song->sampleposition ); break; } } } } soundlevel_t SND_GetSndlvl ( channel_t *pchannel ); // calculate ammount of sound to be mixed to dsp, based on distance from listener ConVar dsp_dist_min("dsp_dist_min", "0.0", FCVAR_DEMO|FCVAR_CHEAT); // range at which sounds are mixed at dsp_mix_min ConVar dsp_dist_max("dsp_dist_max", "1440.0", FCVAR_DEMO|FCVAR_CHEAT); // range at which sounds are mixed at dsp_mix_max ConVar dsp_mix_min("dsp_mix_min", "0.2", FCVAR_DEMO ); // dsp mix at dsp_dist_min distance "near" ConVar dsp_mix_max("dsp_mix_max", "0.8", FCVAR_DEMO ); // dsp mix at dsp_dist_max distance "far" ConVar dsp_db_min("dsp_db_min", "80", FCVAR_DEMO ); // sounds with sndlvl below this get dsp_db_mixdrop % less dsp mix ConVar dsp_db_mixdrop("dsp_db_mixdrop", "0.5", FCVAR_DEMO ); // sounds with sndlvl below dsp_db_min get dsp_db_mixdrop % less mix float DSP_ROOM_MIX = 1.0; // mix volume of dsp_room sounds when added back to 'dry' sounds float DSP_NOROOM_MIX = 1.0; // mix volume of facing + facing away sounds. added to dsp_room_mix sounds extern ConVar dsp_off; // returns 0-1.0 dsp mix value. If sound source is at a range >= DSP_DIST_MAX, return a mix value of // DSP_MIX_MAX. This mix value is used later to determine wet/dry mix ratio of sounds. // This ramp changes with db level of sound source, and is set in the dsp room presets by room size // empirical data: 0.78 is nominal mix for sound 100% at far end of room, 0.24 is mix for sound 25% into room float SND_GetDspMix( channel_t *pchannel, int idist) { float mix; float dist = (float)idist; float dist_min = dsp_dist_min.GetFloat(); float dist_max = dsp_dist_max.GetFloat(); float mix_min; float mix_max; // only set dsp mix_min & mix_max when sound is first started if ( pchannel->dsp_mix_min < 0 && pchannel->dsp_mix_max < 0 ) { mix_min = dsp_mix_min.GetFloat(); // set via dsp_room preset mix_max = dsp_mix_max.GetFloat(); // set via dsp_room preset // set mix_min & mix_max based on db level of sound: // sounds below dsp_db_min decrease dsp_mix_min & dsp_mix_max by N% // ie: quiet sounds get less dsp mix than loud sounds soundlevel_t sndlvl = SND_GetSndlvl( pchannel ); soundlevel_t sndlvl_min = (soundlevel_t)(dsp_db_min.GetInt()); if (sndlvl <= sndlvl_min) { mix_min *= dsp_db_mixdrop.GetFloat(); mix_max *= dsp_db_mixdrop.GetFloat(); } pchannel->dsp_mix_min = mix_min; pchannel->dsp_mix_max = mix_max; } else { mix_min = pchannel->dsp_mix_min; mix_max = pchannel->dsp_mix_max; } // dspmix is 0 (100% mix to facing buffer) if dsp_off if ( dsp_off.GetInt() ) return 0.0; // doppler wavs are mixed dry if ( pchannel->wavtype == CHAR_DOPPLER ) return 0.0; // linear ramp - get dry mix % // dist: 0->(max - min) dist = clamp( dist, dist_min, dist_max ) - dist_min; // dist: 0->1.0 dist = dist / (dist_max - dist_min); // mix: min->max mix = ((mix_max - mix_min) * dist) + mix_min; return mix; } // calculate crossfade between wav left (close sound) and wav right (far sound) based on // distance fron listener #define DVAR_DIST_MIN (20.0 * 12.0) // play full 'near' sound at 20' or less #define DVAR_DIST_MAX (110.0 * 12.0) // play full 'far' sound at 110' or more #define DVAR_MIX_MIN 0.0 #define DVAR_MIX_MAX 1.0 // calculate mixing parameter for CHAR_DISTVAR wavs // returns 0 - 1.0, 1.0 is 100% far sound (wav right) float SND_GetDistanceMix( channel_t *pchannel, int idist) { float mix; float dist = (float)idist; // doppler wavs are 100% near - their spatialization is calculated later. if ( pchannel->wavtype == CHAR_DOPPLER ) return 0.0; // linear ramp - get dry mix % // dist 0->(max - min) dist = clamp( dist, (float) DVAR_DIST_MIN, (float) DVAR_DIST_MAX ) - (float) DVAR_DIST_MIN; // dist 0->1.0 dist = dist / (DVAR_DIST_MAX - DVAR_DIST_MIN); // mix min->max mix = ((DVAR_MIX_MAX - DVAR_MIX_MIN) * dist) + DVAR_MIX_MIN; return mix; } // given facing direction of source, and channel, // return -1.0 - 1.0, where -1.0 is source facing away from listener // and 1.0 is source facing listener float SND_GetFacingDirection( channel_t *pChannel, const QAngle &source_angles ) { Vector SF; // sound source forward direction unit vector Vector SL; // sound -> listener unit vector float dotSFSL; // no facing direction unless wavtyp CHAR_DIRECTIONAL if ( pChannel->wavtype != CHAR_DIRECTIONAL ) return 1.0; VectorSubtract(listener_origin, pChannel->origin, SL); VectorNormalize(SL); // compute forward vector for sound entity AngleVectors( source_angles, &SF, NULL, NULL ); // dot source forward unit vector with source to listener unit vector to get -1.0 - 1.0 facing. // ie: projection of SF onto SL dotSFSL = DotProduct( SF, SL ); return dotSFSL; } // calculate point of closest approach - caller must ensure that the // forward facing vector of the entity playing this sound points in exactly the direction of // travel of the sound. ie: for bullets or tracers, forward vector must point in traceline direction. // return true if sound is to be played, false if sound cannot be heard (shot away from player) bool SND_GetClosestPoint( channel_t *pChannel, QAngle &source_angles, Vector &vnearpoint ) { // S - sound source origin // L - listener origin Vector SF; // sound source forward direction unit vector Vector SL; // sound -> listener vector Vector SD; // sound->closest point vector vec_t dSLSF; // magnitude of project of SL onto SF // P = SF (SF . SL) + S // only perform this calculation for doppler wavs if ( pChannel->wavtype != CHAR_DOPPLER ) return false; // get vector 'SL' from sound source to listener VectorSubtract(listener_origin, pChannel->origin, SL); // compute sound->forward vector 'SF' for sound entity AngleVectors( source_angles, &SF ); VectorNormalize( SF ); dSLSF = DotProduct( SL, SF ); if ( dSLSF <= 0 && !toolframework->IsToolRecording() ) { // source is pointing away from listener, don't play anything // unless we're recording in the tool, since we may play back from in front of the source return false; } // project dSLSF along forward unit vector from sound source VectorMultiply( SF, dSLSF, SD ); // output vector - add SD to sound source origin VectorAdd( SD, pChannel->origin, vnearpoint ); return true; } // given point of nearest approach and sound source facing angles, // return vector pointing into quadrant in which to play // doppler left wav (incomming) and doppler right wav (outgoing). // doppler left is point in space to play left doppler wav // doppler right is point in space to play right doppler wav // Also modifies channel pitch based on distance to nearest approach point #define DOPPLER_DIST_LEFT_TO_RIGHT (4*12) // separate left/right sounds by 4' #define DOPPLER_DIST_MAX (20*12) // max distance - causes min pitch #define DOPPLER_DIST_MIN (1*12) // min distance - causes max pitch #define DOPPLER_PITCH_MAX 1.5 // max pitch change due to distance #define DOPPLER_PITCH_MIN 0.25 // min pitch change due to distance #define DOPPLER_RANGE_MAX (10*12) // don't play doppler wav unless within this range // UNDONE: should be set by caller! void SND_GetDopplerPoints( channel_t *pChannel, QAngle &source_angles, Vector &vnearpoint, Vector &source_doppler_left, Vector &source_doppler_right) { Vector SF; // direction sound source is facing (forward) Vector LN; // vector from listener to closest approach point Vector DL; Vector DR; // nearpoint is closest point of approach, when playing CHAR_DOPPLER sounds // SF is normalized vector in direction sound source is facing AngleVectors( source_angles, &SF ); VectorNormalize( SF ); // source_doppler_left - location in space to play doppler left wav (incomming) // source_doppler_right - location in space to play doppler right wav (outgoing) VectorMultiply( SF, -1*DOPPLER_DIST_LEFT_TO_RIGHT, DL ); VectorMultiply( SF, DOPPLER_DIST_LEFT_TO_RIGHT, DR ); VectorAdd( vnearpoint, DL, source_doppler_left ); VectorAdd( vnearpoint, DR, source_doppler_right ); // set pitch of channel based on nearest distance to listener // LN is vector from listener to closest approach point VectorSubtract(vnearpoint, listener_origin, LN); float pitch; float dist = VectorLength( LN ); // dist varies 0->1 dist = clamp(dist, (float)DOPPLER_DIST_MIN, (float)DOPPLER_DIST_MAX); dist = (dist - DOPPLER_DIST_MIN) / (DOPPLER_DIST_MAX - DOPPLER_DIST_MIN); // pitch varies from max to min pitch = DOPPLER_PITCH_MAX - dist * (DOPPLER_PITCH_MAX - DOPPLER_PITCH_MIN); pChannel->basePitch = (int)(pitch * 100.0); } // console variables used to construct gain curve - don't change these! extern ConVar snd_foliage_db_loss; extern ConVar snd_gain; extern ConVar snd_refdb; extern ConVar snd_refdist; extern ConVar snd_gain_max; extern ConVar snd_gain_min; ConVar snd_showstart( "snd_showstart", "0", FCVAR_CHEAT ); // showstart always skips info on player footsteps! // 1 - show sound name, channel, volume, time // 2 - show dspmix, distmix, dspface, l/r/f/r vols // 3 - show sound origin coords // 4 - show gain of dsp_room // 5 - show dB loss due to obscured sound // 6 - reserved // 7 - show 2 and total gain & dist in ft. to sound source #define SND_DB_MAX 140.0 // max db of any sound source #define SND_DB_MED 90.0 // db at which compression curve changes #define SND_DB_MIN 60.0 // min db of any sound source #define SND_GAIN_PLAYER_WEAPON_DB 2.0 // increase player weapon gain by N dB // dB = 20 log (amplitude/32768) 0 to -90.3dB // amplitude = 32768 * 10 ^ (dB/20) 0 to +/- 32768 // gain = amplitude/32768 0 to 1.0 float Gain_To_dB ( float gain ) { float dB = 20 * log ( gain ); return dB; } float dB_To_Gain ( float dB ) { float gain = powf (10, dB / 20.0); return gain; } float Gain_To_Amplitude ( float gain ) { return gain * 32768; } float Amplitude_To_Gain ( float amplitude ) { return amplitude / 32768; } soundlevel_t SND_GetSndlvl ( channel_t *pchannel ) { return DIST_MULT_TO_SNDLVL( pchannel->dist_mult ); } // The complete gain calculation, with SNDLVL given in dB is: // // GAIN = 1/dist * snd_refdist * 10 ^ ( ( SNDLVL - snd_refdb - (dist * snd_foliage_db_loss / 1200)) / 20 ) // // for gain > SND_GAIN_THRESH, start curve smoothing with // // GAIN = 1 - 1 / (Y * GAIN ^ SND_GAIN_POWER) // // where Y = -1 / ( (SND_GAIN_THRESH ^ SND_GAIN_POWER) * (SND_GAIN_THRESH - 1) ) // float SND_GetGainFromMult( float gain, float dist_mult, vec_t dist ); // gain curve construction float SND_GetGain( channel_t *ch, bool fplayersound, bool fmusicsound, bool flooping, vec_t dist, bool bAttenuated ) { VPROF_("SND_GetGain",2,VPROF_BUDGETGROUP_OTHER_SOUND,false,BUDGETFLAG_OTHER); if ( ch->flags.m_bCompatibilityAttenuation ) { // Convert to the original attenuation value. soundlevel_t soundlevel = DIST_MULT_TO_SNDLVL( ch->dist_mult ); float flAttenuation = SNDLVL_TO_ATTN( soundlevel ); // Now get the goldsrc dist_mult and use the same calculation it uses in SND_Spatialize. // Straight outta Goldsrc!!! vec_t nominal_clip_dist = 1000.0; float flGoldsrcDistMult = flAttenuation / nominal_clip_dist; dist *= flGoldsrcDistMult; float flReturnValue = 1.0f - dist; flReturnValue = clamp( flReturnValue, 0.f, 1.f ); return flReturnValue; } else { float gain = snd_gain.GetFloat(); if ( fmusicsound ) { gain = gain * snd_musicvolume.GetFloat(); gain = gain * g_DashboardMusicMixValue; } if ( ch->dist_mult ) { gain = SND_GetGainFromMult( gain, ch->dist_mult, dist ); } if ( fplayersound ) { // player weapon sounds get extra gain - this compensates // for npc distance effect weapons which mix louder as L+R into L,R // Hack. if ( ch->entchannel == CHAN_WEAPON ) gain = gain * dB_To_Gain( SND_GAIN_PLAYER_WEAPON_DB ); } // modify gain if sound source not visible to player gain = gain * SND_GetGainObscured( ch, fplayersound, flooping, bAttenuated ); if (snd_showstart.GetInt() == 6) { DevMsg( "(gain %1.3f : dist ft %1.1f) ", gain, (float)dist/12.0 ); snd_showstart.SetValue(5); // display once } return gain; } } // always ramp channel gain changes over time // returns ramped gain, given new target gain #define SND_GAIN_FADE_TIME 0.25 // xfade seconds between obscuring gain changes float SND_FadeToNewGain( channel_t *ch, float gain_new ) { if ( gain_new == -1.0 ) { // if -1 passed in, just keep fading to existing target gain_new = ch->ob_gain_target; } // if first time updating, store new gain into gain & target, return // if gain_new is close to existing gain, store new gain into gain & target, return if ( ch->flags.bfirstpass || (fabs (gain_new - ch->ob_gain) < 0.01)) { ch->ob_gain = gain_new; ch->ob_gain_target = gain_new; ch->ob_gain_inc = 0.0; return gain_new; } // set up new increment to new target float frametime = g_pSoundServices->GetHostFrametime(); float speed; speed = ( frametime / SND_GAIN_FADE_TIME ) * (gain_new - ch->ob_gain); ch->ob_gain_inc = fabs(speed); // ch->ob_gain_inc = fabs(gain_new - ch->ob_gain) / 10.0; ch->ob_gain_target = gain_new; // if not hit target, keep approaching if ( fabs( ch->ob_gain - ch->ob_gain_target ) > 0.01 ) { ch->ob_gain = Approach( ch->ob_gain_target, ch->ob_gain, ch->ob_gain_inc ); } else { // close enough, set gain = target ch->ob_gain = ch->ob_gain_target; } return ch->ob_gain; } #define SND_TRACE_UPDATE_MAX 2 // max of N channels may be checked for obscured source per frame static int g_snd_trace_count = 0; // total tracelines for gain obscuring made this frame // All new sounds must traceline once, // but cap the max number of tracelines performed per frame // for longer or looping sounds to SND_TRACE_UPDATE_MAX. bool SND_ChannelOkToTrace( channel_t *ch ) { // always trace first time sound is spatialized (doesn't update counter) if ( ch->flags.bfirstpass ) { ch->flags.bTraced = true; return true; } // if already traced max channels this frame, return if ( g_snd_trace_count >= SND_TRACE_UPDATE_MAX ) return false; // ok to trace if this sound hasn't yet been traced in this round if ( ch->flags.bTraced ) return false; // set flag - don't traceline this sound again until all others have // been traced ch->flags.bTraced = true; g_snd_trace_count++; // total traces this frame return true; } // determine if we need to reset all flags for traceline limiting - // this happens if we hit a frame whein no tracelines occur ie: all currently // playing sounds are blocked. void SND_ChannelTraceReset( void ) { if ( g_snd_trace_count ) return; // if no tracelines performed this frame, then reset all // trace flags for (int i = 0; i < total_channels; i++) channels[i].flags.bTraced = false; } bool SND_IsLongWave( channel_t *pChannel ) { CAudioSource *pSource = pChannel->sfx ? pChannel->sfx->pSource : NULL; if ( pSource ) { if ( pSource->IsStreaming() ) return true; // UNDONE: Do this on long wave files too? #if 0 float length = (float)pSource->SampleCount() / (float)pSource->SampleRate(); if ( length > 0.75f ) return true; #endif } return false; } ConVar snd_obscured_gain_db( "snd_obscured_gain_dB", "-2.70", FCVAR_CHEAT ); // dB loss due to obscured sound source // drop gain on channel if sound emitter obscured by // world, unbroken windows, closed doors, large solid entities etc. float SND_GetGainObscured( channel_t *ch, bool fplayersound, bool flooping, bool bAttenuated ) { float gain = 1.0; int count = 1; float snd_gain_db; // dB loss due to obscured sound source // Unattenuated sounds don't get obscured. if ( !bAttenuated ) return 1.0f; if ( fplayersound ) return gain; // During signon just apply regular state machine since world hasn't been // created or settled yet... if ( !SND_IsInGame() ) { if ( !toolframework->InToolMode() ) { gain = SND_FadeToNewGain( ch, -1.0 ); } return gain; } // don't do gain obscuring more than once on short one-shot sounds if ( !ch->flags.bfirstpass && !ch->flags.isSentence && !flooping && !SND_IsLongWave(ch) ) { gain = SND_FadeToNewGain( ch, -1.0 ); return gain; } snd_gain_db = snd_obscured_gain_db.GetFloat(); // if long or looping sound, process N channels per frame - set 'processed' flag, clear by // cycling through all channels - this maintains a cap on traces per frame if ( !SND_ChannelOkToTrace( ch ) ) { // just keep updating fade to existing target gain - no new trace checking gain = SND_FadeToNewGain( ch, -1.0 ); return gain; } // set up traceline from player eyes to sound emitting entity origin Vector endpoint = ch->origin; trace_t tr; CTraceFilterWorldOnly filter; // UNDONE: also test for static props? Ray_t ray; ray.Init( MainViewOrigin(), endpoint ); g_pEngineTraceClient->TraceRay( ray, MASK_BLOCK_AUDIO, &filter, &tr ); if (tr.DidHit() && tr.fraction < 0.99) { // can't see center of sound source: // build extents based on dB sndlvl of source, // test to see how many extents are visible, // drop gain by snd_gain_db per extent hidden Vector endpoints[4]; soundlevel_t sndlvl = DIST_MULT_TO_SNDLVL( ch->dist_mult ); float radius; Vector vsrc_forward; Vector vsrc_right; Vector vsrc_up; Vector vecl; Vector vecr; Vector vecl2; Vector vecr2; int i; // get radius if ( ch->radius > 0 ) radius = ch->radius; else radius = dB_To_Radius( sndlvl); // approximate radius from soundlevel // set up extent endpoints - on upward or downward diagonals, facing player for (i = 0; i < 4; i++) endpoints[i] = endpoint; // vsrc_forward is normalized vector from sound source to listener VectorSubtract( listener_origin, endpoint, vsrc_forward ); VectorNormalize( vsrc_forward ); VectorVectors( vsrc_forward, vsrc_right, vsrc_up ); VectorAdd( vsrc_up, vsrc_right, vecl ); // if src above listener, force 'up' vector to point down - create diagonals up & down if ( endpoint.z > listener_origin.z + (10 * 12) ) vsrc_up.z = -vsrc_up.z; VectorSubtract( vsrc_up, vsrc_right, vecr ); VectorNormalize( vecl ); VectorNormalize( vecr ); // get diagonal vectors from sound source vecl2 = radius * vecl; vecr2 = radius * vecr; vecl = (radius / 2.0) * vecl; vecr = (radius / 2.0) * vecr; // endpoints from diagonal vectors endpoints[0] += vecl; endpoints[1] += vecr; endpoints[2] += vecl2; endpoints[3] += vecr2; // drop gain for each point on radius diagonal that is obscured for (count = 0, i = 0; i < 4; i++) { // UNDONE: some endpoints are in walls - in this case, trace from the wall hit location ray.Init( MainViewOrigin(), endpoints[i] ); g_pEngineTraceClient->TraceRay( ray, MASK_BLOCK_AUDIO, &filter, &tr ); if (tr.DidHit() && tr.fraction < 0.99 && !tr.startsolid ) { count++; // skip first obscured point: at least 2 points + center should be obscured to hear db loss if (count > 1) gain = gain * dB_To_Gain( snd_gain_db ); } } } if ( flooping && snd_showstart.GetInt() == 7) { static float g_drop_prev = 0; float drop = (count-1) * snd_gain_db; if (drop != g_drop_prev) { DevMsg( "dB drop: %1.4f \n", drop); g_drop_prev = drop; } } // crossfade to new gain gain = SND_FadeToNewGain( ch, gain ); return gain; } // convert sound db level to approximate sound source radius, // used only for determining how much of sound is obscured by world #define SND_RADIUS_MAX (20.0 * 12.0) // max sound source radius #define SND_RADIUS_MIN (2.0 * 12.0) // min sound source radius inline float dB_To_Radius ( float db ) { float radius = SND_RADIUS_MIN + (SND_RADIUS_MAX - SND_RADIUS_MIN) * (db - SND_DB_MIN) / (SND_DB_MAX - SND_DB_MIN); return radius; } struct snd_spatial_t { int chan; // 0..4 cycles through up to 5 channels int cycle; // 0..2 cycles through 3 vectors per channel int dist[5][3]; // stores last 3 channel distance values [channel][cycle] float value_prev[5]; // previous value per channel double last_change; }; bool g_ssp_init = false; snd_spatial_t g_ssp; // return 0..1 percent difference between a & b float PercentDifference( float a, float b ) { float vp; if (!(int)a && !(int)b) return 0.0; if (!(int)a || !(int)b) return 1.0; if (a > b) vp = b / a; else vp = a / b; return (1.0 - vp); } // NOTE: Do not change SND_WALL_TRACE_LEN without also changing PRC_MDY6 delay value in snd_dsp.cpp! #define SND_WALL_TRACE_LEN (100.0*12.0) // trace max of 100' = max of 100 milliseconds of linear delay #define SND_SPATIAL_WAIT (0.25) // seconds to wait between traces // change mod delay value on chan 0..3 to v (inches) void DSP_SetSpatialDelay( int chan, float v ) { // remap delay value 0..1200 to 1.0 to -1.0 for modulation float value = ( v / SND_WALL_TRACE_LEN) - 1.0; // -1.0...0 value = value * 2.0; // -2.0...0 value += 1.0; // -1.0...1.0 (0...1200) value *= -1.0; // 1.0...-1.0 (0...1200) // assume first processor in dsp_spatial is the modulating delay unit for DSP_ChangePresetValue int iproc = 0; DSP_ChangePresetValue( idsp_spatial, chan, iproc, value ); /* if (chan & 0x01) DevMsg("RDly: %3.0f \n", v/12 ); else DevMsg("LDly: %3.0f \n", v/12 ); */ } // use non-feedback delay to stereoize (or make quad, or quad + center) the mono dsp_room fx, // This simulates the average sum of delays caused by reflections // from the left and right walls relative to the player. The average delay // difference between left & right wall is (l + r)/2. This becomes the average // delay difference between left & right ear. // call at most once per frame to update player->wall spatial delays void SND_SetSpatialDelays() { VPROF("SoundSpatialDelays"); float dist, v, vp; Vector v_dir, v_dir2; int chan_max = (g_AudioDevice->IsSurround() ? 4 : 2) + (g_AudioDevice->IsSurroundCenter() ? 1 : 0); // 2, 4, 5 channels // use listener_forward2d, which doesn't change when player looks up/down. Vector listener_forward2d; ConvertListenerVectorTo2D( &listener_forward2d, &listener_right ); // init struct if 1st time through if ( !g_ssp_init ) { Q_memset(&g_ssp, 0, sizeof(snd_spatial_t)); g_ssp_init = true; } // return if dsp_spatial is 0 if ( !dsp_spatial.GetInt() ) return; // if listener has not been updated, do nothing if ((listener_origin == vec3_origin) && (listener_forward == vec3_origin) && (listener_right == vec3_origin) && (listener_up == vec3_origin) ) return; if ( !SND_IsInGame() ) return; // get time double dtime = g_pSoundServices->GetHostTime(); // compare to previous time - if starting new check - don't check for new room until timer expires if (!g_ssp.chan && !g_ssp.cycle) { if (fabs(dtime - g_ssp.last_change) < SND_SPATIAL_WAIT) return; } // cycle through forward, left, rearward vectors, averaging to get left/right delay // count[chan][cycle] 0,1 0,2 0,3 1,1 1,2 1,3 2,1 2,2 2,3 ... g_ssp.cycle++; if (g_ssp.cycle == 3) { g_ssp.cycle = 0; // cycle through front left, front right, rear left, rear right, front center delays g_ssp.chan++; if (g_ssp.chan >= chan_max ) g_ssp.chan = 0; } // set up traceline from player eyes to surrounding walls switch( g_ssp.chan ) { default: case 0: // front left: trace max 100' 'cone' to player's left if ( g_AudioDevice->IsSurround() ) { // 4-5 speaker case - front left v_dir = (-listener_right + listener_forward2d) / 2.0; v_dir = g_ssp.cycle ? (g_ssp.cycle == 1 ? -listener_right * 0.5: listener_forward2d * 0.5) : v_dir; } else { // 2 speaker case - left v_dir = listener_right * -1.0; v_dir2 = g_ssp.cycle ? (g_ssp.cycle == 1 ? listener_forward2d * 0.5 : -listener_forward2d * 0.5) : v_dir; v_dir = (v_dir + v_dir2) / 2.0; } break; case 1: // front right: trace max 100' 'cone' to player's right if ( g_AudioDevice->IsSurround() ) { // 4-5 speaker case - front right v_dir = (listener_right + listener_forward2d) / 2.0; v_dir = g_ssp.cycle ? (g_ssp.cycle == 1 ? listener_right * 0.5: listener_forward2d * 0.5) : v_dir; } else { // 2 speaker case - right v_dir = listener_right; v_dir2 = g_ssp.cycle ? (g_ssp.cycle == 1 ? listener_forward2d * 0.5 : -listener_forward2d * 0.5) : v_dir; v_dir = (v_dir + v_dir2) / 2.0; } break; case 2: // rear left: trace max 100' 'cone' to player's rear left v_dir = (listener_right + listener_forward2d) / -2.0; v_dir = g_ssp.cycle ? (g_ssp.cycle == 1 ? -listener_right * 0.5 : -listener_forward2d * 0.5) : v_dir; break; case 3: // rear right: trace max 100' 'cone' to player's rear right v_dir = (listener_right - listener_forward2d) / 2.0; v_dir = g_ssp.cycle ? (g_ssp.cycle == 1 ? listener_right * 0.5: -listener_forward2d * 0.5) : v_dir; break; case 4: // front center: trace max 100' 'cone' to player's front v_dir = listener_forward2d; v_dir2 = g_ssp.cycle ? (g_ssp.cycle == 1 ? listener_right * 0.15 : -listener_right * 0.15) : v_dir; v_dir = (v_dir + v_dir2); break; } Vector endpoint; trace_t tr; CTraceFilterWorldOnly filter; endpoint = MainViewOrigin() + v_dir * SND_WALL_TRACE_LEN; Ray_t ray; ray.Init( MainViewOrigin(), endpoint ); g_pEngineTraceClient->TraceRay( ray, MASK_BLOCK_AUDIO, &filter, &tr ); dist = SND_WALL_TRACE_LEN; if ( tr.DidHit() ) { dist = VectorLength( tr.endpos - MainViewOrigin() ); } g_ssp.dist[g_ssp.chan][g_ssp.cycle] = dist; // set new result in dsp_spatial delay params when all delay values have been filled in if (!g_ssp.cycle && !g_ssp.chan) { // update delay for each channel for (int chan = 0; chan < chan_max; chan++) { // compute average of 3 traces per channel v = (g_ssp.dist[chan][0] + g_ssp.dist[chan][1] + g_ssp.dist[chan][2]) / 3.0; vp = g_ssp.value_prev[chan]; // only change if 10% difference from previous if ((vp != v) && int(v) && (PercentDifference( v, vp ) >= 0.1)) { // update when we have data for all L/R && RL/RR channels... if (chan & 0x1) { float vr = fpmin( v, (50*12.0f) ); float vl = fpmin(g_ssp.value_prev[chan-1], (50*12.0f)); /* UNDONE: not needed, now that this applies only to dsp 'room' buffer // ensure minimum separation = average distance to walls float dmin = (vl + vr) / 2.0; // average distance to walls float d = vl - vr; // l/r separation // if separation is less than average, increase min if (abs(d) < dmin/2) { if (vl > vr) vl += dmin/2 - d; else vr += dmin/2 - d; } */ DSP_SetSpatialDelay(chan-1, vl); DSP_SetSpatialDelay(chan, vr); } // update center chan if (chan == 4) { float vl = fpmin( v, (50*12.0f) ); DSP_SetSpatialDelay(chan, vl); } } g_ssp.value_prev[chan] = v; } // update wait timer now that all values have been checked g_ssp.last_change = dtime; } } // Dsp Automatic Selection: // a) enabled by setting dsp_room to DSP_AUTOMATIC. Subsequently, dsp_automatic is the actual dsp value for dsp_room. // b) disabled by setting dsp_room to anything else // c) while enabled, detection nodes are placed as player moves into a new space // i. at each node, a new dsp setting is calculated and dsp_automatic is set to an appropriate preset // ii. new nodes are set when player moves out of sight of previous node // iii. moving into line of sight of a detection node causes closest node to player to set dsp_automatic // see void DAS_CheckNewRoomDSP( ) for main entrypoint ConVar das_debug( "adsp_debug", "0", FCVAR_ARCHIVE ); // >0: draw blue dsp detection node location // >1: draw green room trace height detection bars // 3: draw yellow horizontal trace bars for room width/depth detection // 4: draw yellow upward traces for height detection // 5: draw teal box around all props around player // 6: draw teal box around room as detected #define DAS_CWALLS 20 // # of wall traces to save for calculating room dimensions #define DAS_ROOM_TRACE_LEN (400.0*12.0) // max size of trace to check for room dimensions #define DAS_AUTO_WAIT 0.25 // wait min of n seconds between dsp_room changes and update checks #define DAS_WIDTH_MIN 0.4 // min % change in avg width of any wall pair to cause new dsp #define DAS_REFL_MIN 0.5 // min % change in avg refl of any wall to cause new dsp #define DAS_SKYHIT_MIN 0.8 // min % change in # of sky hits per wall #define DAS_DIST_MIN (4.0 * 12.0) // min distance between room dsp changes #define DAS_DIST_MAX (40.0 * 12.0) // max distance to preserve room dsp changes #define DAS_DIST_MIN_OUTSIDE (6.0 * 12.0) // min distance between room dsp changes outside #define DAS_DIST_MAX_OUTSIDE (100.0 * 12.0) // max distance to preserve room dsp changes outside #define IVEC_DIAG_UP 8 // start of diagonal up vectors #define IVEC_UP 18 // up vector #define IVEC_DOWN 19 // down vector #define DAS_REFLECTIVITY_NORM 0.5 #define DAS_REFLECTIVITY_SKY 0.0 // auto dsp room struct struct das_room_t { int dist[DAS_CWALLS]; // distance in units from player to axis aligned and diagonal walls float reflect[DAS_CWALLS]; // acoustic reflectivity per wall float skyhits[DAS_CWALLS]; // every sky hit adds 0.1 Vector hit[DAS_CWALLS]; // location of trace hit on wall - used for calculating average centers Vector norm[DAS_CWALLS]; // wall normal at hit location Vector vplayer; // 'frozen' location above player's head Vector vplayer_eyes; // 'frozen' location player's eyes int width_max; // max width int length_max; // max length int height_max; // max height float refl_avg; // running average of reflectivity of all walls float refl_walls[6]; // left,right,front,back,ceiling,floor reflectivities float sky_pct; // percent of sky hits Vector room_mins; // room bounds Vector room_maxs; double last_dsp_change; // time since last dsp change float diffusion; // 0..1.0 check radius (avg of width_avg) for # of props - scale diffusion based on # found short iwall; // cycles through walls 0..5, ensuring only one trace per frame short ent_count; // count of entities found in radius bool bskyabove; // true if sky found above player (ie: outside) bool broomready; // true if all distances are filled in and room is ready to check short lowceiling; // if non-zero, ceiling directly above player if < 112 units }; // dsp detection node struct das_node_t { Vector vplayer; // position bool fused; // true if valid node bool fseesplayer; // true if node sees player on last check short dsp_preset; // preset int range_min; // min,max detection ranges int range_max; int dist; // last distance to player // room parameters when node was created: das_room_t room; }; #define DAS_CNODES 40 // keep around last n nodes - must be same as DSP_CAUTO_PRESETS!!! das_node_t g_das_nodes[DAS_CNODES]; // all dsp detection nodes das_node_t *g_pdas_last_node = NULL; // last node that saw player int g_das_check_next; // next node to check int g_das_store_next; // next place to store node bool g_das_all_checked; // true if all nodes checked int g_das_checked_count; // count of nodes checked in latest pass das_room_t g_das_room; // room detector bool g_bdas_room_init = 0; bool g_bdas_init_nodes = 0; bool g_bdas_create_new_node = 0; bool DAS_TraceNodeToPlayer( das_room_t *proom, das_node_t *pnode ); void DAS_InitAutoRoom( das_room_t *proom); void DAS_DebugDrawTrace ( trace_t *ptr, int r, int g, int b, float duration, int imax ); Vector g_das_vec3[DAS_CWALLS]; // trace vectors to walls, ceiling, floor void DAS_InitNodes( void ) { Q_memset(g_das_nodes, 0, sizeof(das_node_t) * DAS_CNODES); g_das_check_next = 0; g_das_store_next = 0; g_das_all_checked = 0; g_das_checked_count = 0; // init all rooms for (int i = 0; i < DAS_CNODES; i++) DAS_InitAutoRoom( &(g_das_nodes[i].room) ); // init trace vectors // set up trace vectors for max, min width float vl = DAS_ROOM_TRACE_LEN; float vlu = DAS_ROOM_TRACE_LEN * 0.52; float vlu2 = DAS_ROOM_TRACE_LEN * 0.48; // don't use 'perfect' diagonals g_das_vec3[0].Init(vl, 0.0, 0.0); // x left g_das_vec3[1].Init(-vl, 0.0, 0.0); // x right g_das_vec3[2].Init(0.0, vl, 0.0); // y front g_das_vec3[3].Init(0.0, -vl, 0.0); // y back g_das_vec3[4].Init(-vlu, vlu2, 0.0); // diagonal front left g_das_vec3[5].Init(vlu, -vlu2, 0.0); // diagonal rear right g_das_vec3[6].Init(vlu, vlu2, 0.0); // diagonal front right g_das_vec3[7].Init(-vlu, -vlu2, 0.0); // diagonal rear left // set up trace vectors for max height - on x=y diagonal g_das_vec3[8].Init(vlu, vlu2, vlu/2.0); // front right up A x,y,z/2 (IVEC_DIAG_UP) g_das_vec3[9].Init(vlu, vlu2, vlu); // front right up B x,y,z g_das_vec3[10].Init(vlu/2.0, vlu2/2.0, vlu); // front right up C x/2,y/2,z g_das_vec3[11].Init(-vlu, -vlu2, vlu/2.0); // rear left up A -x,-y,z/2 g_das_vec3[12].Init(-vlu, -vlu2, vlu); // rear left up B -x,-y,z g_das_vec3[13].Init(-vlu/2.0, -vlu2/2.0, vlu); // rear left up C -x/2,-y/2,z // set up trace vectors for max height - on x axis & y axis g_das_vec3[14].Init(-vlu, 0, vlu); // left up B -x,0,z g_das_vec3[15].Init(0, vlu/2.0, vlu); // front up C -x/2,0,z g_das_vec3[16].Init(0, -vlu, vlu); // rear up B x,0,z g_das_vec3[17].Init(vlu/2.0, 0, vlu); // right up C x/2,0,z g_das_vec3[18].Init(0.0, 0.0, vl); // up (IVEC_UP) g_das_vec3[19].Init(0.0, 0.0, -vl); // down (IVEC_DOWN) } void DAS_InitAutoRoom( das_room_t *proom) { Q_memset(proom, 0, sizeof (das_room_t)); } // reset all nodes for next round of visibility checks between player & nodes void DAS_ResetNodes( void ) { for (int i = 0; i < DAS_CNODES; i++) { g_das_nodes[i].fseesplayer = false; g_das_nodes[i].dist = 0; } g_das_all_checked = false; g_das_checked_count = 0; g_bdas_create_new_node = false; } // utility function - return next index, wrap at max int DAS_GetNextIndex( int *pindex, int max ) { int i = *pindex; int j; j = i+1; if ( j >= max ) j = 0; *pindex = j; return i; } // returns true if dsp node is within range of player bool DAS_NodeInRange( das_room_t *proom, das_node_t *pnode ) { float dist; dist = VectorLength( proom->vplayer - pnode->vplayer ); // player can still see previous room selection point, and it's less than n feet away, // then flag this node as visible pnode->dist = dist; return ( dist <= pnode->range_max ); } // update next valid node - set up internal node state if it can see player // called once per frame // returns true if all nodes have been checked bool DAS_CheckNextNode( das_room_t *proom ) { int i, j; if ( g_das_all_checked ) return true; // find next valid node for (j = 0; j < DAS_CNODES; j++) { // track number of nodes checked g_das_checked_count++; // get next node in range to check i = DAS_GetNextIndex( &g_das_check_next, DAS_CNODES ); if ( g_das_nodes[i].fused && DAS_NodeInRange( proom, &(g_das_nodes[i]) ) ) { // trace to see if player can still see node, // if so stop checking if ( DAS_TraceNodeToPlayer( proom, &(g_das_nodes[i]) )) goto checknode_exit; } } checknode_exit: // flag that all nodes have been checked if ( g_das_checked_count >= DAS_CNODES ) g_das_all_checked = true; return g_das_all_checked; } int DAS_GetNextNodeIndex() { return g_das_store_next; } // store new node for room void DAS_StoreNode( das_room_t *proom, int dsp_preset) { // overwrite node in cyclic list int i = DAS_GetNextIndex( &g_das_store_next, DAS_CNODES ); g_das_nodes[i].dsp_preset = dsp_preset; g_das_nodes[i].fused = true; g_das_nodes[i].vplayer = proom->vplayer; // calculate node scanning range_max based on room size if ( !proom->bskyabove ) { // inside range - halls & tunnels have nodes every 5*width g_das_nodes[i].range_max = fpmin((int)DAS_DIST_MAX, min(proom->width_max * 5, proom->length_max) ); g_das_nodes[i].range_min = DAS_DIST_MIN; } else { // outside range g_das_nodes[i].range_max = DAS_DIST_MAX_OUTSIDE; g_das_nodes[i].range_min = DAS_DIST_MIN_OUTSIDE; } g_das_nodes[i].fseesplayer = false; g_das_nodes[i].dist = 0; g_das_nodes[i].room = *proom; // update last node visible as this node g_pdas_last_node = &(g_das_nodes[i]); } // check all updated nodes, // return dsp_preset of largest node (by area) that can see player // return -1 if no preset found // NOTE: outside nodes can't see player if player is inside and vice versa // foutside is true if player is outside int DAS_GetDspPreset( bool foutside ) { int dsp_preset = -1; int i; // int dist_min = 100000; int area_max = 0; int area; // find node that represents room with greatest floor area, return its preset. for (i = 0; i < DAS_CNODES; i++) { if (g_das_nodes[i].fused && g_das_nodes[i].fseesplayer) { area = (g_das_nodes[i].room.width_max * g_das_nodes[i].room.length_max); if ( g_das_nodes[i].room.bskyabove == foutside ) { if (area > area_max) { area_max = area; dsp_preset = g_das_nodes[i].dsp_preset; // save pointer to last node that saw player g_pdas_last_node = &(g_das_nodes[i]); } } /* // find nearest node, return its preset if (g_das_nodes[i].dist < dist_min) { if ( g_das_nodes[i].room.bskyabove == foutside ) { dist_min = g_das_nodes[i].dist; dsp_preset = g_das_nodes[i].dsp_preset; // save pointer to last node that saw player g_pdas_last_node = &(g_das_nodes[i]); } } */ } } return dsp_preset; } // custom trace filter: // a) never hit player or monsters or entities // b) always hit world, or moveables or static props class CTraceFilterDAS : public ITraceFilter { public: bool ShouldHitEntity( IHandleEntity *pHandleEntity, int contentsMask ) { IClientUnknown *pUnk = static_cast(pHandleEntity); IClientEntity *pEntity; if ( !pUnk ) return false; // don't hit non-collideable props if ( StaticPropMgr()->IsStaticProp( pHandleEntity ) ) { ICollideable *pCollide = StaticPropMgr()->GetStaticProp( pHandleEntity); if (!pCollide) return false; } // don't hit any ents pEntity = pUnk->GetIClientEntity(); if ( pEntity ) return false; return true; } virtual TraceType_t GetTraceType() const { return TRACE_EVERYTHING_FILTER_PROPS; } }; #define DAS_TRACE_MASK (CONTENTS_SOLID|CONTENTS_MOVEABLE|CONTENTS_WINDOW) // returns true if clear line exists between node and player // if node can see player, sets up node distance and flag fseesplayer bool DAS_TraceNodeToPlayer( das_room_t *proom, das_node_t *pnode ) { trace_t trP; CTraceFilterDAS filterP; bool fseesplayer = false; float dist; Ray_t ray; ray.Init( proom->vplayer, pnode->vplayer ); g_pEngineTraceClient->TraceRay( ray, DAS_TRACE_MASK, &filterP, &trP ); dist = VectorLength( proom->vplayer - pnode->vplayer ); // player can still see previous room selection point, and it's less than n feet away, // then flag this node as visible if ( !trP.DidHit() && (dist <= DAS_DIST_MAX) ) { fseesplayer = true; pnode->dist = dist; } pnode->fseesplayer = fseesplayer; return fseesplayer; } // update room boundary maxs, mins void DAS_SetRoomBounds( das_room_t *proom, Vector &hit, bool bheight ) { Vector maxs, mins; maxs = proom->room_maxs; mins = proom->room_mins; if (!bheight) { if (hit.x > maxs.x) maxs.x = hit.x; if (hit.x < mins.x) mins.x = hit.x; if (hit.z > maxs.z) maxs.z = hit.z; if (hit.z < mins.z) mins.z = hit.z; } if (bheight) { if (hit.y > maxs.y) maxs.y = hit.y; if (hit.y < mins.y) mins.y = hit.y; } proom->room_maxs = maxs; proom->room_mins = mins; } // when all walls are updated, calculate max length, width, height, reflectivity, sky hit%, room center // returns true if room parameters are in good location to place a node // returns false if room parameters are not in good location to place a node // note: false occurs if up vector doesn't hit sky, but one or more up diagonal vectors do hit sky bool DAS_CalcRoomProps( das_room_t *proom ) { int length_max = 0; int width_max = 0; int height_max = 0; int dist[4]; float area1, area2; int height; int i; int j; int k; bool b_diaghitsky = false; // reject this location if up vector doesn't hit sky, but // one or more up diagonals do hit sky - // in this case, player is under a slight overhang, narrow bridge, or // standing just inside a window or doorway. keep looking for better node location for (i = IVEC_DIAG_UP; i < IVEC_UP; i++) { if (proom->skyhits[i] > 0.0) b_diaghitsky = true; } if (b_diaghitsky && !(proom->skyhits[IVEC_UP] > 0.0)) return false; // get all distance pairs for (i = 0; i < IVEC_DIAG_UP; i+=2) dist[i/2] = proom->dist[i] + proom->dist[i+1]; // 1st pair is width // if areas differ by more than 25% // select the pair with the greater area // if areas do not differ by more than 25%, select the pair with the // longer measured distance. Filters incorrect selection due to diagonals. area1 = (float)(dist[0] * dist[1]); area2 = (float)(dist[2] * dist[3]); area1 = (int)area1 == 0 ? 1.0 : area1; area2 = (int)area2 == 0 ? 1.0 : area2; if ( PercentDifference(area1, area2) > 0.25 ) { // areas are more than 25% different - select pair with greater area j = area1 > area2 ? 0 : 2; } else { // select pair with longer measured distance int iMaxDist = 0; // index to max dist int dmax = 0; for (i = 0; i < 4; i++) { if (dist[i] > dmax) { dmax = dist[i]; iMaxDist = i; } } j = iMaxDist > 1 ? 2 : 0; } // width is always the smaller of the dimensions width_max = min (dist[j], dist[j+1]); length_max = max (dist[j], dist[j+1]); // get max height for (i = IVEC_DIAG_UP; i < IVEC_DOWN; i++) { height = proom->dist[i]; if (height > height_max) height_max = height; } proom->length_max = length_max; proom->width_max = width_max; proom->height_max = height_max; // get room max,min from chosen width, depth // 0..3 or 4..7 for ( i = j*2; i < 4+(j*2); i++) DAS_SetRoomBounds( proom, proom->hit[i], false ); // get room height min from down trace proom->room_mins.z = proom->hit[IVEC_DOWN].z; // reset room height max to player trace height proom->room_maxs.z = proom->vplayer.z; // draw box around room max,min if (das_debug.GetInt() == 6) { // draw box around all objects detected Vector maxs = proom->room_maxs; Vector mins = proom->room_mins; Vector orig = (maxs + mins) / 2.0; Vector absMax = maxs - orig; Vector absMin = mins - orig; CDebugOverlay::AddBoxOverlay( orig, absMax, absMin, vec3_angle, 255, 0, 255, 0, 60.0f ); } // calculate average reflectivity float refl = 0.0; // average reflectivity for walls // 0..3 or 4..7 for ( k = 0, i = j*2; i < 4+(j*2); i++, k++) { refl += proom->reflect[i]; proom->refl_walls[k] = proom->reflect[i]; } // assume ceiling is open proom->refl_walls[4] = 0.0; // get ceiling reflectivity, if any non zero for ( i = IVEC_DIAG_UP; i < IVEC_DOWN; i++) { if (proom->reflect[i] == 0.0) { // if any upward trace hit sky, exit; // ceiling reflectivity is 0.0 proom->refl_walls[4] = 0.0; i = IVEC_DOWN; // exit loop } else { // upward trace didn't hit sky, keep checking proom->refl_walls[4] = proom->reflect[i]; } } // add in ceiling reflectivity, if any refl += proom->refl_walls[4]; // get floor reflectivity refl += proom->reflect[IVEC_DOWN]; proom->refl_walls[5] = proom->reflect[IVEC_DOWN]; proom->refl_avg = refl / 6.0; // calculate sky hit percent for this wall float sky_pct = 0.0; // 0..3 or 4..7 for ( i = j*2; i < 4+(j*2); i++) sky_pct += proom->skyhits[i]; for ( i = IVEC_DIAG_UP; i < IVEC_DOWN; i++) { if (proom->skyhits[i] > 0.0) { // if any upward trace hit sky, exit loop sky_pct += proom->skyhits[i]; i = IVEC_DOWN; } } // get floor skyhit sky_pct += proom->skyhits[IVEC_DOWN]; proom->sky_pct = sky_pct; // check for sky above proom->bskyabove = false; for (i = IVEC_DIAG_UP; i < IVEC_DOWN; i++) { if (proom->skyhits[i] > 0.0) proom->bskyabove = true; } return true; } // return true if trace hit solid // return false if trace hit sky or didn't hit anything bool DAS_HitSolid( trace_t *ptr ) { // if hit nothing return false if (!ptr->DidHit()) return false; // if hit sky, return false (not solid) if (ptr->surface.flags & SURF_SKY) return false; return true; } // returns true if trace hit sky bool DAS_HitSky( trace_t *ptr ) { if (ptr->DidHit() && (ptr->surface.flags & SURF_SKY)) return true; if (!ptr->DidHit() ) { float dz = ptr->endpos.z - ptr->startpos.z; if ( dz > 200*12.0f ) return true; } return false; } bool DAS_ScanningForHeight( das_room_t *proom ) { return (proom->iwall >= IVEC_DIAG_UP); } bool DAS_ScanningForWidth( das_room_t *proom ) { return (proom->iwall < IVEC_DIAG_UP); } bool DAS_ScanningForFloor( das_room_t *proom ) { return (proom->iwall == IVEC_DOWN); } ConVar das_door_height("adsp_door_height", "112"); // standard door height hl2 ConVar das_wall_height("adsp_wall_height", "128"); // standard wall height hl2 ConVar das_low_ceiling("adsp_low_ceiling", "108"); // low ceiling height hl2 // set origin for tracing out to walls to point above player's head // allows calculations over walls and floor obstacles, and above door openings // WARNING: the current settings are optimal for skipping floor and ceiling clutter, // and for detecting rooms without 'looking' through doors or windows. Don't change these cvars for hl2! void DAS_SetTraceHeight( das_room_t *proom, trace_t *ptrU, trace_t *ptrD ) { // NOTE: when tracing down through player's box, endpos and startpos are reversed and // startsolid and allsolid are true. int zup = abs(ptrU->endpos.z - ptrU->startpos.z); // height above player's head int zdown = abs(ptrD->endpos.z - ptrD->startpos.z); // distance to floor from player's head int h; h = zup + zdown; int door_height = das_door_height.GetInt(); int wall_height = das_wall_height.GetInt(); int low_ceiling = das_low_ceiling.GetInt(); if (h > low_ceiling && h <= wall_height) { // low ceiling - trace out just above standard door height @ 112 if (h > door_height) proom->vplayer.z = fpmin(ptrD->endpos.z, ptrD->startpos.z) + door_height + 1; else proom->vplayer.z = fpmin(ptrD->endpos.z, ptrD->startpos.z) + h - 1; } else if ( h > wall_height ) { // tall ceiling - trace out over standard walls @ 128 proom->vplayer.z = fpmin(ptrD->endpos.z, ptrD->startpos.z) + wall_height + 1; } else { // very low ceiling, trace out from just below ceiling proom->vplayer.z = fpmin(ptrD->endpos.z, ptrD->startpos.z) + h - 1; proom->lowceiling = h; } Assert (proom->vplayer.z <= ptrU->endpos.z); if (das_debug.GetInt() > 1) { // draw line to height, and between floor and ceiling CDebugOverlay::AddLineOverlay( ptrD->endpos, ptrU->endpos, 0, 255, 0, 255, false, 20 ); Vector mins; Vector maxs; mins.Init(-1,-1,-2.0); maxs.Init(1,1,0); CDebugOverlay::AddBoxOverlay( proom->vplayer, mins, maxs, vec3_angle, 255, 0, 0, 0, 20 ); CDebugOverlay::AddBoxOverlay( ptrU->endpos, mins, maxs, vec3_angle, 0, 255, 0, 0, 20 ); CDebugOverlay::AddBoxOverlay( ptrD->endpos, mins, maxs, vec3_angle, 0, 255, 0, 0, 20 ); } } // prepare room struct for new round of checks: // clear out struct, // init trace height origin by finding space above player's head // returns true if player is in valid position to begin checks from bool DAS_StartTraceChecks( das_room_t *proom ) { // starting new check: store player position, init maxs, mins proom->vplayer_eyes = MainViewOrigin(); proom->vplayer = MainViewOrigin(); proom->height_max = 0; proom->width_max = 0; proom->length_max = 0; proom->room_maxs.Init (0.0, 0.0, 0.0); proom->room_mins.Init (10000.0, 10000.0, 10000.0); proom->lowceiling = 0; // find point between player's head and ceiling - trace out to walls from here trace_t trU, trD; CTraceFilterDAS filterU, filterD; Vector v_dir = g_das_vec3[IVEC_DOWN]; // down - find floor Vector endpoint = proom->vplayer + v_dir; Ray_t ray; ray.Init( proom->vplayer, endpoint ); g_pEngineTraceClient->TraceRay( ray, DAS_TRACE_MASK, &filterD, &trD ); // if player jumping or in air, don't continue if (trD.DidHit() && abs(trD.endpos.z - trD.startpos.z) > 72) return false; v_dir = g_das_vec3[IVEC_UP]; // up - find ceiling endpoint = proom->vplayer + v_dir; ray.Init( proom->vplayer, endpoint ); g_pEngineTraceClient->TraceRay( ray, DAS_TRACE_MASK, &filterU, &trU ); // if down trace hits floor, set trace height, otherwise default is player eye location if ( DAS_HitSolid( &trD) ) DAS_SetTraceHeight( proom, &trU, &trD ); return true; } void DAS_DebugDrawTrace ( trace_t *ptr, int r, int g, int b, float duration, int imax) { // das_debug == 3: draw horizontal trace bars for room width/depth detection // das_debug == 4: draw upward traces for height detection if (das_debug.GetInt() != imax) return; CDebugOverlay::AddLineOverlay( ptr->startpos, ptr->endpos, r, g, b, 255, false, duration ); Vector mins; Vector maxs; mins.Init(-1,-1,-2.0); maxs.Init(1,1,0); CDebugOverlay::AddBoxOverlay( ptr->endpos, mins, maxs, vec3_angle, r, g, b, 0, duration ); } // wall surface data struct das_surfdata_t { float dist; // distance to player float reflectivity; // acoustic reflectivity of material on surface Vector hit; // trace hit location Vector norm; // wall normal at hit location }; // trace hit wall surface, get info about surface and store in surfdata struct // if scanning for height, bounce a second trace off of ceiling and get dist to floor void DAS_GetSurfaceData( das_room_t *proom, trace_t *ptr, das_surfdata_t *psurfdata ) { float dist; // distance to player float reflectivity; // acoustic reflectivity of material on surface Vector hit; // trace hit location Vector norm; // wall normal at hit location surfacedata_t *psurf; psurf = physprop->GetSurfaceData( ptr->surface.surfaceProps ); reflectivity = psurf ? psurf->audio.reflectivity : DAS_REFLECTIVITY_NORM; // keep wall hit location and normal, to calc room bounds and center norm = ptr->plane.normal; // get length to hit location dist = VectorLength(ptr->endpos - ptr->startpos); // if started tracing from within player box, startpos & endpos may be flipped if (ptr->endpos.z >= ptr->startpos.z) hit = ptr->endpos; else hit = ptr->startpos; // if checking for max height by bouncing several vectors off of ceiling: // ignore returned normal from 1st bounce, just search straight down from trace hit location if ( DAS_ScanningForHeight( proom ) && !DAS_ScanningForFloor( proom ) ) { trace_t tr2; CTraceFilterDAS filter2; norm.Init(0.0, 0.0, -1.0); Vector endpoint = hit + ( norm * DAS_ROOM_TRACE_LEN ); Ray_t ray; ray.Init( hit, endpoint ); g_pEngineTraceClient->TraceRay( ray, DAS_TRACE_MASK, &filter2, &tr2 ); //DAS_DebugDrawTrace( &tr2, 255, 255, 0, 10, 1); if (tr2.DidHit()) { // get distance between surfaces dist = VectorLength(tr2.endpos - tr2.startpos); } } // set up surface struct and return psurfdata->dist = dist; psurfdata->hit = hit; psurfdata->norm = norm; psurfdata->reflectivity = reflectivity; } // algorithm for detecting approximate size of space around player. Handles player in corner & non-axis aligned rooms. // also handles player on catwalk or player under small bridge/overhang. // The goal is to only change the dsp room description if the the player moves into // a space which is SIGNIFICANTLY different from the previously set dsp space. // save player position. find a point above player's head and trace out from here. // from player position, get max width and max length: // from player position, // a) trace x,-x, y,-y axes // b) trace xy, -xy, x-y, -x-y diagonals // c) select largest room size detected from max width, max length // from player position, get height // a) trace out along front-up (or left-up, back-up, right-up), save hit locations // b) trace down -z from hit locations // c) save max height // when max width, max length, max height all updated, get new player position // get average room size & wall materials: // update averages with one traceline per frame only // returns true if room is fully updated and ready to check bool DAS_UpdateRoomSize( das_room_t *proom ) { Vector endpoint; Vector startpoint; Vector v_dir; int iwall; bool bskyhit = false; das_surfdata_t surfdata; // do nothing if room already fully checked if ( proom->broomready ) return true; // cycle through all walls, floor, ceiling // get wall index iwall = proom->iwall; // get height above player and init proom for new round of checks if (iwall == 0) { if (!DAS_StartTraceChecks( proom )) return false; // bad location to check room - player is jumping etc. } // get trace vector v_dir = g_das_vec3[iwall]; // trace out from trace origin, in axis-aligned direction or along diagonals // if looking for max height, trace from top of player's eyes if ( DAS_ScanningForHeight( proom ) ) { startpoint = proom->vplayer_eyes; endpoint = proom->vplayer_eyes + v_dir; } else { startpoint = proom->vplayer; endpoint = proom->vplayer + v_dir; } // try less expensive world-only trace first (no props, no ents - just try to hit walls) trace_t tr; CTraceFilterWorldOnly filter; Ray_t ray; ray.Init( startpoint, endpoint ); g_pEngineTraceClient->TraceRay( ray, CONTENTS_SOLID, &filter, &tr ); // if didn't hit world, or we hit sky when looking horizontally, // retrace, this time including props if ( !DAS_HitSolid( &tr ) && DAS_ScanningForWidth( proom ) ) { CTraceFilterDAS filterDas; ray.Init( startpoint, endpoint ); g_pEngineTraceClient->TraceRay( ray, DAS_TRACE_MASK, &filterDas, &tr ); } if (das_debug.GetInt() > 2) { // draw trace lines if ( DAS_HitSolid( &tr ) ) DAS_DebugDrawTrace( &tr, 0, 255, 255, 10, DAS_ScanningForHeight( proom ) + 3); else DAS_DebugDrawTrace( &tr, 255, 0, 0, 10, DAS_ScanningForHeight( proom ) + 3); // red lines if sky hit or no hit } // init surface data with defaults, in case we didn't hit world surfdata.dist = DAS_ROOM_TRACE_LEN; surfdata.reflectivity = DAS_REFLECTIVITY_SKY; // assume sky or open area surfdata.hit = endpoint; // trace hit location surfdata.norm = -v_dir; // check for sky hits if ( DAS_HitSky( &tr ) ) { bskyhit = true; if ( DAS_ScanningForWidth( proom ) ) // ignore horizontal sky hits for distance calculations surfdata.dist = 1.0; else surfdata.dist = surfdata.dist; // debug } // get length of trace if it hit world // if hit solid and not sky (tr.DidHit() && !bskyhit) // get surface information if ( DAS_HitSolid( &tr) ) DAS_GetSurfaceData( proom, &tr, &surfdata ); // store surface data proom->dist[iwall] = surfdata.dist; proom->reflect[iwall] = clamp(surfdata.reflectivity, 0.0f, 1.0f); proom->skyhits[iwall] = bskyhit ? 0.1 : 0.0; proom->hit[iwall] = surfdata.hit; proom->norm[iwall] = surfdata.norm; // update wall counter proom->iwall++; if (proom->iwall == DAS_CWALLS) { bool b_good_node_location; // calculate room mins, maxs, reflectivity etc b_good_node_location = DAS_CalcRoomProps( proom ); // reset wall counter proom->iwall = 0; proom->broomready = b_good_node_location; // room ready to check if good node location return b_good_node_location; } return false; // room not yet fully updated } // create entity enumerator for counting ents & summing volume of ents in room class CDasEntEnum : public IPartitionEnumerator { public: int m_count; // # of ents in space float m_volume; // space occupied by ents public: void Reset() { m_count = 0; m_volume = 0.0; } // called with each handle... IterationRetval_t EnumElement( IHandleEntity *pHandleEntity ) { float vol; // get bounding box of entity // Generate a collideable ICollideable *pCollideable = g_pEngineTraceClient->GetCollideable( pHandleEntity ); if ( !pCollideable ) return ITERATION_CONTINUE; // Check for solid if ( !IsSolid( pCollideable->GetSolid(), pCollideable->GetSolidFlags() ) ) return ITERATION_CONTINUE; m_count++; // compute volume of space occupied by entity Vector mins = pCollideable->OBBMins(); Vector maxs = pCollideable->OBBMaxs(); vol = fabs((maxs.x - mins.x) * (maxs.y - mins.y) * (maxs.z - mins.z)); m_volume += vol; // add to total vol if (das_debug.GetInt() == 5) { // draw box around all objects detected Vector orig = pCollideable->GetCollisionOrigin(); CDebugOverlay::AddBoxOverlay( orig, mins, maxs, pCollideable->GetCollisionAngles(), 255, 0, 255, 0, 60.0f ); } return ITERATION_CONTINUE; } }; // determine # of solid ents/props within detected room boundaries // and set diffusion based on count of ents and spatial volume of ents void DAS_SetDiffusion( das_room_t *proom ) { // BRJ 7/12/05 // This was commented out because the y component of proom->room_mins, proom->room_maxs was never // being computed, causing a bogus box to be sent to the partition system. The results of // this computation (namely the diffusion + ent_count fields of das_room_t) were never being used. // Therefore, we'll avoid the enumeration altogether proom->diffusion = 0.0f; proom->ent_count = 0; /* CDasEntEnum enumerator; SpatialPartitionListMask_t mask = PARTITION_CLIENT_SOLID_EDICTS; // count only solid ents in room int count; float vol; float volroom; float dfn; enumerator.Reset(); SpatialPartition()->EnumerateElementsInBox(mask, proom->room_mins, proom->room_maxs, true, &enumerator ); count = enumerator.m_count; vol = enumerator.m_volume; // compute diffusion from volume // how much space around player is filled with props? volroom = (proom->room_maxs.x - proom->room_mins.x) * (proom->room_maxs.y - proom->room_mins.y) * (proom->room_maxs.z - proom->room_mins.z); volroom = fabs(volroom); if ( !(int)volroom ) volroom = 1.0; dfn = vol / volroom; // % of total volume occupied by props dfn = clamp (dfn, 0.0, 1.0); proom->diffusion = dfn; proom->ent_count = count; */ } // debug routine to display current room params void DAS_DisplayRoomDEBUG( das_room_t *proom, bool fnew, float preset ) { float dx,dy,dz; Vector ctr; float count; if (das_debug.GetInt() == 0) return; dx = proom->length_max / 12.0; dy = proom->width_max / 12.0; dz = proom->height_max / 12.0; float refl = proom->refl_avg; count = (float)(proom->ent_count); float fsky = (proom->bskyabove ? 1.0 : 0.0); if (fnew) DevMsg( "NEW DSP NODE: size:(%.0f,%.0f) height:(%.0f) dif %.4f : refl %.4f : cobj: %.0f : sky %.0f \n", dx, dy, dz, proom->diffusion, refl, count, fsky); if (!fnew && preset < 0.0) return; if (preset >= 0.0) { if (proom == NULL) return; DevMsg( "DSP PRESET: %.0f size:(%.0f,%.0f) height:(%.0f) dif %.4f : refl %.4f : cobj: %.0f : sky %.0f \n", preset, dx, dy, dz, proom->diffusion, refl, count, fsky); return; } // draw box around new node location Vector mins; Vector maxs; mins.Init(-8,-8,-16); maxs.Init(8,8,0); CDebugOverlay::AddBoxOverlay( proom->vplayer, mins, maxs, vec3_angle, 0, 0, 255, 0, 1000.0f ); // draw red box around node origin mins.Init(-0.5,-0.5,-1.0); maxs.Init(0.5,0.5,0); CDebugOverlay::AddBoxOverlay( proom->vplayer, mins, maxs, vec3_angle, 255, 0, 0, 0, 1000.0f ); CDebugOverlay::AddTextOverlay( proom->vplayer, 0, 10, 1.0, "DSP NODE" ); } // check newly calculated room parameters against current stored params. // if different, return true. // NOTE: only call when all proom params have been calculated. // return false if this is not a good location for creating a new node bool DAS_CheckNewRoom( das_room_t *proom ) { bool bnewroom; float dw,dw2,dr,ds,dh; int cchanged = 0; das_room_t *proom_prev = NULL; Vector2D v2d; Vector v3d; float dist; // player can't see previous node, determine if this is a good place to lay down // a new node. Get room at last seen node for comparison if (g_pdas_last_node) proom_prev = &(g_pdas_last_node->room); // no previous room node saw player, go create new room node if (!proom_prev) { bnewroom = true; goto check_ret; } // if player not at least n feet from last node, return false v3d = proom->vplayer - proom_prev->vplayer; v2d.Init(v3d.x, v3d.y); dist = Vector2DLength(v2d); if (dist <= DAS_DIST_MIN) return false; // see if room size has changed significantly since last node bnewroom = true; dw = 0.0; dw2 = 0.0; dh = 0.0; dr = 0.0; if ( proom_prev->width_max != 0 ) dw = (float)proom->width_max / (float)proom_prev->width_max; // max width delta if ( proom_prev->length_max != 0 ) dw2 = (float)proom->length_max / (float)proom_prev->length_max; // max length delta if ( proom_prev->height_max != 0 ) dh = (float)proom->height_max / (float)proom_prev->height_max; // max height delta if ( proom_prev->refl_avg != 0.0 ) dr = proom->refl_avg / proom_prev->refl_avg; // reflectivity delta ds = fabs( proom->sky_pct - proom_prev->sky_pct); // sky hits delta if (dw > 1.0) dw = 1.0 / dw; if (dw2 > 1.0) dw = 1.0 / dw2; if (dh > 1.0) dh = 1.0 / dh; if (dr > 1.0) dr = 1.0 / dr; if ( (1.0 - dw) >= DAS_WIDTH_MIN ) cchanged++; if ( (1.0 - dw2) >= DAS_WIDTH_MIN ) cchanged++; // if ( (1.0 - dh) >= DAS_WIDTH_MIN ) // don't change room based on height change // cchanged++; // new room only if at least 1 changed if (cchanged >= 1) goto check_ret; // if ( (1.0 - dr) >= DAS_REFL_MIN ) // don't change room based on reflectivity change // goto check_ret; // if (ds >= DAS_SKYHIT_MIN ) // goto check_ret; // new room if sky above changes state if (proom->bskyabove != proom_prev->bskyabove) goto check_ret; // room didn't change significantly, return false bnewroom = false; check_ret: if ( bnewroom ) { // if low ceiling detected < 112 units, and max height is > low ceiling height by 20%, discard - no change // this detects player in doorway, under pipe or narrow bridge if ( proom->lowceiling && (proom->lowceiling < proom->height_max)) { float h = (float)(proom->lowceiling) / (float)proom->height_max; if (h < 0.8) return false; } DAS_SetDiffusion( proom ); } DAS_DisplayRoomDEBUG( proom, bnewroom, -1.0 ); return bnewroom; } extern int DSP_ConstructPreset( bool bskyabove, int width, int length, int height, float fdiffusion, float freflectivity, float *psurf_refl, int inode, int cnodes ); // select new dsp_room based on size, wall materials // (or modulate params for current dsp) // returns new preset # for dsp_automatic int DAS_GetRoomDSP( das_room_t *proom, int inode ) { // preset constructor // call dsp module with params, get dsp preset back bool bskyabove = proom->bskyabove; int width = proom->width_max; int length = proom->length_max; int height = proom->height_max; float fdiffusion = proom->diffusion; float freflectivity = proom->refl_avg; float surf_refl[6]; // fill array of surface reflectivities - for left,right,front,back,ceiling,floor for (int i = 0; i < 6; i++) surf_refl[i] = proom->refl_walls[i]; return DSP_ConstructPreset( bskyabove, width, length, height, fdiffusion, freflectivity, surf_refl, inode, DAS_CNODES ); } // main entry point: call once per frame to update dsp_automatic // for automatic room detection. dsp_room must be set to DSP_AUTOMATIC to enable. // NOTE: this routine accumulates traceline information over several frames - it // never traces more than 3 times per call, and normally just once per call. void DAS_CheckNewRoomDSP( ) { VPROF("DAS_CheckNewRoomDSP"); das_room_t *proom = &g_das_room; int dsp_preset; bool bRoom_ready = false; // if listener has not been updated, do nothing if ((listener_origin == vec3_origin) && (listener_forward == vec3_origin) && (listener_right == vec3_origin) && (listener_up == vec3_origin) ) return; if ( !SND_IsInGame() ) return; // make sure we init nodes & vectors first time this is called if ( !g_bdas_init_nodes ) { g_bdas_init_nodes = 1; DAS_InitNodes(); } if ( !DSP_CheckDspAutoEnabled()) { // make sure room params are reinitialized each time autoroom is selected g_bdas_room_init = 0; return; } if ( !g_bdas_room_init ) { g_bdas_room_init = 1; DAS_InitAutoRoom( proom ); } // get time double dtime = g_pSoundServices->GetHostTime(); // compare to previous time - don't check for new room until timer expires // ie: wait at least DAS_AUTO_WAIT seconds between preset changes if ( fabs(dtime - proom->last_dsp_change) < DAS_AUTO_WAIT ) return; // first, update room size parameters, see if room is ready to check - if room is updated, return true right away // 3 traces per frame while accumulating room size info for (int i = 0 ; i < 3; i++) bRoom_ready = DAS_UpdateRoomSize( proom ); if (!bRoom_ready) return; if ( !g_bdas_create_new_node ) { // next, check all nodes for line of sight to player - if all checked, return true right away if ( !DAS_CheckNextNode( proom ) ) { // check all nodes first return; } // find out if any previously stored nodes can see player, // if so, get closest node's dsp preset dsp_preset = DAS_GetDspPreset( proom->bskyabove ); if (dsp_preset != -1) { // an existing node can see player - just set preset and return if (dsp_preset != dsp_room_GetInt()) { // changed preset, so update timestamp proom->last_dsp_change = g_pSoundServices->GetHostTime(); if (g_pdas_last_node) DAS_DisplayRoomDEBUG( &(g_pdas_last_node->room), false, (float)dsp_preset ); } DSP_SetDspAuto( dsp_preset ); goto check_new_room_exit; } } g_bdas_create_new_node = true; // no nodes can see player, need to try to create a new one // check for 'new' room around player if ( DAS_CheckNewRoom( proom ) ) { // new room found - update dsp_automatic dsp_preset = DAS_GetRoomDSP( proom, DAS_GetNextNodeIndex() ); DSP_SetDspAuto( dsp_preset ); // changed preset, so update timestamp proom->last_dsp_change = g_pSoundServices->GetHostTime(); // save room as new node DAS_StoreNode( proom, dsp_preset ); goto check_new_room_exit; } check_new_room_exit: // reset new node creation flag - start checking for visible nodes again g_bdas_create_new_node = false; // reset room checking flag - start checking room around player again proom->broomready = false; // reset node checking flag - start checking nodes around player again DAS_ResetNodes(); return; } // remap contents of volumes[] arrary if sound originates from player, or is music, and is 100% 'mono' // ie: same volume in all channels void RemapPlayerOrMusicVols( channel_t *ch, int volumes[CCHANVOLUMES/2], bool fplayersound, bool fmusicsound, float mono ) { VPROF_("RemapPlayerOrMusicVols", 2, VPROF_BUDGETGROUP_OTHER_SOUND, false, BUDGETFLAG_OTHER ); if ( !fplayersound && !fmusicsound ) return; // no remapping if ( ch->flags.bSpeaker ) return; // don't remap speaker sounds rebroadcast on player // get total volume float vol_total = 0.0; int k; for (k = 0; k < CCHANVOLUMES/2; k++) vol_total += (float)volumes[k]; if ( !g_AudioDevice->IsSurround() ) { if (mono < 1.0) return; // remap 2 chan non-spatialized versions of player and music sounds // note: this is required to keep volumes same as 4 & 5 ch cases! float vol_dist_music[] = {1.0, 1.0}; // FL, FR music volumes float vol_dist_player[] = {1.0, 1.0}; // FL, FR player volumes float *pvol_dist; pvol_dist = (fplayersound ? vol_dist_player : vol_dist_music); for (k = 0; k < 2; k++) volumes[k] = clamp((int)(vol_total * pvol_dist[k]), 0, 255); return; } // surround sound configuration... if ( fplayersound ) // && (ch->bstereowav && ch->wavtype != CHAR_DIRECTIONAL && ch->wavtype != CHAR_DISTVARIANT) ) { // NOTE: player sounds also get n% overall volume boost. //float vol_dist5[] = {0.29, 0.29, 0.09, 0.09, 0.63}; // FL, FR, RL, RR, FC - 5 channel (mono source) volume distribution //float vol_dist5st[] = {0.29, 0.29, 0.09, 0.09, 0.63}; // FL, FR, RL, RR, FC - 5 channel (stereo source) volume distribution float vol_dist5[] = {0.30, 0.30, 0.09, 0.09, 0.59}; // FL, FR, RL, RR, FC - 5 channel (mono source) volume distribution float vol_dist5st[] = {0.30, 0.30, 0.09, 0.09, 0.59}; // FL, FR, RL, RR, FC - 5 channel (stereo source) volume distribution float vol_dist4[] = {0.50, 0.50, 0.15, 0.15, 0.00}; // FL, FR, RL, RR, 0 - 4 channel (mono source) volume distribution float vol_dist4st[] = {0.50, 0.50, 0.15, 0.15, 0.00}; // FL, FR, RL, RR, 0 - 4 channel (stereo source)volume distribution float *pvol_dist; if ( ch->flags.bstereowav && (ch->wavtype == CHAR_OMNI || ch->wavtype == CHAR_SPATIALSTEREO || ch->wavtype == 0)) { pvol_dist = (g_AudioDevice->IsSurroundCenter() ? vol_dist5st : vol_dist4st); } else { pvol_dist = (g_AudioDevice->IsSurroundCenter() ? vol_dist5 : vol_dist4); } for (k = 0; k < 5; k++) volumes[k] = clamp((int)(vol_total * pvol_dist[k]), 0, 255); return; } // Special case for music in surround mode if ( fmusicsound ) { float vol_dist5[] = {0.5, 0.5, 0.25, 0.25, 0.0}; // FL, FR, RL, RR, FC - 5 channel distribution float vol_dist4[] = {0.5, 0.5, 0.25, 0.25, 0.0}; // FL, FR, RL, RR, 0 - 4 channel distribution float *pvol_dist; pvol_dist = (g_AudioDevice->IsSurroundCenter() ? vol_dist5 : vol_dist4); for (k = 0; k < 5; k++) volumes[k] = clamp((int)(vol_total * pvol_dist[k]), 0, 255); return; } return; } static int s_nSoundGuid = 0; void SND_ActivateChannel( channel_t *pChannel ) { Q_memset( pChannel, 0, sizeof(*pChannel) ); g_ActiveChannels.Add( pChannel ); pChannel->guid = ++s_nSoundGuid; } /* ================= SND_Spatialize ================= */ void SND_Spatialize(channel_t *ch) { VPROF("SND_Spatialize"); vec_t dist; Vector source_vec; Vector source_vec_DL; Vector source_vec_DR; Vector source_doppler_left; Vector source_doppler_right; bool fdopplerwav = false; bool fplaydopplerwav = false; bool fvalidentity; float gain; float scale = 1.0; bool fplayersound = false; bool fmusicsound = false; float mono = 0.0; bool bAttenuated = true; ch->dspface = 1.0; // default facing direction: always facing player ch->dspmix = 0; // default mix 0% dsp_room fx ch->distmix = 0; // default 100% left (near) wav #if !defined( _X360 ) if ( ch->sfx && ch->sfx->pSource && ch->sfx->pSource->GetType() == CAudioSource::AUDIO_SOURCE_VOICE ) { Voice_Spatialize( ch ); } #endif if ( IsSoundSourceLocalPlayer( ch->soundsource ) && !toolframework->InToolMode() ) { // sounds coming from listener actually come from a short distance directly in front of listener // in tool mode however, the view entity is meaningless, since we're viewing from arbitrary locations in space fplayersound = true; } // assume 'dry', playeverwhere sounds are 'music' or 'voiceover' if ( ch->flags.bdry && ch->dist_mult <= 0 ) { fmusicsound = true; fplayersound = false; } // update channel's position in case ent that made the sound is moving. QAngle source_angles; source_angles.Init(0.0, 0.0, 0.0); Vector entOrigin = ch->origin; bool looping = false; CAudioSource *pSource = ch->sfx ? ch->sfx->pSource : NULL; if ( pSource ) { looping = pSource->IsLooped(); } SpatializationInfo_t si; si.info.Set( ch->soundsource, ch->entchannel, ch->sfx ? ch->sfx->getname() : "", ch->origin, ch->direction, ch->master_vol, DIST_MULT_TO_SNDLVL( ch->dist_mult ), looping, ch->pitch, listener_origin, ch->speakerentity ); si.type = SpatializationInfo_t::SI_INSPATIALIZATION; si.pOrigin = &entOrigin; si.pAngles = &source_angles; si.pflRadius = NULL; if ( ch->soundsource != 0 && ch->radius == 0 ) { si.pflRadius = &ch->radius; } { VPROF_("SoundServices->GetSoundSpatializtion", 2, VPROF_BUDGETGROUP_OTHER_SOUND, false, BUDGETFLAG_OTHER ); fvalidentity = g_pSoundServices->GetSoundSpatialization( ch->soundsource, si ); } if ( ch->flags.bUpdatePositions ) { AngleVectors( source_angles, &ch->direction ); ch->origin = entOrigin; } else { VectorAngles( ch->direction, source_angles ); } if ( ch->userdata != 0 ) { g_pSoundServices->GetToolSpatialization( ch->userdata, ch->guid, si ); if ( ch->flags.bUpdatePositions ) { AngleVectors( source_angles, &ch->direction ); ch->origin = entOrigin; } } #if 0 // !!!UNDONE - above code assumes the ENT hasn't been removed or respawned as another ent! // !!!UNDONE - fix this by flagging some entities (ie: glass) as immobile. Don't spatialize them. if ( !fvalidendity) { // Turn off the sound while the entity doesn't exist or is not in the PVS. goto ClearAllVolumes; } #endif // 0 fdopplerwav = ((ch->wavtype == CHAR_DOPPLER) && !fplayersound); if ( fdopplerwav ) { VPROF_("SND_Spatialize doppler", 2, VPROF_BUDGETGROUP_OTHER_SOUND, false, BUDGETFLAG_OTHER ); Vector vnearpoint; // point of closest approach to listener, // along sound source forward direction (doppler wavs) vnearpoint = ch->origin; // default nearest sound approach point // calculate point of closest approach for CHAR_DOPPLER wavs, replace source_vec fplaydopplerwav = SND_GetClosestPoint( ch, source_angles, vnearpoint ); // if doppler sound was 'shot' away from listener, don't play it if ( !fplaydopplerwav ) goto ClearAllVolumes; // find location of doppler left & doppler right points SND_GetDopplerPoints( ch, source_angles, vnearpoint, source_doppler_left, source_doppler_right); // source_vec_DL is vector from listener to doppler left point // source_vec_DR is vector from listener to doppler right point VectorSubtract(source_doppler_left, listener_origin, source_vec_DL ); VectorSubtract(source_doppler_right, listener_origin, source_vec_DR ); // normalized vectors to left and right doppler locations dist = VectorNormalize( source_vec_DL ); VectorNormalize( source_vec_DR ); // don't play doppler if out of range // unless recording in the tool, since we may play back in range if ( dist > DOPPLER_RANGE_MAX && !toolframework->IsToolRecording() ) goto ClearAllVolumes; } else { // source_vec is vector from listener to sound source if ( fplayersound ) { // get 2d forward direction vector, ignoring pitch angle Vector listener_forward2d; ConvertListenerVectorTo2D( &listener_forward2d, &listener_right ); // player sounds originate from 1' in front of player, 2d VectorMultiply(listener_forward2d, 12.0, source_vec ); } else { VectorSubtract(ch->origin, listener_origin, source_vec); } // normalize source_vec and get distance from listener to source dist = VectorNormalize( source_vec ); } // calculate dsp mix based on distance to listener & sound level (linear approximation) ch->dspmix = SND_GetDspMix( ch, dist ); // calculate sound source facing direction for CHAR_DIRECTIONAL wavs if ( !fplayersound ) { ch->dspface = SND_GetFacingDirection( ch, source_angles ); // calculate mixing parameter for CHAR_DISTVAR wavs ch->distmix = SND_GetDistanceMix( ch, dist ); } // for sounds with a radius, spatialize left/right/front/rear evenly within the radius if ( ch->radius > 0 && dist < ch->radius && !fdopplerwav ) { float interval = ch->radius * 0.5; mono = dist - interval; if ( mono < 0.0 ) mono = 0.0; mono /= interval; mono = 1.0 - mono; // mono is 0.0 -> 1.0 from radius 100% to radius 50% } // don't pan sounds with no attenuation if ( ch->dist_mult <= 0 && !fdopplerwav ) { // sound is centered left/right/front/back mono = 1.0; bAttenuated = false; } if ( ch->wavtype == CHAR_OMNI ) { // omni directional sound sources are mono mix, all speakers // ie: they only attenuate by distance, not by source direction. mono = 1.0; bAttenuated = false; } // calculate gain based on distance, atmospheric attenuation, interposed objects // perform compression as gain approaches 1.0 gain = SND_GetGain( ch, fplayersound, fmusicsound, looping, dist, bAttenuated ); // map gain through global mixer by soundtype // gain *= SND_GetVolFromSoundtype( ch->soundtype ); int last_mixgroupid; gain *= MXR_GetVolFromMixGroup( ch->mixgroups, &last_mixgroupid ); // if playing a word, get volume scale of word - scale gain scale = VOX_GetChanVol(ch); gain *= scale; // save spatialized volume and mixgroupid for display later ch->last_mixgroupid = last_mixgroupid; if ( fdopplerwav ) { VPROF_("SND_Spatialize doppler", 2, VPROF_BUDGETGROUP_OTHER_SOUND, false, BUDGETFLAG_OTHER ); // fill out channel volumes for both doppler sound source locations int volumes[CCHANVOLUMES/2]; // left doppler location g_AudioDevice->SpatializeChannel( volumes, ch->master_vol, source_vec_DL, gain, mono ); // load volumes into channel as crossfade targets ChannelSetVolTargets( ch, volumes, IFRONT_LEFT, CCHANVOLUMES/2 ); // right doppler location g_AudioDevice->SpatializeChannel( volumes, ch->master_vol, source_vec_DR, gain, mono ); // load volumes into channel as crossfade targets ChannelSetVolTargets( ch, volumes, IFRONT_LEFTD, CCHANVOLUMES/2 ); } else { // fill out channel volumes for single sound source location int volumes[CCHANVOLUMES/2]; g_AudioDevice->SpatializeChannel( volumes, ch->master_vol, source_vec, gain, mono ); // Special case for stereo sounds originating from player in surround mode // and special case for musci: remap volumes directly to channels. RemapPlayerOrMusicVols( ch, volumes, fplayersound, fmusicsound, mono ); // load volumes into channel as crossfade volume targets ChannelSetVolTargets( ch, volumes, IFRONT_LEFT, CCHANVOLUMES/2 ); } // prevent left/right/front/rear/center volumes from changing too quickly & producing pops ChannelUpdateVolXfade( ch ); // end of first time spatializing sound if ( SND_IsInGame() || toolframework->InToolMode() ) { ch->flags.bfirstpass = false; } // calculate total volume for display later ch->last_vol = gain * (ch->master_vol/255.0); return; ClearAllVolumes: // Clear all volumes and return. // This shuts the sound off permanently. ChannelClearVolumes( ch ); // end of first time spatializing sound ch->flags.bfirstpass = false; } ConVar snd_defer_trace("snd_defer_trace","1"); void SND_SpatializeFirstFrameNoTrace( channel_t *pChannel) { if ( snd_defer_trace.GetBool() ) { // set up tracing state to be non-obstructed pChannel->flags.bfirstpass = false; pChannel->flags.bTraced = true; pChannel->ob_gain = 1.0; pChannel->ob_gain_inc = 1.0; pChannel->ob_gain_target = 1.0; // now spatialize without tracing SND_Spatialize(pChannel); // now reset tracing state to firstpass so the trace gets done on next spatialize pChannel->ob_gain = 0.0; pChannel->ob_gain_inc = 0.0; pChannel->ob_gain_target = 0.0; pChannel->flags.bfirstpass = true; pChannel->flags.bTraced = false; } else { pChannel->ob_gain = 0.0; pChannel->ob_gain_inc = 0.0; pChannel->ob_gain_target = 0.0; pChannel->flags.bfirstpass = true; pChannel->flags.bTraced = false; SND_Spatialize(pChannel); } } // search through all channels for a channel that matches this // soundsource, entchannel and sfx, and perform alteration on channel // as indicated by 'flags' parameter. If shut down request and // sfx contains a sentence name, shut off the sentence. // returns TRUE if sound was altered, // returns FALSE if sound was not found (sound is not playing) int S_AlterChannel( int soundsource, int entchannel, CSfxTable *sfx, int vol, int pitch, int flags ) { THREAD_LOCK_SOUND(); int ch_idx; const char *name = sfx->getname(); if ( name && TestSoundChar( name, CHAR_SENTENCE ) ) { // This is a sentence name. // For sentences: assume that the entity is only playing one sentence // at a time, so we can just shut off // any channel that has ch->isentence >= 0 and matches the // soundsource. CChannelList list; g_ActiveChannels.GetActiveChannels( list ); for ( int i = 0; i < list.Count(); i++ ) { ch_idx = list.GetChannelIndex(i); if (channels[ch_idx].soundsource == soundsource && channels[ch_idx].entchannel == entchannel && channels[ch_idx].sfx != NULL ) { if (flags & SND_CHANGE_PITCH) channels[ch_idx].basePitch = pitch; if (flags & SND_CHANGE_VOL) channels[ch_idx].master_vol = vol; if (flags & SND_STOP) { S_FreeChannel(&channels[ch_idx]); } return TRUE; } } // channel not found return FALSE; } // regular sound or streaming sound CChannelList list; g_ActiveChannels.GetActiveChannels( list ); bool bSuccess = false; for ( int i = 0; i < list.Count(); i++ ) { ch_idx = list.GetChannelIndex(i); if ( channels[ch_idx].soundsource == soundsource && ( ( flags & SND_IGNORE_NAME ) || ( channels[ch_idx].entchannel == entchannel && channels[ch_idx].sfx == sfx ) ) ) { if (flags & SND_CHANGE_PITCH) channels[ch_idx].basePitch = pitch; if (flags & SND_CHANGE_VOL) channels[ch_idx].master_vol = vol; if (flags & SND_STOP) { S_FreeChannel(&channels[ch_idx]); } if ( ( flags & SND_IGNORE_NAME ) == 0 ) return TRUE; else bSuccess = true; } } return ( bSuccess ) ? ( TRUE ) : ( FALSE ); } // set channel flags during initialization based on // source name void S_SetChannelWavtype( channel_t *target_chan, CSfxTable *pSfx ) { // if 1st or 2nd character of name is CHAR_DRYMIX, sound should be mixed dry with no dsp (ie: music) if ( TestSoundChar(pSfx->getname(), CHAR_DRYMIX) ) target_chan->flags.bdry = true; else target_chan->flags.bdry = false; if ( TestSoundChar(pSfx->getname(), CHAR_FAST_PITCH) ) target_chan->flags.bfast_pitch = true; else target_chan->flags.bfast_pitch = false; // get sound spatialization encoding target_chan->wavtype = 0; if ( TestSoundChar( pSfx->getname(), CHAR_DOPPLER )) target_chan->wavtype = CHAR_DOPPLER; if ( TestSoundChar( pSfx->getname(), CHAR_DIRECTIONAL )) target_chan->wavtype = CHAR_DIRECTIONAL; if ( TestSoundChar( pSfx->getname(), CHAR_DISTVARIANT )) target_chan->wavtype = CHAR_DISTVARIANT; if ( TestSoundChar( pSfx->getname(), CHAR_OMNI )) target_chan->wavtype = CHAR_OMNI; if ( TestSoundChar( pSfx->getname(), CHAR_SPATIALSTEREO )) target_chan->wavtype = CHAR_SPATIALSTEREO; } // Sets bstereowav flag in channel if source is true stere wav // sets default wavtype for stereo wavs to CHAR_DISTVARIANT - // ie: sound varies with distance (left is close, right is far) // Must be called after S_SetChannelWavtype void S_SetChannelStereo( channel_t *target_chan, CAudioSource *pSource ) { if ( !pSource ) { target_chan->flags.bstereowav = false; return; } // returns true only if source data is a stereo wav file. // ie: mp3, voice, sentence are all excluded. target_chan->flags.bstereowav = pSource->IsStereoWav(); // Default stereo wavtype: // just player standard stereo wavs on player entity - no override. if ( IsSoundSourceLocalPlayer( target_chan->soundsource ) ) return; // default wavtype for stereo wavs is OMNI - except for drymix or sounds with 0 attenuation if ( target_chan->flags.bstereowav && !target_chan->wavtype && !target_chan->flags.bdry && target_chan->dist_mult ) // target_chan->wavtype = CHAR_DISTVARIANT; target_chan->wavtype = CHAR_OMNI; } // ======================================================================= // Channel volume management routines: // channel volumes crossfade between values over time // to prevent pops due to rapid spatialization changes // ======================================================================= // return true if all volumes and target volumes for channel are less/equal to 'vol' bool BChannelLowVolume( channel_t *pch, int vol_min ) { int max = -1; int max_target = -1; int vol; int vol_target; for (int i = 0; i < CCHANVOLUMES; i++) { vol = (int)(pch->fvolume[i]); vol_target = (int)(pch->fvolume_target[i]); if (vol > max) max = vol; if (vol_target > max_target) max_target = vol_target; } return (max <= vol_min && max_target <= vol_min); } // Get the loudest actual volume for a channel (not counting targets). float ChannelLoudestCurVolume( const channel_t * RESTRICT pch ) { float loudest = pch->fvolume[0]; for (int i = 1; i < CCHANVOLUMES; i++) { loudest = fpmax(loudest, pch->fvolume[i]); } return loudest; } // clear all volumes, targets, crossfade increments void ChannelClearVolumes( channel_t *pch ) { for (int i = 0; i < CCHANVOLUMES; i++) { pch->fvolume[i] = 0.0; pch->fvolume_target[i] = 0.0; pch->fvolume_inc[i] = 0.0; } } // return current volume as integer int ChannelGetVol( channel_t *pch, int ivol ) { Assert(ivol < CCHANVOLUMES); return (int)(pch->fvolume[ivol]); } // return maximum current output volume int ChannelGetMaxVol( channel_t *pch ) { float max = 0.0; for (int i = 0; i < CCHANVOLUMES; i++) { if (pch->fvolume[i] > max) max = pch->fvolume[i]; } return (int)max; } // set current volume (clears crossfading - instantaneous value change) void ChannelSetVol( channel_t *pch, int ivol, int vol ) { Assert(ivol < CCHANVOLUMES); pch->fvolume[ivol] = (float)(clamp(vol, 0, 255)); pch->fvolume_target[ivol] = pch->fvolume[ivol]; pch->fvolume_inc[ivol] = 0.0; } // copy current channel volumes into target array, starting at ivol, copying cvol entries void ChannelCopyVolumes( channel_t *pch, int *pvolume_dest, int ivol_start, int cvol ) { Assert (ivol_start < CCHANVOLUMES); Assert (ivol_start + cvol <= CCHANVOLUMES); for (int i = 0; i < cvol; i++) pvolume_dest[i] = (int)(pch->fvolume[i + ivol_start]); } // volume has hit target, shut off crossfading increment inline void ChannelStopVolXfade( channel_t *pch, int ivol ) { pch->fvolume[ivol] = pch->fvolume_target[ivol]; pch->fvolume_inc[ivol] = 0.0; } #define VOL_XFADE_TIME 0.070 // channel volume crossfade time in seconds #define VOL_INCR_MAX 20.0 // never change volume by more than +/-N units per frame // set volume target and volume increment (for crossfade) for channel & speaker void ChannelSetVolTarget( channel_t *pch, int ivol, int volume_target ) { float frametime = g_pSoundServices->GetHostFrametime(); float speed; float vol_target = (float)(clamp(volume_target, 0, 255)); float vol_current; Assert(ivol < CCHANVOLUMES); // set volume target pch->fvolume_target[ivol] = vol_target; // current volume vol_current = pch->fvolume[ivol]; // if first time spatializing, set target = volume with no crossfade // if current & target volumes are close - don't bother crossfading if ( pch->flags.bfirstpass || (fabs(vol_target - vol_current) < 5.0)) { // set current volume = target, no increment ChannelStopVolXfade( pch, ivol); return; } // get crossfade increment 'speed' (volume change per frame) speed = ( frametime / VOL_XFADE_TIME ) * (vol_target - vol_current); // make sure we never increment by more than +/- VOL_INCR_MAX volume units per frame speed = clamp(speed, (float) -VOL_INCR_MAX, (float) VOL_INCR_MAX); pch->fvolume_inc[ivol] = speed; } // set volume targets, using array pvolume as source volumes. // set into channel volumes starting at ivol_offset index // set cvol volumes void ChannelSetVolTargets( channel_t *pch, int *pvolumes, int ivol_offset, int cvol ) { int volume_target; Assert(ivol_offset + cvol <= CCHANVOLUMES); for (int i = 0; i < cvol; i++) { volume_target = pvolumes[i]; ChannelSetVolTarget( pch, ivol_offset + i, volume_target ); } } // Call once per frame, per channel: // update all volume crossfades, from fvolume -> fvolume_target // if current volume reaches target, set increment to 0 void ChannelUpdateVolXfade( channel_t *pch ) { float fincr; for (int i = 0; i < CCHANVOLUMES; i++) { fincr = pch->fvolume_inc[i]; if (fincr != 0.0) { pch->fvolume[i] += fincr; // test for hit target if (fincr > 0.0) { if (pch->fvolume[i] >= pch->fvolume_target[i]) ChannelStopVolXfade( pch, i ); } else { if (pch->fvolume[i] <= pch->fvolume_target[i]) ChannelStopVolXfade( pch, i ); } } } } // ======================================================================= // S_StartDynamicSound // ======================================================================= // Start a sound effect for the given entity on the given channel (ie; voice, weapon etc). // Try to grab a channel out of the 8 dynamic spots available. // Currently used for looping sounds, streaming sounds, sentences, and regular entity sounds. // NOTE: volume is 0.0 - 1.0 and attenuation is 0.0 - 1.0 when passed in. // Pitch changes playback pitch of wave by % above or below 100. Ignored if pitch == 100 // NOTE: it's not a good idea to play looping sounds through StartDynamicSound, because // if the looping sound starts out of range, or is bumped from the buffer by another sound // it will never be restarted. Use StartStaticSound (pass CHAN_STATIC to EMIT_SOUND or // SV_StartSound. int S_StartDynamicSound( StartSoundParams_t& params ) { Assert( params.staticsound == false ); channel_t *target_chan; int vol; if ( !g_AudioDevice || !g_AudioDevice->IsActive()) return 0; if (!params.pSfx) return 0; // For debugging to see the actual name of the sound... char sndname[ MAX_OSPATH ]; Q_strncpy( sndname, params.pSfx->getname(), sizeof( sndname ) ); // Msg("Start sound %s\n", pSfx->getname() ); // override the entchannel to CHAN_STREAM if this is a // non-voice stream sound. if ( TestSoundChar(sndname, CHAR_STREAM ) && params.entchannel != CHAN_VOICE && params.entchannel != CHAN_VOICE2 ) params.entchannel = CHAN_STREAM; vol = params.fvol*255; if (vol > 255) { DevMsg("S_StartDynamicSound: %s volume > 255", sndname ); vol = 255; } THREAD_LOCK_SOUND(); if ( params.flags & (SND_STOP|SND_CHANGE_VOL|SND_CHANGE_PITCH) ) { if ( S_AlterChannel( params.soundsource, params.entchannel, params.pSfx, vol, params.pitch, params.flags) ) return 0; if ( params.flags & SND_STOP ) return 0; // fall through - if we're not trying to stop the sound, // and we didn't find it (it's not playing), go ahead and start it up } if (params.pitch == 0) { DevMsg ("Warning: S_StartDynamicSound (%s) Ignored, called with pitch 0\n", sndname ); return 0; } // pick a channel to play on target_chan = SND_PickDynamicChannel(params.soundsource, params.entchannel, params.origin, params.pSfx, params.delay, (params.flags & SND_DO_NOT_OVERWRITE_EXISTING_ON_CHANNEL) != 0 ); if ( !target_chan ) return 0; int channelIndex = (int)( target_chan - channels ); g_AudioDevice->ChannelReset( params.soundsource, channelIndex, target_chan->dist_mult ); #ifdef DEBUG_CHANNELS { char szTmp[128]; Q_snprintf(szTmp, sizeof( szTmp ), "Sound %s playing on Dynamic game channel %d\n", sndname, IWavstreamOfCh(target_chan)); Plat_DebugString(szTmp); } #endif bool bIsSentence = TestSoundChar( sndname, CHAR_SENTENCE ); SND_ActivateChannel( target_chan ); ChannelClearVolumes( target_chan ); target_chan->userdata = params.userdata; target_chan->initialStreamPosition = params.initialStreamPosition; VectorCopy(params.origin, target_chan->origin); VectorCopy(params.direction, target_chan->direction); // never update positions if source entity is 0 target_chan->flags.bUpdatePositions = params.bUpdatePositions && (params.soundsource == 0 ? 0 : 1); // reference_dist / (reference_power_level / actual_power_level) target_chan->flags.m_bCompatibilityAttenuation = SNDLEVEL_IS_COMPATIBILITY_MODE( params.soundlevel ); if ( target_chan->flags.m_bCompatibilityAttenuation ) { // Translate soundlevel from its 'encoded' value to a real soundlevel that we can use in the sound system. params.soundlevel = SNDLEVEL_FROM_COMPATIBILITY_MODE( params.soundlevel ); } target_chan->dist_mult = SNDLVL_TO_DIST_MULT( params.soundlevel ); S_SetChannelWavtype( target_chan, params.pSfx ); target_chan->master_vol = vol; target_chan->soundsource = params.soundsource; target_chan->entchannel = params.entchannel; target_chan->basePitch = params.pitch; target_chan->flags.isSentence = false; target_chan->radius = 0; target_chan->sfx = params.pSfx; target_chan->special_dsp = params.specialdsp; target_chan->flags.fromserver = params.fromserver; target_chan->flags.bSpeaker = (params.flags & SND_SPEAKER) ? 1 : 0; target_chan->speakerentity = params.speakerentity; target_chan->flags.m_bShouldPause = (params.flags & SND_SHOULDPAUSE) ? 1 : 0; // initialize dsp room mixing params target_chan->dsp_mix_min = -1; target_chan->dsp_mix_max = -1; CAudioSource *pSource = NULL; if ( bIsSentence ) { // this is a sentence // link all words and load the first word // NOTE: sentence names stored in the cache lookup are // prepended with a '!'. Sentence names stored in the // sentence file do not have a leading '!'. VOX_LoadSound( target_chan, PSkipSoundChars( sndname ) ); } else { // regular or streamed sound fx pSource = S_LoadSound( params.pSfx, target_chan ); if ( pSource && !IsValidSampleRate( pSource->SampleRate() ) ) { Warning( "*** Invalid sample rate (%d) for sound '%s'.\n", pSource->SampleRate(), sndname ); } if ( !pSource && !params.pSfx->m_bIsLateLoad ) { Warning( "Failed to load sound \"%s\", file probably missing from disk/repository\n", sndname ); } } if (!target_chan->pMixer) { // couldn't load the sound's data, or sentence has 0 words (this is not an error) S_FreeChannel( target_chan ); return 0; } int nSndShowStart = snd_showstart.GetInt(); // TODO: Support looping sounds through speakers. // If the sound is from a speaker, and it's looping, ignore it. if ( target_chan->flags.bSpeaker ) { if ( params.pSfx->pSource && params.pSfx->pSource->IsLooped() ) { if (nSndShowStart > 0 && nSndShowStart < 7 && nSndShowStart != 4) { DevMsg("DynamicSound : Speaker ignored looping sound: %s\n", sndname ); } S_FreeChannel( target_chan ); return 0; } } S_SetChannelStereo( target_chan, pSource ); if (nSndShowStart == 5) { snd_showstart.SetValue(6); // debug: show gain for next spatialize only nSndShowStart = 6; } // get sound type before we spatialize MXR_GetMixGroupFromSoundsource( target_chan, params.soundsource, params.soundlevel ); // skip the trace on the first spatialization. This channel may be stolen // by another sound played this frame. Defer the trace to the mix loop SND_SpatializeFirstFrameNoTrace(target_chan); if (nSndShowStart > 0 && nSndShowStart < 7 && nSndShowStart != 4) { channel_t *pTargetChan = target_chan; DevMsg( "DynamicSound %s : src %d : channel %d : %d dB : vol %.2f : time %.3f\n", sndname, params.soundsource, params.entchannel, params.soundlevel, params.fvol, g_pSoundServices->GetHostTime() ); if (nSndShowStart == 2 || nSndShowStart == 5) DevMsg( "\t dspmix %1.2f : distmix %1.2f : dspface %1.2f : lvol %1.2f : cvol %1.2f : rvol %1.2f : rlvol %1.2f : rrvol %1.2f\n", pTargetChan->dspmix, pTargetChan->distmix, pTargetChan->dspface, pTargetChan->fvolume[IFRONT_LEFT], pTargetChan->fvolume[IFRONT_CENTER], pTargetChan->fvolume[IFRONT_RIGHT], pTargetChan->fvolume[IREAR_LEFT], pTargetChan->fvolume[IREAR_RIGHT] ); if (nSndShowStart == 3) DevMsg( "\t x: %4f y: %4f z: %4f\n", pTargetChan->origin.x, pTargetChan->origin.y, pTargetChan->origin.z ); if ( snd_visualize.GetInt() ) { CDebugOverlay::AddTextOverlay( pTargetChan->origin, 2.0f, sndname ); } } // If a client can't hear a sound when they FIRST receive the StartSound message, // the client will never be able to hear that sound. This is so that out of // range sounds don't fill the playback buffer. For streaming sounds, we bypass this optimization. if ( BChannelLowVolume( target_chan, 0 ) && !toolframework->IsToolRecording() ) { // Looping sounds don't use this optimization because they should stick around until they're killed. // Also bypass for speech (GetSentence) if ( !params.pSfx->pSource || (!params.pSfx->pSource->IsLooped() && !params.pSfx->pSource->GetSentence()) ) { // if this is long sound, play the whole thing. if (!SND_IsLongWave( target_chan )) { // DevMsg("S_StartDynamicSound: spatialized to 0 vol & ignored %s", sndname); S_FreeChannel( target_chan ); return 0; // not audible at all } } } // Init client entity mouth movement vars target_chan->flags.m_bIgnorePhonemes = ( params.flags & SND_IGNORE_PHONEMES ) != 0; SND_InitMouth(target_chan); if ( IsX360() && params.delay < 0 ) { params.delay = 0; target_chan->flags.delayed_start = true; } // Pre-startup delay. Compute # of samples over which to mix in zeros from data source before // actually reading first set of samples if ( params.delay != 0.0f ) { Assert( target_chan->sfx ); Assert( target_chan->sfx->pSource ); // delay count is computed at the sampling rate of the source because the output rate will // match the source rate when the sound is mixed float rate = target_chan->sfx->pSource->SampleRate(); int delaySamples = (int)( params.delay * rate ); if ( params.delay > 0 ) { target_chan->pMixer->SetStartupDelaySamples( delaySamples ); target_chan->flags.delayed_start = true; } else { int skipSamples = -delaySamples; int totalSamples = target_chan->sfx->pSource->SampleCount(); if ( target_chan->sfx->pSource->IsLooped() ) { skipSamples = skipSamples % totalSamples; } if ( skipSamples >= totalSamples ) { S_FreeChannel( target_chan ); return 0; } target_chan->pitch = target_chan->basePitch * 0.01f; target_chan->pMixer->SkipSamples( target_chan, skipSamples, rate, 0 ); target_chan->ob_gain_target = 1.0f; target_chan->ob_gain = 1.0f; target_chan->ob_gain_inc = 0.0; target_chan->flags.bfirstpass = false; target_chan->flags.delayed_start = true; } } g_pSoundServices->OnSoundStarted( target_chan->guid, params, sndname ); return target_chan->guid; } //----------------------------------------------------------------------------- // Purpose: // Input : *name - // Output : CSfxTable //----------------------------------------------------------------------------- CSfxTable *S_DummySfx( const char *name ) { dummySfx.setname( name ); return &dummySfx; } /* ================= S_StartStaticSound ================= Start playback of a sound, loaded into the static portion of the channel array. Currently, this should be used for looping ambient sounds, looping sounds that should not be interrupted until complete, non-creature sentences, and one-shot ambient streaming sounds. Can also play 'regular' sounds one-shot, in case designers want to trigger regular game sounds. Pitch changes playback pitch of wave by % above or below 100. Ignored if pitch == 100 NOTE: volume is 0.0 - 1.0 and attenuation is 0.0 - 1.0 when passed in. */ int S_StartStaticSound( StartSoundParams_t& params ) { Assert( params.staticsound == true ); channel_t *ch; CAudioSource *pSource = NULL; if ( !g_AudioDevice->IsActive() ) return 0; if ( !params.pSfx ) return 0; // For debugging to see the actual name of the sound... char sndname[ MAX_OSPATH ]; Q_strncpy( sndname, params.pSfx->getname(), sizeof( sndname ) ); // Msg("Start static sound %s\n", pSfx->getname() ); int vol = params.fvol * 255; if ( vol > 255 ) { DevMsg( "S_StartStaticSound: %s volume > 255", sndname ); vol = 255; } int nSndShowStart = snd_showstart.GetInt(); if ((params.flags & SND_STOP) && nSndShowStart > 0) DevMsg("S_StartStaticSound: %s Stopped.\n", sndname); if ((params.flags & SND_STOP) || (params.flags & SND_CHANGE_VOL) || (params.flags & SND_CHANGE_PITCH)) { if (S_AlterChannel(params.soundsource, params.entchannel, params.pSfx, vol, params.pitch, params.flags) || (params.flags & SND_STOP)) return 0; } if ( params.pitch == 0 ) { DevMsg( "Warning: S_StartStaticSound Ignored, called with pitch 0\n"); return 0; } // First, make sure the sound source entity is even in the PVS. float flSoundRadius = 0.0f; bool looping = false; /* CAudioSource *pSource = pSfx ? pSfx->pSource : NULL; if ( pSource ) { looping = pSource->IsLooped(); } */ SpatializationInfo_t si; si.info.Set( params.soundsource, params.entchannel, params.pSfx ? sndname : "", params.origin, params.direction, vol, params.soundlevel, looping, params.pitch, listener_origin, params.speakerentity ); si.type = SpatializationInfo_t::SI_INCREATION; si.pOrigin = NULL; si.pAngles = NULL; si.pflRadius = &flSoundRadius; g_pSoundServices->GetSoundSpatialization( params.soundsource, si ); // pick a channel to play on from the static area THREAD_LOCK_SOUND(); ch = SND_PickStaticChannel(params.soundsource, params.pSfx); // Autolooping sounds are always fixed origin(?) if ( !ch ) return 0; SND_ActivateChannel( ch ); ChannelClearVolumes( ch ); ch->userdata = params.userdata; ch->initialStreamPosition = params.initialStreamPosition; if ( ch->userdata != 0 ) { g_pSoundServices->GetToolSpatialization( ch->userdata, ch->guid, si ); } int channelIndex = ch - channels; g_AudioDevice->ChannelReset( params.soundsource, channelIndex, ch->dist_mult ); #ifdef DEBUG_CHANNELS { char szTmp[128]; Q_snprintf(szTmp, sizeof( szTmp ), "Sound %s playing on Static game channel %d\n", sfxin->name, IWavstreamOfCh(ch)); Plat_DebugString(szTmp); } #endif if ( TestSoundChar(sndname, CHAR_SENTENCE) ) { // this is a sentence. link words to play in sequence. // NOTE: sentence names stored in the cache lookup are // prepended with a '!'. Sentence names stored in the // sentence file do not have a leading '!'. // link all words and load the first word VOX_LoadSound( ch, PSkipSoundChars(sndname) ); } else { // load regular or stream sound pSource = S_LoadSound( params.pSfx, ch ); if ( pSource && !IsValidSampleRate( pSource->SampleRate() ) ) { Warning( "*** Invalid sample rate (%d) for sound '%s'.\n", pSource->SampleRate(), sndname ); } if ( !pSource && !params.pSfx->m_bIsLateLoad ) { Warning( "Failed to load sound \"%s\", file probably missing from disk/repository\n", sndname ); } ch->sfx = params.pSfx; ch->flags.isSentence = false; } if ( !ch->pMixer ) { // couldn't load sounds' data, or sentence has 0 words (not an error) S_FreeChannel( ch ); return 0; } VectorCopy (params.origin, ch->origin); VectorCopy (params.direction, ch->direction); // never update positions if source entity is 0 ch->flags.bUpdatePositions = params.bUpdatePositions && (params.soundsource == 0 ? 0 : 1); ch->master_vol = vol; ch->flags.m_bCompatibilityAttenuation = SNDLEVEL_IS_COMPATIBILITY_MODE( params.soundlevel ); if ( ch->flags.m_bCompatibilityAttenuation ) { // Translate soundlevel from its 'encoded' value to a real soundlevel that we can use in the sound system. params.soundlevel = SNDLEVEL_FROM_COMPATIBILITY_MODE( params.soundlevel ); } ch->dist_mult = SNDLVL_TO_DIST_MULT( params.soundlevel ); S_SetChannelWavtype( ch, params.pSfx ); ch->basePitch = params.pitch; ch->soundsource = params.soundsource; ch->entchannel = params.entchannel; ch->special_dsp = params.specialdsp; ch->flags.fromserver = params.fromserver; ch->flags.bSpeaker = (params.flags & SND_SPEAKER) ? 1 : 0; ch->speakerentity = params.speakerentity; ch->flags.m_bShouldPause = (params.flags & SND_SHOULDPAUSE) ? 1 : 0; // TODO: Support looping sounds through speakers. // If the sound is from a speaker, and it's looping, ignore it. if ( ch->flags.bSpeaker ) { if ( params.pSfx->pSource && params.pSfx->pSource->IsLooped() ) { if (nSndShowStart > 0 && nSndShowStart < 7 && nSndShowStart != 4) { DevMsg("StaticSound : Speaker ignored looping sound: %s\n", sndname); } S_FreeChannel( ch ); return 0; } } // set the default radius ch->radius = flSoundRadius; S_SetChannelStereo( ch, pSource ); // initialize dsp room mixing params ch->dsp_mix_min = -1; ch->dsp_mix_max = -1; if (nSndShowStart == 5) { snd_showstart.SetValue(6); // display gain once only nSndShowStart = 6; } // get sound type before we spatialize MXR_GetMixGroupFromSoundsource( ch, params.soundsource, params.soundlevel ); // skip the trace on the first spatialization. This channel may be stolen // by another sound played this frame. Defer the trace to the mix loop SND_SpatializeFirstFrameNoTrace(ch); // Init client entity mouth movement vars ch->flags.m_bIgnorePhonemes = ( params.flags & SND_IGNORE_PHONEMES ) != 0; SND_InitMouth( ch ); if ( IsX360() && params.delay < 0 ) { // X360TEMP: Can't support yet, but going to. params.delay = 0; } // Pre-startup delay. Compute # of samples over which to mix in zeros from data source before // actually reading first set of samples if ( params.delay != 0.0f ) { Assert( ch->sfx ); Assert( ch->sfx->pSource ); float rate = ch->sfx->pSource->SampleRate(); int delaySamples = (int)( params.delay * rate * params.pitch * 0.01f ); ch->pMixer->SetStartupDelaySamples( delaySamples ); if ( params.delay > 0 ) { ch->pMixer->SetStartupDelaySamples( delaySamples ); ch->flags.delayed_start = true; } else { int skipSamples = -delaySamples; int totalSamples = ch->sfx->pSource->SampleCount(); if ( ch->sfx->pSource->IsLooped() ) { skipSamples = skipSamples % totalSamples; } if ( skipSamples >= totalSamples ) { S_FreeChannel( ch ); return 0; } ch->pitch = ch->basePitch * 0.01f; ch->pMixer->SkipSamples( ch, skipSamples, rate, 0 ); ch->ob_gain_target = 1.0f; ch->ob_gain = 1.0f; ch->ob_gain_inc = 0.0f; ch->flags.bfirstpass = false; } } if ( S_IsMusic( ch ) ) { // See if we have "music" of same name playing from "world" which means we save/restored this sound already. If so, // kill the new version and update the soundsource CChannelList list; g_ActiveChannels.GetActiveChannels( list ); for ( int i = 0; i < list.Count(); i++ ) { channel_t *pChannel = list.GetChannel(i); // Don't mess with the channel we just created, of course if ( ch == pChannel ) continue; if ( ch->sfx != pChannel->sfx ) continue; if ( pChannel->soundsource != SOUND_FROM_WORLD ) continue; if ( !S_IsMusic( pChannel ) ) continue; DevMsg( 1, "Hooking duplicate restored song track %s\n", sndname ); // the new channel will have an updated soundsource and probably // has an updated pitch or volume since we are receiving this sound message // after the sound has started playing (usually a volume change) // copy that data out of the source pChannel->soundsource = ch->soundsource; pChannel->master_vol = ch->master_vol; pChannel->basePitch = ch->basePitch; pChannel->pitch = ch->pitch; S_FreeChannel( ch ); return 0; } } g_pSoundServices->OnSoundStarted( ch->guid, params, sndname ); if (nSndShowStart > 0 && nSndShowStart < 7 && nSndShowStart != 4) { DevMsg( "StaticSound %s : src %d : channel %d : %d dB : vol %.2f : radius %.0f : time %.3f\n", sndname, params.soundsource, params.entchannel, params.soundlevel, params.fvol, flSoundRadius, g_pSoundServices->GetHostTime() ); if (nSndShowStart == 2 || nSndShowStart == 5) DevMsg( "\t dspmix %1.2f : distmix %1.2f : dspface %1.2f : lvol %1.2f : cvol %1.2f : rvol %1.2f : rlvol %1.2f : rrvol %1.2f\n", ch->dspmix, ch->distmix, ch->dspface, ch->fvolume[IFRONT_LEFT], ch->fvolume[IFRONT_CENTER], ch->fvolume[IFRONT_RIGHT], ch->fvolume[IREAR_LEFT], ch->fvolume[IREAR_RIGHT] ); if (nSndShowStart == 3) DevMsg( "\t x: %4f y: %4f z: %4f\n", ch->origin.x, ch->origin.y, ch->origin.z ); } return ch->guid; } #ifdef STAGING_ONLY static ConVar snd_filter( "snd_filter", "", FCVAR_CHEAT ); #endif // STAGING_ONLY int S_StartSound( StartSoundParams_t& params ) { if( ! params.pSfx ) { return 0; } #ifdef STAGING_ONLY if ( snd_filter.GetString()[ 0 ] && !Q_stristr( params.pSfx->getname(), snd_filter.GetString() ) ) { return 0; } #endif // STAGING_ONLY if ( IsX360() && params.delay < 0 && !params.initialStreamPosition && params.pSfx ) { // calculate an initial stream position from the expected sample position float rate = params.pSfx->pSource->SampleRate(); int samplePosition = (int)( -params.delay * rate * params.pitch * 0.01f ); params.initialStreamPosition = params.pSfx->pSource->SampleToStreamPosition( samplePosition ); } if ( params.staticsound ) { VPROF_( "StartStaticSound", 0, VPROF_BUDGETGROUP_OTHER_SOUND, false, BUDGETFLAG_OTHER ); return S_StartStaticSound( params ); } else { VPROF_( "StartDynamicSound", 0, VPROF_BUDGETGROUP_OTHER_SOUND, false, BUDGETFLAG_OTHER ); return S_StartDynamicSound( params ); } } // Restart all the sounds on the specified channel inline bool IsChannelLooped( int iChannel ) { return (channels[iChannel].sfx && channels[iChannel].sfx->pSource && channels[iChannel].sfx->pSource->IsLooped() ); } int S_GetCurrentStaticSounds( SoundInfo_t *pResult, int nSizeResult, int entchannel ) { int nSpaceRemaining = nSizeResult; for (int i = MAX_DYNAMIC_CHANNELS; i < total_channels && nSpaceRemaining; i++) { if ( channels[i].entchannel == entchannel && channels[i].sfx ) { pResult->Set( channels[i].soundsource, channels[i].entchannel, channels[i].sfx->getname(), channels[i].origin, channels[i].direction, ( (float)channels[i].master_vol / 255.0 ), DIST_MULT_TO_SNDLVL( channels[i].dist_mult ), IsChannelLooped( i ), channels[i].basePitch, listener_origin, channels[i].speakerentity ); pResult++; nSpaceRemaining--; } } return (nSizeResult - nSpaceRemaining); } // Stop all sounds for entity on a channel. void S_StopSound(int soundsource, int entchannel) { THREAD_LOCK_SOUND(); CChannelList list; g_ActiveChannels.GetActiveChannels( list ); for ( int i = 0; i < list.Count(); i++ ) { channel_t *pChannel = list.GetChannel(i); if (pChannel->soundsource == soundsource && pChannel->entchannel == entchannel) { S_FreeChannel( pChannel ); } } } channel_t *S_FindChannelByGuid( int guid ) { CChannelList list; g_ActiveChannels.GetActiveChannels( list ); for ( int i = 0; i < list.Count(); i++ ) { channel_t *pChannel = list.GetChannel(i); if ( pChannel->guid == guid ) { return pChannel; } } return NULL; } //----------------------------------------------------------------------------- // Purpose: // Input : guid - //----------------------------------------------------------------------------- void S_StopSoundByGuid( int guid ) { THREAD_LOCK_SOUND(); channel_t *pChannel = S_FindChannelByGuid( guid ); if ( pChannel ) { S_FreeChannel( pChannel ); } } //----------------------------------------------------------------------------- // Purpose: // Input : guid - //----------------------------------------------------------------------------- float S_SoundDurationByGuid( int guid ) { channel_t *pChannel = S_FindChannelByGuid( guid ); if ( !pChannel || !pChannel->sfx ) return 0.0f; // NOTE: Looping sounds will return the length of a single loop // Use S_IsLoopingSoundByGuid to see if they are looped float flRate = pChannel->sfx->pSource->SampleRate() * pChannel->basePitch * 0.01f; int nTotalSamples = pChannel->sfx->pSource->SampleCount(); return (flRate != 0.0f) ? nTotalSamples / flRate : 0.0f; } //----------------------------------------------------------------------------- // Is this sound a looping sound? //----------------------------------------------------------------------------- bool S_IsLoopingSoundByGuid( int guid ) { channel_t *pChannel = S_FindChannelByGuid( guid ); if ( !pChannel || !pChannel->sfx ) return false; return( pChannel->sfx->pSource->IsLooped() ); } //----------------------------------------------------------------------------- // Purpose: Note that the guid is preincremented, so we can just return the current value as the "last sound" indicator // Input : - // Output : int //----------------------------------------------------------------------------- int S_GetGuidForLastSoundEmitted() { return s_nSoundGuid; } //----------------------------------------------------------------------------- // Purpose: // Input : guid - // Output : Returns true on success, false on failure. //----------------------------------------------------------------------------- bool S_IsSoundStillPlaying( int guid ) { channel_t *pChannel = S_FindChannelByGuid( guid ); return pChannel != NULL ? true : false; } //----------------------------------------------------------------------------- // Purpose: // Input : guid - // fvol - //----------------------------------------------------------------------------- void S_SetVolumeByGuid( int guid, float fvol ) { channel_t *pChannel = S_FindChannelByGuid( guid ); pChannel->master_vol = 255.0f * clamp( fvol, 0.0f, 1.0f ); } //----------------------------------------------------------------------------- // Purpose: // Input : guid - // Output : float //----------------------------------------------------------------------------- float S_GetElapsedTimeByGuid( int guid ) { channel_t *pChannel = S_FindChannelByGuid( guid ); if ( !pChannel ) return 0.0f; CAudioMixer *mixer = pChannel->pMixer; if ( !mixer ) return 0.0f; float elapsed = mixer->GetSamplePosition() / ( mixer->GetSource()->SampleRate() * pChannel->pitch * 0.01f ); return elapsed; } //----------------------------------------------------------------------------- // Purpose: // Input : sndlist - //----------------------------------------------------------------------------- void S_GetActiveSounds( CUtlVector< SndInfo_t >& sndlist ) { CChannelList list; g_ActiveChannels.GetActiveChannels( list ); for ( int i = 0; i < list.Count(); i++ ) { channel_t *ch = list.GetChannel(i); SndInfo_t info; info.m_nGuid = ch->guid; info.m_filenameHandle = ch->sfx ? ch->sfx->GetFileNameHandle() : NULL; info.m_nSoundSource = ch->soundsource; info.m_nChannel = ch->entchannel; // If a sound is being played through a speaker entity (e.g., on a monitor,), this is the // entity upon which to show the lips moving, if the sound has sentence data info.m_nSpeakerEntity = ch->speakerentity; info.m_flVolume = (float)ch->master_vol / 255.0f; info.m_flLastSpatializedVolume = ch->last_vol; // Radius of this sound effect (spatialization is different within the radius) info.m_flRadius = ch->radius; info.m_nPitch = ch->basePitch; info.m_pOrigin = &ch->origin; info.m_pDirection = &ch->direction; // if true, assume sound source can move and update according to entity info.m_bUpdatePositions = ch->flags.bUpdatePositions; // true if playing linked sentence info.m_bIsSentence = ch->flags.isSentence; // if true, bypass all dsp processing for this sound (ie: music) info.m_bDryMix = ch->flags.bdry; // true if sound is playing through in-game speaker entity. info.m_bSpeaker = ch->flags.bSpeaker; // true if sound is using special DSP effect info.m_bSpecialDSP = ( ch->special_dsp != 0 ); // for snd_show, networked sounds get colored differently than local sounds info.m_bFromServer = ch->flags.fromserver; sndlist.AddToTail( info ); } } void S_StopAllSounds( bool bClear ) { THREAD_LOCK_SOUND(); int i; if ( !g_AudioDevice ) return; if ( !g_AudioDevice->IsActive() ) return; total_channels = MAX_DYNAMIC_CHANNELS; // no statics CChannelList list; g_ActiveChannels.GetActiveChannels( list ); for ( i = 0; i < list.Count(); i++ ) { channel_t *pChannel = list.GetChannel(i); if ( channels[i].sfx ) { DevMsg( 1, "%2d:Stopped sound %s\n", i, channels[i].sfx->getname() ); } S_FreeChannel( pChannel ); } Q_memset( channels, 0, MAX_CHANNELS * sizeof(channel_t) ); if ( bClear ) { S_ClearBuffer(); } // Clear any remaining soundfade memset( &soundfade, 0, sizeof( soundfade ) ); g_AudioDevice->StopAllSounds(); Assert( g_ActiveChannels.GetActiveCount() == 0 ); } void S_StopAllSoundsC( void ) { S_StopAllSounds( true ); } void S_OnLoadScreen( bool value ) { s_bOnLoadScreen = value; } void S_ClearBuffer( void ) { if ( !g_AudioDevice ) return; g_AudioDevice->ClearBuffer(); DSP_ClearState(); MIX_ClearAllPaintBuffers( PAINTBUFFER_SIZE, true ); } //----------------------------------------------------------------------------- // Purpose: // Input : percent - // holdtime - // intime - // outtime - //----------------------------------------------------------------------------- void S_SoundFade( float percent, float holdtime, float intime, float outtime ) { soundfade.starttime = g_pSoundServices->GetHostTime(); soundfade.initial_percent = percent; soundfade.fadeouttime = outtime; soundfade.holdtime = holdtime; soundfade.fadeintime = intime; } //----------------------------------------------------------------------------- // Purpose: Modulates sound volume on the client. //----------------------------------------------------------------------------- void S_UpdateSoundFade(void) { float totaltime; float f; // Determine current fade value. // Assume no fading remains soundfade.percent = 0; totaltime = soundfade.fadeouttime + soundfade.fadeintime + soundfade.holdtime; float elapsed = g_pSoundServices->GetHostTime() - soundfade.starttime; // Clock wrapped or reset (BUG) or we've gone far enough if ( elapsed < 0.0f || elapsed >= totaltime || totaltime <= 0.0f ) { return; } // We are in the fade time, so determine amount of fade. if ( soundfade.fadeouttime > 0.0f && ( elapsed < soundfade.fadeouttime ) ) { // Ramp up f = elapsed / soundfade.fadeouttime; } // Inside the hold time else if ( elapsed <= ( soundfade.fadeouttime + soundfade.holdtime ) ) { // Stay f = 1.0f; } else { // Ramp down f = ( elapsed - ( soundfade.fadeouttime + soundfade.holdtime ) ) / soundfade.fadeintime; // backward interpolated... f = 1.0f - f; } // Spline it. f = SimpleSpline( f ); f = clamp( f, 0.0f, 1.0f ); soundfade.percent = soundfade.initial_percent * f; } //============================================================================= // Global Voice Ducker - enabled in vcd scripts, when characters deliver important dialog. Overrides all // other mixer ducking, and ducks all other sounds except dialog. ConVar snd_ducktovolume( "snd_ducktovolume", "0.55", FCVAR_ARCHIVE ); ConVar snd_duckerattacktime( "snd_duckerattacktime", "0.5", FCVAR_ARCHIVE ); ConVar snd_duckerreleasetime( "snd_duckerreleasetime", "2.5", FCVAR_ARCHIVE ); ConVar snd_duckerthreshold("snd_duckerthreshold", "0.15", FCVAR_ARCHIVE ); static void S_UpdateVoiceDuck( int voiceChannelCount, int voiceChannelMaxVolume, float frametime ) { float volume_when_ducked = snd_ducktovolume.GetFloat(); int volume_threshold = (int)(snd_duckerthreshold.GetFloat() * 255.0); float duckTarget = 1.0; if ( voiceChannelCount > 0 ) { voiceChannelMaxVolume = clamp(voiceChannelMaxVolume, 0, 255); // duckTarget = RemapVal( voiceChannelMaxVolume, 0, 255, 1.0, volume_when_ducked ); // KB: Change: ducker now active if any character is speaking above threshold volume. // KB: Active ducker drops all volumes to volumes * snd_duckvolume if ( voiceChannelMaxVolume > volume_threshold ) duckTarget = volume_when_ducked; } float rate = ( duckTarget < g_DuckScale ) ? snd_duckerattacktime.GetFloat() : snd_duckerreleasetime.GetFloat(); g_DuckScale = Approach( duckTarget, g_DuckScale, frametime * ((1-volume_when_ducked) / rate) ); } // set 2d forward vector, given 3d right vector. // NOTE: this should only be used for a listener forward // vector from a listener right vector. It is not a general use routine. void ConvertListenerVectorTo2D( Vector *pvforward, Vector *pvright ) { // get 2d forward direction vector, ignoring pitch angle QAngle angles2d; Vector source2d; Vector listener_forward2d; source2d = *pvright; source2d.z = 0.0; VectorNormalize(source2d); // convert right vector to euler angles (yaw & pitch) VectorAngles(source2d, angles2d); // get forward angle of listener angles2d[PITCH] = 0; angles2d[YAW] += 90; // rotate 90 ccw angles2d[ROLL] = 0; if (angles2d[YAW] >= 360) angles2d[YAW] -= 360; AngleVectors(angles2d, &listener_forward2d); VectorNormalize(listener_forward2d); *pvforward = listener_forward2d; } // If this is nonzero, we will only spatialize some of the static // channels each frame. The round robin will spatialize 1 / (2 ^ x) // of the spatial channels each frame. ConVar snd_spatialize_roundrobin( "snd_spatialize_roundrobin", "0", FCVAR_ALLOWED_IN_COMPETITIVE, "Lowend optimization: if nonzero, spatialize only a fraction of sound channels each frame. 1/2^x of channels will be spatialized per frame." ); /* ============ S_Update Called once each time through the main loop ============ */ void S_Update( const AudioState_t *pAudioState ) { VPROF("S_Update"); channel_t *ch; channel_t *combine; static unsigned int s_roundrobin = 0 ; ///< number of times this function is called. ///< used instead of host_frame because that number ///< isn't necessarily available here (sez Yahn). if ( !g_AudioDevice->IsActive() ) return; g_SndMutex.Lock(); // Update any client side sound fade S_UpdateSoundFade(); if ( pAudioState ) { VectorCopy( pAudioState->m_Origin, listener_origin ); AngleVectors( pAudioState->m_Angles, &listener_forward, &listener_right, &listener_up ); s_bIsListenerUnderwater = pAudioState->m_bIsUnderwater; } else { VectorCopy( vec3_origin, listener_origin ); VectorCopy( vec3_origin, listener_forward ); VectorCopy( vec3_origin, listener_right ); VectorCopy( vec3_origin, listener_up ); s_bIsListenerUnderwater = false; } g_AudioDevice->UpdateListener( listener_origin, listener_forward, listener_right, listener_up ); combine = NULL; int voiceChannelCount = 0; int voiceChannelMaxVolume = 0; // reset traceline counter for this frame g_snd_trace_count = 0; // calculate distance to nearest walls, update dsp_spatial // updates one wall only per frame (one trace per frame) SND_SetSpatialDelays(); // updates dsp_room if automatic room detection enabled DAS_CheckNewRoomDSP(); // update spatialization for static and dynamic sounds CChannelList list; g_ActiveChannels.GetActiveChannels( list ); if (snd_spatialize_roundrobin.GetInt() == 0) { // spatialize each channel each time for ( int i = 0; i < list.Count(); i++ ) { ch = list.GetChannel(i); Assert(ch->sfx); Assert(ch->activeIndex > 0); SND_Spatialize(ch); // respatialize channel if ( ch->sfx->pSource && ch->sfx->pSource->IsVoiceSource() ) { voiceChannelCount++; voiceChannelMaxVolume = max(voiceChannelMaxVolume, ChannelGetMaxVol( ch) ); } } } else // lowend performance improvement: spatialize only some channels each frame. { unsigned int robinmask = (1 << snd_spatialize_roundrobin.GetInt()) - 1; // now do static channels for ( int i = 0 ; i < list.Count() ; ++i ) { ch = list.GetChannel(i); Assert(ch->sfx); Assert(ch->activeIndex > 0); // need to check bfirstpass because sound tracing may have been deferred if ( ch->flags.bfirstpass || (robinmask & s_roundrobin) == ( i & robinmask ) ) { SND_Spatialize(ch); // respatialize channel } if ( ch->sfx->pSource && ch->sfx->pSource->IsVoiceSource() ) { voiceChannelCount++; voiceChannelMaxVolume = max( voiceChannelMaxVolume, ChannelGetMaxVol( ch) ); } } ++s_roundrobin; } SND_ChannelTraceReset(); // set new target for voice ducking float frametime = g_pSoundServices->GetHostFrametime(); S_UpdateVoiceDuck( voiceChannelCount, voiceChannelMaxVolume, frametime ); // update x360 music volume g_DashboardMusicMixValue = Approach( g_DashboardMusicMixTarget, g_DashboardMusicMixValue, g_DashboardMusicFadeRate * frametime ); // // debugging output // if (snd_show.GetInt()) { con_nprint_t np; np.time_to_live = 2.0f; np.fixed_width_font = true; int total = 0; CChannelList activeChannels; g_ActiveChannels.GetActiveChannels( activeChannels ); for ( int i = 0; i < activeChannels.Count(); i++ ) { channel_t *channel = activeChannels.GetChannel(i); if ( !channel->sfx ) continue; np.index = total + 2; if ( channel->flags.fromserver ) { np.color[0] = 1.0; np.color[1] = 0.8; np.color[2] = 0.1; } else { np.color[0] = 0.1; np.color[1] = 0.9; np.color[2] = 1.0; } unsigned int sampleCount = RemainingSamples( channel ); float timeleft = (float)sampleCount / (float)channel->sfx->pSource->SampleRate(); bool bLooping = channel->sfx->pSource->IsLooped(); if (snd_surround.GetInt() < 4) { Con_NXPrintf ( &np, "%02i l(%03d) r(%03d) vol(%03d) ent(%03d) pos(%6d %6d %6d) timeleft(%f) looped(%d) %50s", total+ 1, (int)channel->fvolume[IFRONT_LEFT], (int)channel->fvolume[IFRONT_RIGHT], channel->master_vol, channel->soundsource, (int)channel->origin[0], (int)channel->origin[1], (int)channel->origin[2], timeleft, bLooping, channel->sfx->getname()); } else { Con_NXPrintf ( &np, "%02i l(%03d) c(%03d) r(%03d) rl(%03d) rr(%03d) vol(%03d) ent(%03d) pos(%6d %6d %6d) timeleft(%f) looped(%d) %50s", total+ 1, (int)channel->fvolume[IFRONT_LEFT], (int)channel->fvolume[IFRONT_CENTER], (int)channel->fvolume[IFRONT_RIGHT], (int)channel->fvolume[IREAR_LEFT], (int)channel->fvolume[IREAR_RIGHT], channel->master_vol, channel->soundsource, (int)channel->origin[0], (int)channel->origin[1], (int)channel->origin[2], timeleft, bLooping, channel->sfx->getname()); } if ( snd_visualize.GetInt() ) { CDebugOverlay::AddTextOverlay( channel->origin, 0.05f, channel->sfx->getname() ); } total++; } while ( total <= 128 ) { Con_NPrintf( total + 2, "" ); total++; } } g_SndMutex.Unlock(); if ( s_bOnLoadScreen ) return; // not time to update yet? double tNow = Plat_FloatTime(); // this is the last time we ran a sound frame g_LastSoundFrame = tNow; // this is the last time we did mixing (extraupdate also advances this if it mixes) g_LastMixTime = tNow; // mix some sound // try to stay at least one frame + mixahead ahead in the mix. g_EstFrameTime = (g_EstFrameTime * 0.9f) + (g_pSoundServices->GetHostFrametime() * 0.1f); S_Update_( g_EstFrameTime + snd_mixahead.GetFloat() ); } CON_COMMAND( snd_dumpclientsounds, "Dump sounds to VXConsole" ) { con_nprint_t np; np.time_to_live = 2.0f; np.fixed_width_font = true; int total = 0; CChannelList list; g_ActiveChannels.GetActiveChannels( list ); for ( int i = 0; i < list.Count(); i++ ) { channel_t *ch = list.GetChannel(i); if ( !ch->sfx ) continue; unsigned int sampleCount = RemainingSamples( ch ); float timeleft = (float)sampleCount / (float)ch->sfx->pSource->SampleRate(); bool bLooping = ch->sfx->pSource->IsLooped(); const char *pszclassname = GetClientClassname(ch->soundsource); Msg( "%02i %s l(%03d) c(%03d) r(%03d) rl(%03d) rr(%03d) vol(%03d) pos(%6d %6d %6d) timeleft(%f) looped(%d) %50s chan:%d ent(%03d):%s\n", total+ 1, ch->flags.fromserver ? "SERVER" : "CLIENT", (int)ch->fvolume[IFRONT_LEFT], (int)ch->fvolume[IFRONT_CENTER], (int)ch->fvolume[IFRONT_RIGHT], (int)ch->fvolume[IREAR_LEFT], (int)ch->fvolume[IREAR_RIGHT], ch->master_vol, (int)ch->origin[0], (int)ch->origin[1], (int)ch->origin[2], timeleft, bLooping, ch->sfx->getname(), ch->entchannel, ch->soundsource, pszclassname ? pszclassname : "NULL" ); total++; } } //----------------------------------------------------------------------------- // Set g_soundtime to number of full samples that have been transfered out to hardware // since start. //----------------------------------------------------------------------------- void GetSoundTime(void) { int fullsamples; int sampleOutCount; // size of output buffer in *full* 16 bit samples // A 2 channel device has a *full* sample consisting of a 16 bit LR pair. // A 1 channel device has a *full* sample consiting of a 16 bit single sample. fullsamples = g_AudioDevice->DeviceSampleCount() / g_AudioDevice->DeviceChannels(); // NOTE: it is possible to miscount buffers if it has wrapped twice between // calls to S_Update. However, since the output buffer size is > 1 second of sound, // this should only occur for framerates lower than 1hz // sampleOutCount is counted in 16 bit *full* samples, of number of samples output to hardware // for current output buffer sampleOutCount = g_AudioDevice->GetOutputPosition(); if ( sampleOutCount < s_oldsampleOutCount ) { // buffer wrapped s_buffers++; if ( g_paintedtime > 0x70000000 ) { // time to chop things off to avoid 32 bit limits s_buffers = 0; g_paintedtime = fullsamples; S_StopAllSounds( true ); } } s_oldsampleOutCount = sampleOutCount; if ( cl_movieinfo.IsRecording() || IsReplayRendering() ) { // when recording a replay, we look at the record frame rate, not the engine frame rate #if defined( REPLAY_ENABLED ) extern IClientReplayContext *g_pClientReplayContext; if ( IsReplayRendering() ) { IReplayMovieRenderer *pMovieRenderer = (g_pClientReplayContext != NULL) ? g_pClientReplayContext->GetMovieRenderer() : NULL; if ( pMovieRenderer && pMovieRenderer->IsAudioSyncFrame() ) { float t = g_pSoundServices->GetHostTime(); if ( s_lastsoundtime != t ) { float frameTime = pMovieRenderer->GetRecordingFrameDuration(); float fSamples = frameTime * (float) g_AudioDevice->DeviceDmaSpeed() + g_ReplaySoundTimeFracAccumulator; float intPart = (float) floor( fSamples ); g_ReplaySoundTimeFracAccumulator = fSamples - intPart; g_soundtime += (int) intPart; s_lastsoundtime = t; } } } else // cl_movieinfo.IsRecording() // in movie, just mix one frame worth of sound #endif { float t = g_pSoundServices->GetHostTime(); if ( s_lastsoundtime != t ) { g_soundtime += g_pSoundServices->GetHostFrametime() * g_AudioDevice->DeviceDmaSpeed(); s_lastsoundtime = t; } } } else { // g_soundtime indicates how many *full* samples have actually been // played out to dma g_soundtime = s_buffers*fullsamples + sampleOutCount; } } void S_ExtraUpdate( void ) { if ( !g_AudioDevice || !g_pSoundServices ) return; if ( !g_AudioDevice->IsActive() ) return; if ( s_bOnLoadScreen ) return; if ( snd_noextraupdate.GetInt() || cl_movieinfo.IsRecording() || IsReplayRendering() ) return; // don't pollute timings // If listener position and orientation has not yet been updated (ie: no call to S_Update since level load) // then don't mix. Important - mixing with listener at 'false' origin causes // some sounds to incorrectly spatialize to 0 volume, killing them before they can play. if ((listener_origin == vec3_origin) && (listener_forward == vec3_origin) && (listener_right == vec3_origin) && (listener_up == vec3_origin) ) return; // Only mix if you have used up 90% of the mixahead buffer double tNow = Plat_FloatTime(); float delta = (tNow - g_LastMixTime); // we know we were at least snd_mixahead seconds ahead of the output the last time we did mixing // if we're not close to running out just exit to avoid small mix batches if ( delta > 0 && delta < (snd_mixahead.GetFloat() * 0.9f) ) return; g_LastMixTime = tNow; g_pSoundServices->OnExtraUpdate(); // Shouldn't have to do any work here if your framerate hasn't dropped S_Update_( snd_mixahead.GetFloat() ); } extern void DEBUG_StartSoundMeasure(int type, int samplecount ); extern void DEBUG_StopSoundMeasure(int type, int samplecount ); void S_Update_Guts( float mixAheadTime ) { VPROF( "S_Update_Guts" ); tmZone( TELEMETRY_LEVEL0, TMZF_NONE, "%s", __FUNCTION__ ); DEBUG_StartSoundMeasure(4, 0); // Update our perception of audio time. // 'g_soundtime' tells how many samples have // been played out of the dma buffer since sound system startup. // 'g_paintedtime' indicates how many samples we've actually mixed // and sent to the dma buffer since sound system startup. GetSoundTime(); // if ( g_soundtime > g_paintedtime ) // { // // if soundtime > paintedtime, then the dma buffer // // has played out more sound than we've actually // // mixed. We need to call S_Update_ more often. // // DevMsg ("S_Update_ : Underflow\n"); // paintedtime = g_soundtime; // } // (kdb) above code doesn't handle underflow correctly // should actually zero out the paintbuffer to advance to the new // time. // mix ahead of current position unsigned endtime = g_AudioDevice->PaintBegin( mixAheadTime, g_soundtime, g_paintedtime ); int samples = endtime - g_paintedtime; samples = samples < 0 ? 0 : samples; if ( samples ) { THREAD_LOCK_SOUND(); DEBUG_StartSoundMeasure( 2, samples ); MIX_PaintChannels( endtime, s_bIsListenerUnderwater ); MXR_DebugShowMixVolumes(); MXR_UpdateAllDuckerVolumes(); DEBUG_StopSoundMeasure( 2, 0 ); } g_AudioDevice->PaintEnd(); DEBUG_StopSoundMeasure( 4, samples ); } #if !defined( _X360 ) #define THREADED_MIX_TIME 33 #else #define THREADED_MIX_TIME XMA_POLL_RATE #endif ConVar snd_ShowThreadFrameTime( "snd_ShowThreadFrameTime", "0" ); bool g_bMixThreadExit; ThreadHandle_t g_hMixThread; void S_Update_Thread() { float frameTime = THREADED_MIX_TIME * 0.001f; double lastFrameTime = Plat_FloatTime(); while ( !g_bMixThreadExit ) { // mixing (for 360) needs to be updated at a steady rate // large update times causes the mixer to demand more audio data // the 360 decoder has finite latency and cannot fulfill spike requests float t0 = Plat_FloatTime(); S_Update_Guts( frameTime + snd_mixahead.GetFloat() ); int updateTime = ( Plat_FloatTime() - t0 ) * 1000.0f; // try to maintain a steadier rate by compensating for fluctuating mix times int sleepTime = THREADED_MIX_TIME - updateTime; if ( sleepTime > 0 ) { ThreadSleep( sleepTime ); } // mimic a frametime needed for sound update double t1 = Plat_FloatTime(); frameTime = t1 - lastFrameTime; lastFrameTime = t1; if ( snd_ShowThreadFrameTime.GetBool() ) { Msg( "S_Update_Thread: frameTime: %d ms\n", (int)( frameTime * 1000.0f ) ); } } } void S_ShutdownMixThread() { if ( g_hMixThread ) { g_bMixThreadExit = true; ThreadJoin( g_hMixThread ); ReleaseThreadHandle( g_hMixThread ); g_hMixThread = NULL; } } void S_Update_( float mixAheadTime ) { if ( !IsConsole() || !snd_mix_async.GetBool() ) { S_ShutdownMixThread(); S_Update_Guts( mixAheadTime ); } else { if ( !g_hMixThread ) { g_bMixThreadExit = false; g_hMixThread = ThreadExecuteSolo( "SndMix", S_Update_Thread ); if ( IsX360() ) { ThreadSetAffinity( g_hMixThread, XBOX_PROCESSOR_5 ); } } } } //----------------------------------------------------------------------------- // Threaded mixing enable. Purposely hiding enable/disable details. //----------------------------------------------------------------------------- void S_EnableThreadedMixing( bool bEnable ) { if ( snd_mix_async.GetBool() != bEnable ) { snd_mix_async.SetValue( bEnable ); } } /* =============================================================================== console functions =============================================================================== */ extern void DSP_DEBUGSetParams(int ipreset, int iproc, float *pvalues, int cparams); extern void DSP_DEBUGReloadPresetFile( void ); void S_DspParms( const CCommand &args ) { if ( args.ArgC() == 1) { // if dsp_parms with no arguments, reload entire preset file DSP_DEBUGReloadPresetFile(); return; } if ( args.ArgC() < 4 ) { Msg( "Usage: dsp_parms PRESET# PROC# param0 param1 ...up to param15 \n" ); return; } int cparam = min( args.ArgC() - 4, 16); float params[16]; Q_memset( params, 0, sizeof(float) * 16 ); // get preset & proc int idsp, iproc; idsp = Q_atof( args[1] ); iproc = Q_atof( args[2] ); // get params for (int i = 0; i < cparam; i++) { params[i] = Q_atof( args[i+4] ); } // set up params & switch preset DSP_DEBUGSetParams(idsp, iproc, params, cparam); } static ConCommand dsp_parm("dsp_reload", S_DspParms ); void S_Play( const char *pszName, bool flush = false ) { int inCache; char szName[256]; CSfxTable *pSfx; Q_strncpy( szName, pszName, sizeof( szName ) ); if ( !Q_strrchr( pszName, '.' ) ) { Q_strncat( szName, ".wav", sizeof( szName ), COPY_ALL_CHARACTERS ); } pSfx = S_FindName( szName, &inCache ); if ( inCache && flush ) { pSfx->pSource->CacheUnload(); } StartSoundParams_t params; params.staticsound = false; params.soundsource = g_pSoundServices->GetViewEntity(); params.entchannel = CHAN_REPLACE; params.pSfx = pSfx; params.origin = listener_origin; params.fvol = 1.0f; params.soundlevel = SNDLVL_NONE; params.flags = 0; params.pitch = PITCH_NORM; S_StartSound( params ); } static void S_Play( const CCommand &args ) { bool bFlush = !Q_stricmp( args[0], "playflush" ); for ( int i = 1; i < args.ArgC(); ++i ) { S_Play( args[i], bFlush ); } } static void S_PlayVol( const CCommand &args ) { static int hash=543; float vol; char name[256]; CSfxTable *pSfx; for ( int i = 1; iGetViewEntity(); params.entchannel = CHAN_REPLACE; params.pSfx = pSfx; params.origin = listener_origin; params.fvol = 1.0f; params.soundlevel = SNDLVL_NONE; params.flags = 0; params.pitch = PITCH_NORM; params.delay = delay; S_StartSound( params ); } static ConCommand sndplaydelay( "sndplaydelay", S_PlayDelay, "Usage: sndplaydelay delay_in_sec (negative to skip ahead) soundname", FCVAR_SERVER_CAN_EXECUTE ); static bool SortByNameLessFunc( const int &lhs, const int &rhs ) { CSfxTable *pSfx1 = s_Sounds[lhs].pSfx; CSfxTable *pSfx2 = s_Sounds[rhs].pSfx; return CaselessStringLessThan( pSfx1->getname(), pSfx2->getname() ); } void S_SoundList(void) { CSfxTable *sfx; CAudioSource *pSource; int size, total; total = 0; for ( int i = s_Sounds.FirstInorder(); i != s_Sounds.InvalidIndex(); i = s_Sounds.NextInorder( i ) ) { sfx = s_Sounds[i].pSfx; pSource = sfx->pSource; if ( !pSource || !pSource->IsCached() ) continue; size = pSource->SampleSize() * pSource->SampleCount(); total += size; if ( pSource->IsLooped() ) Msg ("L"); else Msg (" "); Msg("(%2db) %6i : %s\n", pSource->SampleSize(), size, sfx->getname()); } Msg( "Total resident: %i\n", total ); } #if defined( _X360 ) CON_COMMAND( vx_soundlist, "Dump sounds to VXConsole" ) { CSfxTable *sfx; CAudioSource *pSource; int dataSize; char *pFormatStr; int sampleRate; int sampleBits; int streamed; int looped; int channels; int numSamples; int numSounds = s_Sounds.Count(); xSoundList_t* pSoundList = new xSoundList_t[numSounds]; int i = 0; for ( int iSrcSound=s_Sounds.FirstInorder(); iSrcSound != s_Sounds.InvalidIndex(); iSrcSound = s_Sounds.NextInorder( iSrcSound ) ) { dataSize = -1; sampleRate = -1; sampleBits = -1; pFormatStr = "???"; streamed = -1; looped = -1; channels = -1; numSamples = -1; sfx = s_Sounds[iSrcSound].pSfx; pSource = sfx->pSource; if ( pSource && pSource->IsCached() ) { numSamples = pSource->SampleCount(); dataSize = pSource->DataSize(); sampleRate = pSource->SampleRate(); streamed = pSource->IsStreaming(); looped = pSource->IsLooped(); channels = pSource->IsStereoWav() ? 2 : 1; if ( pSource->Format() == WAVE_FORMAT_ADPCM ) { pFormatStr = "ADPCM"; sampleBits = 16; } else if ( pSource->Format() == WAVE_FORMAT_PCM ) { pFormatStr = "PCM"; sampleBits = (pSource->SampleSize() * 8)/channels; } else if ( pSource->Format() == WAVE_FORMAT_XMA ) { pFormatStr = "XMA"; sampleBits = 16; } } V_strncpy( pSoundList[i].name, sfx->getname(), sizeof( pSoundList[i].name ) ); V_strncpy( pSoundList[i].formatName, pFormatStr, sizeof( pSoundList[i].formatName ) ); pSoundList[i].rate = sampleRate; pSoundList[i].bits = sampleBits; pSoundList[i].channels = channels; pSoundList[i].looped = looped; pSoundList[i].dataSize = dataSize; pSoundList[i].numSamples = numSamples; pSoundList[i].streamed = streamed; ++i; } XBX_rSoundList( numSounds, pSoundList ); delete [] pSoundList; } #endif extern unsigned g_snd_time_debug; extern unsigned g_snd_call_time_debug; extern unsigned g_snd_count_debug; extern unsigned g_snd_samplecount; extern unsigned g_snd_frametime; extern unsigned g_snd_frametime_total; extern int g_snd_profile_type; // start measuring sound perf, 100 reps // type 1 - dsp, 2 - mix, 3 - load sound, 4 - all sound // set type via ConVar snd_profile void DEBUG_StartSoundMeasure(int type, int samplecount ) { if (type != g_snd_profile_type) return; if (samplecount) g_snd_samplecount += samplecount; g_snd_call_time_debug = Plat_MSTime(); } // show sound measurement after 25 reps - show as % of total frame // type 1 - dsp, 2 - mix, 3 - load sound, 4 - all sound // BUGBUG: snd_profile 4 reports a lower average because it's average cost // PER CALL and most calls (via SoundExtraUpdate()) don't do any work and // bring the average down. If you want an average PER FRAME instead, it's generally higher. void DEBUG_StopSoundMeasure(int type, int samplecount ) { if (type != g_snd_profile_type) return; if (samplecount) g_snd_samplecount += samplecount; // add total time since last frame g_snd_frametime_total += Plat_MSTime() - g_snd_frametime; // performance timing g_snd_time_debug += Plat_MSTime() - g_snd_call_time_debug; if (++g_snd_count_debug >= 100) { switch (g_snd_profile_type) { case 1: Msg("dsp: (%2.2f) millisec ", ((float)g_snd_time_debug) / 100.0); Msg("(%2.2f) pct of frame \n", 100.0 * ((float)g_snd_time_debug) / ((float)g_snd_frametime_total)); break; case 2: Msg("mix+dsp:(%2.2f) millisec ", ((float)g_snd_time_debug) / 100.0); Msg("(%2.2f) pct of frame \n", 100.0 * ((float)g_snd_time_debug) / ((float)g_snd_frametime_total)); break; case 3: //if ( (((float)g_snd_time_debug) / 100.0) < 0.01 ) // break; Msg("snd load: (%2.2f) millisec ", ((float)g_snd_time_debug) / 100.0); Msg("(%2.2f) pct of frame \n", 100.0 * ((float)g_snd_time_debug) / ((float)g_snd_frametime_total)); break; case 4: Msg("sound: (%2.2f) millisec ", ((float)g_snd_time_debug) / 100.0); Msg("(%2.2f) pct of frame (%d samples) \n", 100.0 * ((float)g_snd_time_debug) / ((float)g_snd_frametime_total), g_snd_samplecount); break; } g_snd_count_debug = 0; g_snd_time_debug = 0; g_snd_samplecount = 0; g_snd_frametime_total = 0; } g_snd_frametime = Plat_MSTime(); } // speak a sentence from console; works by passing in "!sentencename" // or "sentence" extern ConVar dsp_room; static void S_Say( const CCommand &args ) { CSfxTable *pSfx; if ( !g_AudioDevice->IsActive() ) return; char sound[256]; Q_strncpy( sound, args[1], sizeof( sound ) ); // DEBUG - test performance of dsp code if ( !Q_stricmp( sound, "dsp" ) ) { unsigned time; int i; int count = 10000; int idsp; for (i = 0; i < PAINTBUFFER_SIZE; i++) { g_paintbuffer[i].left = RandomInt(0,2999); g_paintbuffer[i].right = RandomInt(0,2999); } Msg ("Start profiling 10,000 calls to DSP\n"); idsp = dsp_room.GetInt(); // get system time time = Plat_MSTime(); for (i = 0; i < count; i++) { // SX_RoomFX(PAINTBUFFER_SIZE, TRUE, TRUE); DSP_Process(idsp, g_paintbuffer, NULL, NULL, PAINTBUFFER_SIZE); } // display system time delta Msg("%d milliseconds \n", Plat_MSTime() - time); return; } if ( !Q_stricmp(sound, "paint") ) { unsigned time; int count = 10000; static int hash=543; int psav = g_paintedtime; Msg ("Start profiling MIX_PaintChannels\n"); pSfx = S_PrecacheSound("ambience/labdrone1.wav"); StartSoundParams_t params; params.staticsound = false; params.soundsource = hash++; params.entchannel = CHAN_AUTO; params.pSfx = pSfx; params.origin = listener_origin; params.fvol = 1.0f; params.soundlevel = SNDLVL_NONE; params.flags = 0; params.pitch = PITCH_NORM; S_StartDynamicSound( params ); // get system time time = Plat_MSTime(); // paint a boatload of sound MIX_PaintChannels( g_paintedtime + 512*count, s_bIsListenerUnderwater ); // display system time delta Msg("%d milliseconds \n", Plat_MSTime() - time); g_paintedtime = psav; return; } // DEBUG if ( !TestSoundChar( sound, CHAR_SENTENCE ) ) { // build a fake sentence name, then play the sentence text Q_strncpy(sound, "xxtestxx ", sizeof( sound ) ); Q_strncat(sound, args[1], sizeof( sound ), COPY_ALL_CHARACTERS ); int addIndex = g_Sentences.AddToTail(); sentence_t *pSentence = &g_Sentences[addIndex]; pSentence->pName = sound; pSentence->length = 0; // insert null terminator after sentence name sound[8] = 0; pSfx = S_PrecacheSound ("!xxtestxx"); if (!pSfx) { Msg ("S_Say: can't cache %s\n", sound); return; } StartSoundParams_t params; params.staticsound = false; params.soundsource = g_pSoundServices->GetViewEntity(); params.entchannel = CHAN_REPLACE; params.pSfx = pSfx; params.origin = vec3_origin; params.fvol = 1.0f; params.soundlevel = SNDLVL_NONE; params.flags = 0; params.pitch = PITCH_NORM; S_StartDynamicSound ( params ); // remove last g_Sentences.Remove( g_Sentences.Size() - 1 ); } else { pSfx = S_FindName(sound, NULL); if (!pSfx) { Msg ("S_Say: can't find sentence name %s\n", sound); return; } StartSoundParams_t params; params.staticsound = false; params.soundsource = g_pSoundServices->GetViewEntity(); params.entchannel = CHAN_REPLACE; params.pSfx = pSfx; params.origin = vec3_origin; params.fvol = 1.0f; params.soundlevel = SNDLVL_NONE; params.flags = 0; params.pitch = PITCH_NORM; S_StartDynamicSound( params ); } } //------------------------------------------------------------------------------ // // Sound Mixers // // Sound mixers are referenced by name from Soundscapes, and are used to provide // custom volume control over various sound categories, called 'mix groups' // // see scripts/soundmixers.txt for data format //------------------------------------------------------------------------------ #define CMXRGROUPMAX 64 // up to n mixgroups #define CMXRGROUPRULESMAX (CMXRGROUPMAX + 16) // max number of group rules #define CMXRSOUNDMIXERSMAX 32 // up to n sound mixers per project // mix groups - these equivalent to submixes on an audio mixer // list of rules for determining sound membership in mix groups. // All conditions which are not null are ANDed together #define CMXRCLASSMAX 16 #define CMXRNAMEMAX 32 struct classlistelem_t { char szclassname[CMXRNAMEMAX]; // name of entities' class, such as CAI_BaseNPC or CHL2_Player }; struct grouprule_t { char szmixgroup[CMXRNAMEMAX]; // mix group name int mixgroupid; // mix group unique id char szdir[CMXRNAMEMAX]; // substring to search for in ch->sfx int classId; // index of classname int chantype; // channel type (CHAN_WEAPON, etc) int soundlevel_min; // min soundlevel int soundlevel_max; // max soundlevel int priority; // 0..100 higher priority sound groups duck all lower pri groups if enabled int is_ducked; // if 1, sound group is ducked by all higher priority 'causes_duck" sounds int causes_ducking; // if 1, sound group ducks other 'is_ducked' sounds of lower priority float duck_target_pct; // if sound group is ducked, target percent of original volume float total_vol; // total volume of all sounds in this group, if group can cause ducking float ducker_threshold; // ducking is caused by this group if total_vol > ducker_threshold // and causes_ducking is enabled. float duck_target_vol; // target volume while ducking float duck_ramp_val; // current value of ramp - moves towards duck_target_vol }; // sound mixer struct soundmixer_t { char szsoundmixer[CMXRNAMEMAX]; // name of this soundmixer float mapMixgroupidToValue[CMXRGROUPMAX]; // sparse array of mix group values for this soundmixer }; int g_mapMixgroupidToGrouprulesid[CMXRGROUPMAX]; // map mixgroupid (one per unique group name) // back to 1st entry of this name in g_grouprules // sound mixer globals classlistelem_t g_groupclasslist[CMXRCLASSMAX]; soundmixer_t g_soundmixers[CMXRSOUNDMIXERSMAX]; // all sound mixers grouprule_t g_grouprules[CMXRGROUPRULESMAX]; // all rules for determining mix group membership // set current soundmixer index g_isoundmixer, search for match in soundmixers // Only change current soundmixer if new name is different from current name. int g_isoundmixer = -1; // index of current sound mixer char g_szsoundmixer_cur[64]; // current soundmixer name ConVar snd_soundmixer("snd_soundmixer", "Default_Mix"); // current soundmixer name void MXR_SetCurrentSoundMixer( const char *szsoundmixer ) { // if soundmixer name is not different from current name, return if ( !Q_stricmp(szsoundmixer, g_szsoundmixer_cur) ) { return; } for (int i = 0; i < g_csoundmixers; i++) { if ( !Q_stricmp(g_soundmixers[i].szsoundmixer, szsoundmixer) ) { g_isoundmixer = i; // save new current sound mixer name V_strcpy_safe(g_szsoundmixer_cur, szsoundmixer); return; } } } ConVar snd_showclassname("snd_showclassname", "0"); // if 1, show classname of ent making sound // if 2, show all mixgroup matches // if 3, show all mixgroup matches with current soundmixer for ent // get the client class name if an entity was specified const char *GetClientClassname( SoundSource soundsource ) { IClientEntity *pClientEntity = NULL; if ( entitylist ) { pClientEntity = entitylist->GetClientEntity( soundsource ); if ( pClientEntity ) { ClientClass *pClientClass = pClientEntity->GetClientClass(); // check npc sounds if ( pClientClass ) { return pClientClass->GetName(); } } } return NULL; } // builds a cached list of rules that match the directory name on the sound int MXR_GetMixGroupListFromDirName( const char *pDirname, byte *pList, int listMax ) { // if we call this before the groups are parsed we'll get bad data Assert(g_cgrouprules>0); int count = 0; for ( int i = 0; i < listMax; i++ ) { pList[i] = 255; } for ( int i = 0; i < g_cgrouprules; i++ ) { grouprule_t *prule = &g_grouprules[i]; if ( prule->szdir[ 0 ] && Q_stristr( pDirname, prule->szdir ) ) { pList[count] = i; count++; if ( count >= listMax ) return count; } } return count; } // determine which mixgroups sound is in, and save those mixgroupids in sound. // use current soundmixer indicated with g_isoundmixer, and contents of g_rgpgrouprules. // Algorithm: // 1. all conditions in a row are AND conditions, // 2. all rows sharing the same groupname are OR conditions. // so - if a sound matches all conditions of a row, it is given that row's mixgroup id // if a sound doesn't match all conditions of a row, the next row is checked. // returns 0, default mixgroup if no match void MXR_GetMixGroupFromSoundsource( channel_t *pchan, SoundSource soundsource, soundlevel_t soundlevel) { int i; grouprule_t *prule; bool fmatch; bool classMatch[CMXRCLASSMAX]; // init all mixgroups for channel for ( i = 0; i < 8; i++ ) { pchan->mixgroups[i] = -1; } char sndname[MAX_OSPATH]; Q_strncpy( sndname, pchan->sfx->getname(), sizeof( sndname ) ); // Use forward slashes here Q_FixSlashes( sndname, '/' ); const char *pszclassname = GetClientClassname(soundsource); for ( i = 0; i < g_cgroupclass; i++ ) { classMatch[i] = false; if ( pszclassname && Q_stristr(pszclassname, g_groupclasslist[i].szclassname ) ) { classMatch[i] = true; } } if ( snd_showclassname.GetInt() == 1) { // utility: show classname of ent making sound if (pszclassname) { DevMsg("(%s:%s) \n", pszclassname, sndname); } } // check all group rules for a match, save // up to 8 matches in channel mixgroup. int cmixgroups = 0; if (!pchan->sfx->m_bMixGroupsCached) { pchan->sfx->OnNameChanged( pchan->sfx->getname() ); } // since this is a sorted list (in group rule order) we only need to test against the next matching rule // this avoids a search inside the loop int currentDirRuleIndex = 0; int currentDirRule = pchan->sfx->m_mixGroupList[0]; for (i = 0; i < g_cgrouprules; i++) { prule = &g_grouprules[i]; fmatch = true; // check directory or name substring #if _DEBUG // check dir table is correct in CSfxTable cache if ( prule->szdir[ 0 ] && Q_stristr( sndname, prule->szdir ) ) { Assert(currentDirRule == i); } else { Assert(currentDirRule != i); } if ( prule->classId >= 0 ) { // rule has a valid class id and table is correct Assert(prule->classId < g_cgroupclass); if ( pszclassname && Q_stristr(pszclassname, g_groupclasslist[prule->classId].szclassname) ) { Assert(classMatch[prule->classId] == true); } else { Assert(classMatch[prule->classId] == false); } } #endif // this is the next matching dir for this sound, no need to search // becuse the list is sorted and we visit all elements if ( currentDirRule == i ) { Assert(prule->szdir[0]); currentDirRuleIndex++; currentDirRule = 255; if ( currentDirRuleIndex < pchan->sfx->m_mixGroupCount ) { currentDirRule = pchan->sfx->m_mixGroupList[currentDirRuleIndex]; } } else if ( prule->szdir[ 0 ] ) { fmatch = false; // substring doesn't match, keep looking } // check class name if ( fmatch && prule->classId >= 0 ) { fmatch = classMatch[prule->classId]; } // check channel type if ( fmatch && prule->chantype >= 0) { if ( pchan->entchannel != prule->chantype ) fmatch = false; // channel type doesn't match, keep looking } // check sndlvlmin/max if ( fmatch && prule->soundlevel_min >= 0) { if ( soundlevel < prule->soundlevel_min ) fmatch = false; // soundlevel is less than min, keep looking } if ( fmatch && prule->soundlevel_max >= 0) { if ( soundlevel > prule->soundlevel_max ) fmatch = false; // soundlevel is greater than max, keep looking } if ( fmatch ) { pchan->mixgroups[cmixgroups] = prule->mixgroupid; cmixgroups++; if (cmixgroups >= 8) return; // too many matches, stop looking } if (fmatch && snd_showclassname.GetInt() >= 2) { // show all mixgroups for this sound if (cmixgroups == 1) { DevMsg("\n%s:%s: ", g_szsoundmixer_cur, sndname); } if (prule->szmixgroup[0]) { // int rgmixgroupid[8]; // for (int i = 0; i < 8; i++) // rgmixgroupid[i] = -1; // rgmixgroupid[0] = prule->mixgroupid; // float vol = MXR_GetVolFromMixGroup( rgmixgroupid ); // DevMsg("%s(%1.2f) ", prule->szmixgroup, vol); DevMsg("%s ", prule->szmixgroup); } } } } struct debug_showvols_t { char *psz; // group name int mixgroupid; // groupid float vol; // group volume float totalvol; // total volume of all sounds playing in this group }; // display routine for MXR_DebugShowMixVolumes #define MXR_DEBUG_INCY (1.0/40.0) // vertical text spacing #define MXR_DEBUG_GREENSTART 0.3 // start position on screen of bar #define MXR_DEBUG_MAXVOL 1.0 // max volume scale #define MXR_DEBUG_REDLIMIT 1.0 // volume limit into yellow #define MXR_DEBUG_YELLOWLIMIT 0.7 // volume limit into red #define MXR_DEBUG_VOLSCALE 48 // length of graph in characters #define MXR_DEBUG_CHAR '-' // bar character extern ConVar dsp_volume; int g_debug_mxr_displaycount = 0; void MXR_DebugGraphMixVolumes( debug_showvols_t *groupvols, int cgroups) { float flXpos, flYpos, flXposBar, duration; int r,g,b,a; int rb, gb, bb, ab; flXpos = 0; flYpos = 0; char text[128]; char bartext[MXR_DEBUG_VOLSCALE*3]; duration = 0.01; g_debug_mxr_displaycount++; if (!(g_debug_mxr_displaycount % 10)) return; // only display every 10 frames r = 96; g = 86; b = 226; a = 255; ab = 255; // show volume, dsp_volume Q_snprintf( text, 128, "Game Volume: %1.2f", volume.GetFloat()); CDebugOverlay::AddScreenTextOverlay(flXpos, flYpos, duration, r, g, b,a, text); flYpos += MXR_DEBUG_INCY; Q_snprintf( text, 128, "DSP Volume: %1.2f", dsp_volume.GetFloat()); CDebugOverlay::AddScreenTextOverlay(flXpos, flYpos, duration, r, g, b,a, text); flYpos += MXR_DEBUG_INCY; for (int i = 0; i < cgroups; i++) { // r += 64; g += 64; b += 16; r = r % 255; g = g % 255; b = b % 255; Q_snprintf( text, 128, "%s: %1.2f (%1.2f)", groupvols[i].psz, groupvols[i].vol * g_DuckScale, groupvols[i].totalvol * g_DuckScale); CDebugOverlay::AddScreenTextOverlay(flXpos, flYpos, duration, r, g, b,a, text); // draw volume bar graph float vol = (groupvols[i].totalvol * g_DuckScale) / MXR_DEBUG_MAXVOL; // draw first 70% green float vol1 = 0.0; float vol2 = 0.0; float vol3 = 0.0; int cbars; vol1 = clamp(vol, 0.0f, 0.7f); vol2 = clamp(vol, 0.0f, 0.95f); vol3 = vol; flXposBar = flXpos + MXR_DEBUG_GREENSTART; if (vol1 > 0.0) { //flXposBar = flXpos + MXR_DEBUG_GREENSTART; rb = 0; gb= 255; bb = 0; // green bar Q_memset(bartext, 0, sizeof(bartext)); cbars = (int)((float)vol1 * (float)MXR_DEBUG_VOLSCALE); cbars = clamp(cbars, 0, MXR_DEBUG_VOLSCALE*3-1); Q_memset(bartext, MXR_DEBUG_CHAR, cbars); CDebugOverlay::AddScreenTextOverlay(flXposBar, flYpos, duration, rb, gb, bb,ab, bartext); } // yellow bar if (vol2 > MXR_DEBUG_YELLOWLIMIT) { rb = 255; gb = 255; bb = 0; Q_memset(bartext, 0, sizeof(bartext)); cbars = (int)((float)vol2 * (float)MXR_DEBUG_VOLSCALE); cbars = clamp(cbars, 0, MXR_DEBUG_VOLSCALE*3-1); Q_memset(bartext, MXR_DEBUG_CHAR, cbars); CDebugOverlay::AddScreenTextOverlay(flXposBar, flYpos, duration, rb, gb, bb,ab, bartext); } // red bar if (vol3 > MXR_DEBUG_REDLIMIT) { //flXposBar = flXpos + MXR_DEBUG_REDSTART; rb = 255; gb = 0; bb = 0; Q_memset(bartext, 0, sizeof(bartext)); cbars = (int)((float)vol3 * (float)MXR_DEBUG_VOLSCALE); cbars = clamp(cbars, 0, MXR_DEBUG_VOLSCALE*3-1); Q_memset(bartext, MXR_DEBUG_CHAR, cbars); CDebugOverlay::AddScreenTextOverlay(flXposBar, flYpos, duration, rb, gb, bb,ab, bartext); } flYpos += MXR_DEBUG_INCY; } } ConVar snd_disable_mixer_duck("snd_disable_mixer_duck", "0"); // if 1, soundmixer ducking is disabled // given mix group id, return current duck volume float MXR_GetDuckVolume( int mixgroupid ) { if ( snd_disable_mixer_duck.GetInt() ) return 1.0; Assert ( mixgroupid < g_cgrouprules ); int grouprulesid = g_mapMixgroupidToGrouprulesid[mixgroupid]; // if this mixgroup is not ducked, return 1.0 if ( !g_grouprules[grouprulesid].is_ducked ) return 1.0; // return current duck value for this group, scaled by current fade in/out ramp return g_grouprules[grouprulesid].duck_ramp_val; } #define SND_DUCKER_UPDATETIME 0.1 // seconds to wait between ducker updates double g_mxr_ducktime = 0.0; // time of last update to ducker // Get total volume currently playing in all groups, // process duck volumes for all groups // Call once per frame - updates occur at 10hz void MXR_UpdateAllDuckerVolumes( void ) { if ( snd_disable_mixer_duck.GetInt() ) return; // check timer since last update, only update at 10hz int i; double dtime = g_pSoundServices->GetHostTime(); // don't update until timer expires if (fabs(dtime - g_mxr_ducktime) < SND_DUCKER_UPDATETIME) return; g_mxr_ducktime = dtime; // clear out all total volume values for groups for ( i = 0; i < g_cgrouprules; i++) g_grouprules[i].total_vol = 0.0; // for every channel in a mix group which can cause ducking: // get total volume, store total in grouprule: CChannelList list; int ch_idx; channel_t *pchan; bool b_found_ducked_channel = false; g_ActiveChannels.GetActiveChannels( list ); for ( i = 0; i < list.Count(); i++ ) { ch_idx = list.GetChannelIndex(i); pchan = &channels[ch_idx]; if (pchan->last_vol > 0.0) { // account for all mix groups this channel belongs to... for (int j = 0; j < 8; j++) { int imixgroup = pchan->mixgroups[j]; if (imixgroup < 0) continue; int grouprulesid = g_mapMixgroupidToGrouprulesid[imixgroup]; if (g_grouprules[grouprulesid].causes_ducking) g_grouprules[grouprulesid].total_vol += pchan->last_vol; if (g_grouprules[grouprulesid].is_ducked) b_found_ducked_channel = true; } } } // if no channels playing which may be ducked, do nothing if ( !b_found_ducked_channel ) return; // for all groups that can be ducked: // see if a higher priority sound group has a volume > threshold, // if so, then duck this group by setting duck_target_vol to duck_target_pct. // if no sound group is causing ducking in this group, reset duck_target_vol to 1.0 for (i = 0; i < g_cgrouprules; i++) { if (g_grouprules[i].is_ducked) { int priority = g_grouprules[i].priority; float duck_volume = 1.0; // clear to 1.0 if no channel causing ducking // make sure we interact appropriately with global voice ducking... // if global voice ducking is active, skip sound group ducking and just set duck_volume target to 1.0 if ( g_DuckScale >= 1.0 ) { // check all sound groups for higher priority duck trigger for (int j = 0; j < g_cgrouprules; j++) { if (g_grouprules[j].priority > priority && g_grouprules[j].causes_ducking && g_grouprules[j].total_vol > g_grouprules[j].ducker_threshold) { // a higher priority group is causing this group to be ducked // set duck volume target to the ducked group's duck target percent // and break duck_volume = g_grouprules[i].duck_target_pct; // UNDONE: to prevent edge condition caused by crossing threshold, may need to have secondary // UNDONE: timer which allows ducking at 0.2 hz break; } } } g_grouprules[i].duck_target_vol = duck_volume; } } // update all ducker ramps if current duck value is not target // if ramp is greater than duck_volume, approach at 'attack rate' // if ramp is less than duck_volume, approach at 'decay rate' for (i = 0; i < g_cgrouprules; i++) { float target = g_grouprules[i].duck_target_vol; float current = g_grouprules[i].duck_ramp_val; if (g_grouprules[i].is_ducked && (current != target)) { float ramptime = target < current ? snd_duckerattacktime.GetFloat() : snd_duckerreleasetime.GetFloat(); // delta is volume change per update (we can do this // since we run at an approximate fixed update rate of 10hz) float delta = (1.0 - g_grouprules[i].duck_target_pct); delta *= ( SND_DUCKER_UPDATETIME / ramptime ); if (current > target) delta = -delta; // update ramps current += delta; if (current < target && delta < 0) current = target; if (current > target && delta > 0) current = target; g_grouprules[i].duck_ramp_val = current; } } } ConVar snd_showmixer("snd_showmixer", "0"); // set to 1 to show mixer every frame // show the current soundmixer output void MXR_DebugShowMixVolumes( void ) { if (snd_showmixer.GetInt() == 0) return; // for the current soundmixer: // make a totalvolume bucket for each mixgroup type in the soundmixer. // for every active channel, add its spatialized volume to // totalvolume bucket for that channel's selected mixgroup // display all mixgroup/volume/totalvolume values as horizontal bars debug_showvols_t groupvols[CMXRGROUPMAX]; int i; int cgroups = 0; if (g_isoundmixer < 0) { DevMsg("No sound mixer selected!"); return; } soundmixer_t *pmixer = &g_soundmixers[g_isoundmixer]; // for every entry in mapMixgroupidToValue which is not -1, // set up groupvols for (i = 0; i < CMXRGROUPMAX; i++) { if (pmixer->mapMixgroupidToValue[i] >= 0) { groupvols[cgroups].mixgroupid = i; groupvols[cgroups].psz = MXR_GetGroupnameFromId( i ); groupvols[cgroups].totalvol = 0.0; groupvols[cgroups].vol = pmixer->mapMixgroupidToValue[i]; cgroups++; } } // for every active channel, get its volume and // the selected mixgroupid, add to groupvols totalvol CChannelList list; int ch_idx; channel_t *pchan; g_ActiveChannels.GetActiveChannels( list ); for ( i = 0; i < list.Count(); i++ ) { ch_idx = list.GetChannelIndex(i); pchan = &channels[ch_idx]; if (pchan->last_vol > 0.0) { // find entry in groupvols for (int j = 0; j < CMXRGROUPMAX; j++) { if (pchan->last_mixgroupid == groupvols[j].mixgroupid) { groupvols[j].totalvol += pchan->last_vol; break; } } } } // groupvols is now fully initialized - just display it MXR_DebugGraphMixVolumes( groupvols, cgroups); } #ifdef _DEBUG // set the named mixgroup volume to vol for the current soundmixer static void MXR_DebugSetMixGroupVolume( const CCommand &args ) { if ( args.ArgC() != 3 ) { DevMsg("Parameters: mix group name, volume"); return; } const char *szgroupname = args[1]; float vol = atof( args[2] ); int imixgroup = MXR_GetMixgroupFromName( szgroupname ); if ( g_isoundmixer < 0 ) return; soundmixer_t *pmixer = &g_soundmixers[g_isoundmixer]; pmixer->mapMixgroupidToValue[imixgroup] = vol; } #endif //_DEBUG // given array of groupids (ie: the sound is in these groups), // return a mix volume. // return first mixgroup id in the provided array // which maps to a non -1 volume value for this // sound mixer float MXR_GetVolFromMixGroup( int rgmixgroupid[8], int *plast_mixgroupid ) { // if no soundmixer currently set, return 1.0 volume if (g_isoundmixer < 0) { *plast_mixgroupid = 0; return 1.0; } float duckgain = 1.0; if (g_csoundmixers) { soundmixer_t *pmixer = &g_soundmixers[g_isoundmixer]; if (pmixer) { // search mixgroupid array, return first match (non -1) for (int i = 0; i < 8; i++) { int imixgroup = rgmixgroupid[i]; if (imixgroup < 0) continue; // save lowest duck gain value for any of the mix groups this sound is in float duckgain_new = MXR_GetDuckVolume( imixgroup ); if ( duckgain_new < duckgain) duckgain = duckgain_new; Assert(imixgroup < CMXRGROUPMAX); // return first mixgroup id in the passed in array // that maps to a non -1 volume value for this // sound mixer if ( pmixer->mapMixgroupidToValue[imixgroup] >= 0) { *plast_mixgroupid = imixgroup; // get gain due to mixer settings float gain = pmixer->mapMixgroupidToValue[imixgroup]; // modify gain with ducker settings for this group return gain * duckgain; } } } } *plast_mixgroupid = 0; return duckgain; } // get id of mixgroup name int MXR_GetMixgroupFromName( const char *pszgroupname ) { // scan group rules for mapping from name to id if ( !pszgroupname ) return -1; if ( Q_strlen(pszgroupname) == 0 ) return -1; for (int i = 0; i < g_cgrouprules; i++) { if ( !Q_stricmp(g_grouprules[i].szmixgroup, pszgroupname ) ) return g_grouprules[i].mixgroupid; } return -1; } // get mixgroup name from id char *MXR_GetGroupnameFromId( int mixgroupid) { // scan group rules for mapping from name to id if (mixgroupid < 0) return NULL; for (int i = 0; i < g_cgrouprules; i++) { if ( g_grouprules[i].mixgroupid == mixgroupid) return g_grouprules[i].szmixgroup; } return NULL; } // assign a unique mixgroup id to each unique named mix group // within grouprules. Note: all mixgroupids in grouprules must be -1 // when this routine starts. void MXR_AssignGroupIds( void ) { int cmixgroupid = 0; for (int i = 0; i < g_cgrouprules; i++) { int mixgroupid = MXR_GetMixgroupFromName( g_grouprules[i].szmixgroup ); if (mixgroupid == -1) { // groupname is not yet assigned, provide a unique mixgroupid. g_grouprules[i].mixgroupid = cmixgroupid; // save reverse mapping, from mixgroupid to the first grouprules entry for this name g_mapMixgroupidToGrouprulesid[cmixgroupid] = i; cmixgroupid++; } } } int MXR_AddClassname( const char *pName ) { char szclassname[CMXRNAMEMAX]; Q_strncpy( szclassname, pName, CMXRNAMEMAX ); for ( int i = 0; i < g_cgroupclass; i++ ) { if ( !Q_stricmp( szclassname, g_groupclasslist[i].szclassname ) ) return i; } if ( g_cgroupclass >= CMXRCLASSMAX ) { Assert(g_cgroupclass < CMXRCLASSMAX); return -1; } Q_memcpy(g_groupclasslist[g_cgroupclass].szclassname, pName, min((size_t)CMXRNAMEMAX-1, strlen(pName))); g_cgroupclass++; return g_cgroupclass-1; } #define CHAR_LEFT_PAREN '{' #define CHAR_RIGHT_PAREN '}' // load group rules and sound mixers from file bool MXR_LoadAllSoundMixers( void ) { // init soundmixer globals g_isoundmixer = -1; g_szsoundmixer_cur[0] = 0; g_csoundmixers = 0; // total number of soundmixers found g_cgrouprules = 0; // total number of group rules found Q_memset(g_soundmixers, 0, sizeof(g_soundmixers)); Q_memset(g_grouprules, 0, sizeof(g_grouprules)); // load file // build rules // build array of sound mixers char szFile[MAX_OSPATH]; const char *pstart; bool bResult = false; char *pbuffer; Q_snprintf( szFile, sizeof( szFile ), "scripts/soundmixers.txt" ); pbuffer = (char *)COM_LoadFile( szFile, 5, NULL ); // Use malloc - free at end of this routine if ( !pbuffer ) { Error( "MXR_LoadAllSoundMixers: unable to open '%s'\n", szFile ); return bResult; } pstart = pbuffer; // first pass: load g_grouprules[] // starting at top of file, // scan for first '{', skipping all comment lines // get strings for: groupname, directory, classname, chan, sndlvl_min, sndlvl_max // convert chan to CHAN_ lookup // convert sndlvl_min, sndl_max to ints // store all in g_grouprules, update g_cgrouprules; // get next line // when hit '}' we're done with grouprules // check for first CHAR_LEFT_PAREN while (1) { pstart = COM_Parse( pstart ); if ( strlen(com_token) <= 0) break; // eof if ( com_token[0] != CHAR_LEFT_PAREN ) continue; break; } while (1) { pstart = COM_Parse( pstart ); if (com_token[0] == CHAR_RIGHT_PAREN) break; grouprule_t *pgroup = &g_grouprules[g_cgrouprules]; // copy mixgroup name, directory, classname // if no value specified, set to 0 length string if (com_token[0]) Q_memcpy(pgroup->szmixgroup, com_token, min((size_t)CMXRNAMEMAX-1, strlen(com_token))); pstart = COM_Parse( pstart ); if (com_token[0]) Q_memcpy(pgroup->szdir, com_token, min((size_t)CMXRNAMEMAX-1, strlen(com_token))); pgroup->classId = -1; pstart = COM_Parse( pstart ); if (com_token[0]) { pgroup->classId = MXR_AddClassname( com_token ); } // make sure all copied strings are null terminated pgroup->szmixgroup[CMXRNAMEMAX-1] = 0; pgroup->szdir[CMXRNAMEMAX-1] = 0; // lookup chan pstart = COM_Parse( pstart ); if (com_token[0]) { if (!Q_stricmp(com_token, "CHAN_STATIC")) pgroup->chantype = CHAN_STATIC; else if (!Q_stricmp(com_token, "CHAN_WEAPON")) pgroup->chantype = CHAN_WEAPON; else if (!Q_stricmp(com_token, "CHAN_VOICE")) pgroup->chantype = CHAN_VOICE; else if (!Q_stricmp(com_token, "CHAN_VOICE2")) pgroup->chantype = CHAN_VOICE2; else if (!Q_stricmp(com_token, "CHAN_BODY")) pgroup->chantype = CHAN_BODY; else if (!Q_stricmp(com_token, "CHAN_ITEM")) pgroup->chantype = CHAN_ITEM; } else pgroup->chantype = -1; // get sndlvls pstart = COM_Parse( pstart ); if (com_token[0]) pgroup->soundlevel_min = atoi(com_token); else pgroup->soundlevel_min = -1; pstart = COM_Parse( pstart ); if (com_token[0]) pgroup->soundlevel_max = atoi(com_token); else pgroup->soundlevel_max = -1; // get duck priority, IsDucked, Causes_ducking, duck_target_pct pstart = COM_Parse( pstart ); if (com_token[0]) pgroup->priority = atoi(com_token); else pgroup->priority = 50; pstart = COM_Parse( pstart ); if (com_token[0]) pgroup->is_ducked = atoi(com_token); else pgroup->is_ducked = 0; pstart = COM_Parse( pstart ); if (com_token[0]) pgroup->causes_ducking = atoi(com_token); else pgroup->causes_ducking = 0; pstart = COM_Parse( pstart ); if (com_token[0]) pgroup->duck_target_pct = ((float)(atoi(com_token))) / 100.0f; else pgroup->duck_target_pct = 0.5f; pstart = COM_Parse( pstart ); if (com_token[0]) pgroup->ducker_threshold = ((float)(atoi(com_token))) / 100.0f; else pgroup->ducker_threshold = 0.5f; pgroup->duck_ramp_val = 1.0; pgroup->duck_target_vol = 1.0; pgroup->total_vol = 0.0; // set mixgroup id to -1 pgroup->mixgroupid = -1; // update rule count g_cgrouprules++; if (g_cgrouprules >= CMXRGROUPRULESMAX) { // UNDONE: error! too many rules break; } } // now process all groupids in groups, such that // each mixgroup gets a unique id. MXR_AssignGroupIds(); // now load g_soundmixers // while not at end of file... // scan for "", if found save as new soundmixer name // while not '}' // scan for "", save as groupname // scan for "", save as mix value while(1) { pstart = COM_Parse( pstart ); if ( strlen(com_token) <= 0) break; // eof // save name in soundmixer soundmixer_t *pmixer = &g_soundmixers[g_csoundmixers]; Q_memcpy(pmixer->szsoundmixer, com_token, min((size_t)CMXRNAMEMAX-1, strlen(com_token))); // init all mixer values to -1. for (int j = 0; j < CMXRGROUPMAX; j++) { pmixer->mapMixgroupidToValue[j] = -1.0; } // load all groupnames for this soundmixer while (1) { pstart = COM_Parse( pstart ); if (com_token[0] == CHAR_LEFT_PAREN) continue; // skip { if (com_token[0] == CHAR_RIGHT_PAREN) break; // finished with this sounmixer // lookup mixgroupid for groupname int mixgroupid = MXR_GetMixgroupFromName( com_token ); float value; // get mix value pstart = COM_Parse( pstart ); value = atof( com_token ); // store value for mixgroupid Assert(mixgroupid <= CMXRGROUPMAX); pmixer->mapMixgroupidToValue[mixgroupid] = value; } g_csoundmixers++; if (g_csoundmixers >= CMXRSOUNDMIXERSMAX) { // UNDONE: error! to many sound mixers break; } } bResult = true; // loadmxr_exit: free( pbuffer ); return bResult; } void MXR_ReleaseMemory( void ) { // free all resources } float S_GetMono16Samples( const char *pszName, CUtlVector< short >& sampleList ) { CSfxTable *pSfx = S_PrecacheSound( PSkipSoundChars( pszName ) ); if ( !pSfx ) return 0.0f; CAudioSource *pWave = pSfx->pSource; if ( !pWave ) return 0.0f; int nType = pWave->GetType(); if ( nType != CAudioSource::AUDIO_SOURCE_WAV ) return 0.0f; CAudioMixer *pMixer = pWave->CreateMixer(); if ( !pMixer ) return 0.0f; float duration = AudioSource_GetSoundDuration( pSfx ); // Determine start/stop positions int totalsamples = (int)( duration * pWave->SampleRate() ); if ( totalsamples <= 0 ) return 0; bool bStereo = pWave->IsStereoWav(); int mix_sample_size = pMixer->GetMixSampleSize(); int nNumChannels = bStereo ? 2 : 1; char *pData = NULL; int pos = 0; int remaining = totalsamples; while ( remaining > 0 ) { int blockSize = min( remaining, 1000 ); char copyBuf[AUDIOSOURCE_COPYBUF_SIZE]; int copied = pWave->GetOutputData( (void **)&pData, pos, blockSize, copyBuf ); if ( !copied ) { break; } remaining -= copied; pos += copied; // Now get samples out of output data switch ( nNumChannels ) { default: case 1: { for ( int i = 0; i < copied; ++i ) { int offset = i * mix_sample_size; short sample = 0; if ( mix_sample_size == 1 ) { char s = *( char * )( pData + offset ); // Upscale it to fit into a short sample = s << 8; } else if ( mix_sample_size == 2 ) { sample = *( short * )( pData + offset ); } else if ( mix_sample_size == 4 ) { // Not likely to have 4 bytes mono!!! Assert( 0 ); int s = *( int * )( pData + offset ); sample = s >> 16; } else { Assert( 0 ); } sampleList.AddToTail( sample ); } } break; case 2: { for ( int i = 0; i < copied; ++i ) { int offset = i * mix_sample_size; short left = 0; short right = 0; if ( mix_sample_size == 1 ) { // Not possible!!!, must be at least 2 bytes!!! Assert( 0 ); char v = *( char * )( pData + offset ); left = right = ( v << 8 ); } else if ( mix_sample_size == 2 ) { // One byte per channel left = (short)( ( *(char *)( pData + offset ) ) << 8 ); right = (short)( ( *(char *)( pData + offset + 1 ) ) << 8 ); } else if ( mix_sample_size == 4 ) { // 2 bytes per channel left = *( short * )( pData + offset ); right = *( short * )( pData + offset + 2 ); } else { Assert( 0 ); } short sample = ( left + right ) >> 1; sampleList.AddToTail( sample ); } } break; } } delete pMixer; return duration; }