//========= Copyright Valve Corporation, All rights reserved. ============// // // Purpose: // //============================================================================= #if defined( _WIN32 ) && !defined( _X360 ) #define WIN32_LEAN_AND_MEAN #include #endif #include "tier0/dbg.h" #include "tier0/tslist.h" #include "tier0/icommandline.h" #include "vstdlib/jobthread.h" #include "vstdlib/random.h" #include "tier1/functors.h" #include "tier1/fmtstr.h" #include "tier1/utlvector.h" #include "tier1/generichash.h" #include "tier0/vprof.h" #if defined( _X360 ) #include "xbox/xbox_win32stubs.h" #endif #include "tier0/memdbgon.h" class CJobThread; //----------------------------------------------------------------------------- inline void ServiceJobAndRelease( CJob *pJob, int iThread = -1 ) { // TryLock() would only fail if another thread has entered // Execute() or Abort() if ( !pJob->IsFinished() && pJob->TryLock() ) { // ...service the request pJob->SetServiceThread( iThread ); pJob->Execute(); pJob->Unlock(); } pJob->Release(); } //----------------------------------------------------------------------------- class ALIGN16 CJobQueue { public: CJobQueue() : m_nItems( 0 ), m_nMaxItems( INT_MAX ) { for ( int i = 0; i < ARRAYSIZE( m_pQueues ); i++ ) { m_pQueues[i] = new CTSQueue; } } ~CJobQueue() { for ( int i = 0; i < ARRAYSIZE( m_pQueues ); i++ ) { delete m_pQueues[i]; } } int Count() { return m_nItems; } int Count( JobPriority_t priority ) { return m_pQueues[priority]->Count(); } CJob *PrePush() { if ( m_nItems >= m_nMaxItems ) { CJob *pOverflowJob; if ( Pop( &pOverflowJob ) ) { return pOverflowJob; } } return NULL; } int Push( CJob *pJob, int iThread = -1 ) { pJob->AddRef(); CJob *pOverflowJob; int nOverflow = 0; while ( ( pOverflowJob = PrePush() ) != NULL ) { ServiceJobAndRelease( pJob ); nOverflow++; } m_pQueues[pJob->GetPriority()]->PushItem( pJob ); m_mutex.Lock(); if ( ++m_nItems == 1 ) { m_JobAvailableEvent.Set(); } m_mutex.Unlock(); return nOverflow; } bool Pop( CJob **ppJob ) { m_mutex.Lock(); if ( !m_nItems ) { m_mutex.Unlock(); *ppJob = NULL; return false; } if ( --m_nItems == 0 ) { m_JobAvailableEvent.Reset(); } m_mutex.Unlock(); for ( int i = JP_HIGH; i >= 0; --i ) { if ( m_pQueues[i]->PopItem( ppJob ) ) { return true; } } AssertMsg( 0, "Expected at least one queue item" ); *ppJob = NULL; return false; } CThreadEvent &GetEventHandle() { return m_JobAvailableEvent; } void Flush() { // Only safe to call when system is suspended m_mutex.Lock(); m_nItems = 0; m_JobAvailableEvent.Reset(); CJob *pJob; for ( int i = JP_HIGH; i >= 0; --i ) { while ( m_pQueues[i]->PopItem( &pJob ) ) { pJob->Abort(); pJob->Release(); } } m_mutex.Unlock(); } private: CTSQueue *m_pQueues[JP_HIGH + 1]; int m_nItems; int m_nMaxItems; CThreadMutex m_mutex; CThreadManualEvent m_JobAvailableEvent; } ALIGN16_POST; //----------------------------------------------------------------------------- // // CThreadPool // //----------------------------------------------------------------------------- class CThreadPool : public CRefCounted1 { public: CThreadPool(); ~CThreadPool(); //----------------------------------------------------- // Thread functions //----------------------------------------------------- bool Start( const ThreadPoolStartParams_t &startParams = ThreadPoolStartParams_t() ) { return Start( startParams, NULL ); } bool Start( const ThreadPoolStartParams_t &startParams, const char *pszNameOverride ); bool Stop( int timeout = TT_INFINITE ); void Distribute( bool bDistribute = true, int *pAffinityTable = NULL ); //----------------------------------------------------- // Functions for any thread //----------------------------------------------------- unsigned GetJobCount() { return m_nJobs; } int NumThreads(); int NumIdleThreads(); //----------------------------------------------------- // Pause/resume processing jobs //----------------------------------------------------- int SuspendExecution(); int ResumeExecution(); //----------------------------------------------------- // Offer the current thread to the pool //----------------------------------------------------- virtual int YieldWait( CThreadEvent **pEvents, int nEvents, bool bWaitAll = true, unsigned timeout = TT_INFINITE ); virtual int YieldWait( CJob **, int nJobs, bool bWaitAll = true, unsigned timeout = TT_INFINITE ); void Yield( unsigned timeout ); //----------------------------------------------------- // Add a native job to the queue (master thread) //----------------------------------------------------- void AddJob( CJob * ); void InsertJobInQueue( CJob * ); //----------------------------------------------------- // All threads execute pFunctor asap. Thread will either wake up // and execute or execute pFunctor right after completing current job and // before looking for another job. //----------------------------------------------------- void ExecuteHighPriorityFunctor( CFunctor *pFunctor ); //----------------------------------------------------- // Add an function object to the queue (master thread) //----------------------------------------------------- void AddFunctorInternal( CFunctor *, CJob ** = NULL, const char *pszDescription = NULL, unsigned flags = 0 ); //----------------------------------------------------- // Remove a job from the queue (master thread) //----------------------------------------------------- virtual void ChangePriority( CJob *p, JobPriority_t priority ); //----------------------------------------------------- // Bulk job manipulation (blocking) //----------------------------------------------------- int ExecuteToPriority( JobPriority_t toPriority, JobFilter_t pfnFilter = NULL ); int AbortAll(); virtual void Reserved1() {} void WaitForIdle( bool bAll = true ); private: enum { IO_STACKSIZE = ( 64 * 1024 ), COMPUTATION_STACKSIZE = 0, }; //----------------------------------------------------- // //----------------------------------------------------- CJob *PeekJob(); CJob *GetDummyJob(); //----------------------------------------------------- // Thread functions //----------------------------------------------------- int Run(); private: friend class CJobThread; CJobQueue m_SharedQueue; CInterlockedInt m_nIdleThreads; CUtlVector m_Threads; CUtlVector m_IdleEvents; CThreadMutex m_SuspendMutex; int m_nSuspend; CInterlockedInt m_nJobs; // Some jobs should only be executed on the threadpool thread(s). Ie: the rendering thread has the GL context // and the main thread coming in and "helping" with jobs breaks that pretty nicely. This flag states that // only the threadpool threads should execute these jobs. bool m_bExecOnThreadPoolThreadsOnly; }; //----------------------------------------------------------------------------- JOB_INTERFACE IThreadPool *CreateThreadPool() { return new CThreadPool; } JOB_INTERFACE void DestroyThreadPool( IThreadPool *pPool ) { delete pPool; } //----------------------------------------------------------------------------- class CGlobalThreadPool : public CThreadPool { public: virtual bool Start( const ThreadPoolStartParams_t &startParamsIn ) { int nThreads = ( CommandLine()->ParmValue( "-threads", -1 ) - 1 ); ThreadPoolStartParams_t startParams = startParamsIn; if ( nThreads >= 0 ) { startParams.nThreads = nThreads; } else { // Cap the GlobPool threads at 4. startParams.nThreadsMax = 4; } return CThreadPool::Start( startParams, "Glob" ); } virtual bool OnFinalRelease() { AssertMsg( 0, "Releasing global thread pool object!" ); return false; } }; //----------------------------------------------------------------------------- class CJobThread : public CWorkerThread { public: CJobThread( CThreadPool *pOwner, int iThread ) : m_SharedQueue( pOwner->m_SharedQueue ), m_pOwner( pOwner ), m_iThread( iThread ) { } CThreadEvent &GetIdleEvent() { return m_IdleEvent; } CJobQueue &AccessDirectQueue() { return m_DirectQueue; } private: unsigned Wait() { unsigned waitResult; tmZone( TELEMETRY_LEVEL0, TMZF_IDLE, "%s", __FUNCTION__ ); #ifdef WIN32 enum Event_t { CALL_FROM_MASTER, SHARED_QUEUE, DIRECT_QUEUE, NUM_EVENTS }; HANDLE waitHandles[NUM_EVENTS]; waitHandles[CALL_FROM_MASTER] = GetCallHandle().GetHandle(); waitHandles[SHARED_QUEUE] = m_SharedQueue.GetEventHandle().GetHandle(); waitHandles[DIRECT_QUEUE] = m_DirectQueue.GetEventHandle().GetHandle(); #ifdef _DEBUG while ( ( waitResult = WaitForMultipleObjects( ARRAYSIZE(waitHandles), waitHandles, FALSE, 10 ) ) == WAIT_TIMEOUT ) { waitResult = waitResult; // break here } #else waitResult = WaitForMultipleObjects( ARRAYSIZE(waitHandles), waitHandles, FALSE, INFINITE ); #endif #else // !win32 bool bSet = false; int nWaitTime = 100; while( !bSet ) { // Jobs are typically enqueued to the shared job queue so wait on it first. bSet = m_SharedQueue.GetEventHandle().Wait( nWaitTime ); if( !bSet ) bSet = m_DirectQueue.GetEventHandle().Wait( 10 ); if ( !bSet ) bSet = GetCallHandle().Wait( 0 ); } if ( !bSet ) waitResult = WAIT_TIMEOUT; else waitResult = WAIT_OBJECT_0; #endif return waitResult; } int Run() { // Wait for either a call from the master thread, or an item in the queue... unsigned waitResult; bool bExit = false; tmZone( TELEMETRY_LEVEL0, TMZF_NONE, "%s", __FUNCTION__ ); m_pOwner->m_nIdleThreads++; m_IdleEvent.Set(); while (!bExit && ( ( waitResult = Wait() ) != WAIT_FAILED ) ) { if ( PeekCall() ) { CFunctor *pFunctor = NULL; tmZone( TELEMETRY_LEVEL0, TMZF_NONE, "%s PeekCall():%d", __FUNCTION__, GetCallParam() ); switch ( GetCallParam( &pFunctor ) ) { case TPM_EXIT: Reply( true ); bExit = TRUE; break; case TPM_SUSPEND: Reply( true ); SuspendCooperative(); break; case TPM_RUNFUNCTOR: if( pFunctor ) { ( *pFunctor )(); Reply( true ); } else { Assert( pFunctor ); Reply( false ); } break; default: AssertMsg( 0, "Unknown call to thread" ); Reply( false ); break; } } else { tmZone( TELEMETRY_LEVEL0, TMZF_NONE, "%s !PeekCall()", __FUNCTION__ ); CJob *pJob; bool bTookJob = false; do { if ( !m_DirectQueue.Pop( &pJob) ) { if ( !m_SharedQueue.Pop( &pJob ) ) { // Nothing to process, return to wait state break; } } if ( !bTookJob ) { m_IdleEvent.Reset(); m_pOwner->m_nIdleThreads--; bTookJob = true; } ServiceJobAndRelease( pJob, m_iThread ); m_pOwner->m_nJobs--; } while ( !PeekCall() ); if ( bTookJob ) { m_pOwner->m_nIdleThreads++; m_IdleEvent.Set(); } } } m_pOwner->m_nIdleThreads--; m_IdleEvent.Reset(); return 0; } CJobQueue m_DirectQueue; CJobQueue & m_SharedQueue; CThreadPool * m_pOwner; CThreadManualEvent m_IdleEvent; int m_iThread; }; //----------------------------------------------------------------------------- CGlobalThreadPool g_ThreadPool; IThreadPool *g_pThreadPool = &g_ThreadPool; //----------------------------------------------------------------------------- // // CThreadPool // //----------------------------------------------------------------------------- CThreadPool::CThreadPool() : m_nIdleThreads( 0 ), m_nJobs( 0 ), m_nSuspend( 0 ) { } //--------------------------------------------------------- CThreadPool::~CThreadPool() { Stop(); } //--------------------------------------------------------- // //--------------------------------------------------------- int CThreadPool::NumThreads() { return m_Threads.Count(); } //--------------------------------------------------------- // //--------------------------------------------------------- int CThreadPool::NumIdleThreads() { return m_nIdleThreads; } void CThreadPool::ExecuteHighPriorityFunctor( CFunctor *pFunctor ) { int i; for ( i = 0; i < m_Threads.Count(); i++ ) { m_Threads[i]->CallWorker( TPM_RUNFUNCTOR, 0, false, pFunctor ); } for ( i = 0; i < m_Threads.Count(); i++ ) { m_Threads[i]->WaitForReply(); } } //--------------------------------------------------------- // Pause/resume processing jobs //--------------------------------------------------------- int CThreadPool::SuspendExecution() { AUTO_LOCK( m_SuspendMutex ); // If not already suspended if ( m_nSuspend == 0 ) { // Make sure state is correct int i; for ( i = 0; i < m_Threads.Count(); i++ ) { m_Threads[i]->CallWorker( TPM_SUSPEND, 0 ); } for ( i = 0; i < m_Threads.Count(); i++ ) { m_Threads[i]->WaitForReply(); } // Because worker must signal before suspending, we could reach // here with the thread not actually suspended for ( i = 0; i < m_Threads.Count(); i++ ) { m_Threads[i]->BWaitForThreadSuspendCooperative(); } } return m_nSuspend++; } //--------------------------------------------------------- int CThreadPool::ResumeExecution() { AUTO_LOCK( m_SuspendMutex ); AssertMsg( m_nSuspend >= 1, "Attempted resume when not suspended"); int result = m_nSuspend--; if (m_nSuspend == 0 ) { for ( int i = 0; i < m_Threads.Count(); i++ ) { m_Threads[i]->ResumeCooperative(); } } return result; } //--------------------------------------------------------- void CThreadPool::WaitForIdle( bool bAll ) { ThreadWaitForEvents( m_IdleEvents.Count(), m_IdleEvents.Base(), bAll, 60000 ); } //--------------------------------------------------------- int CThreadPool::YieldWait( CThreadEvent **pEvents, int nEvents, bool bWaitAll, unsigned timeout ) { tmZone( TELEMETRY_LEVEL0, TMZF_IDLE, "%s(%d) SPINNING %t", __FUNCTION__, timeout, tmSendCallStack( TELEMETRY_LEVEL0, 0 ) ); Assert( timeout == TT_INFINITE ); // unimplemented int result; CJob *pJob; // Always wait for zero milliseconds initially, to let us process jobs on this thread. timeout = 0; while ( ( result = ThreadWaitForEvents( nEvents, pEvents, bWaitAll, timeout ) ) == WAIT_TIMEOUT ) { if ( !m_bExecOnThreadPoolThreadsOnly && m_SharedQueue.Pop( &pJob ) ) { ServiceJobAndRelease( pJob ); m_nJobs--; } else { // Since there are no jobs for the main thread set the timeout to infinite. // The only disadvantage to this is that if a job thread creates a new job // then the main thread will not be available to pick it up, but if that // is a problem you can just create more worker threads. Debugging test runs // of TF2 suggests that jobs are only ever added from the main thread which // means that there is no disadvantage. // Waiting on the events instead of busy spinning has multiple advantages. // It avoids wasting CPU time/electricity, it makes it more obvious in profiles // when the main thread is idle versus busy, and it allows ready thread analysis // in xperf to find out what woke up a waiting thread. // It also avoids unnecessary CPU starvation -- seen on customer traces of TF2. timeout = TT_INFINITE; } } return result; } //--------------------------------------------------------- int CThreadPool::YieldWait( CJob **ppJobs, int nJobs, bool bWaitAll, unsigned timeout ) { CUtlVectorFixed handles; if ( nJobs > handles.NumAllocated() - 2 ) { return TW_FAILED; } for ( int i = 0; i < nJobs; i++ ) { handles.AddToTail( ppJobs[i]->AccessEvent() ); } return YieldWait( handles.Base(), handles.Count(), bWaitAll, timeout); } //--------------------------------------------------------- void CThreadPool::Yield( unsigned timeout ) { // @MULTICORE (toml 10/24/2006): not implemented Assert( ThreadInMainThread() ); if ( !ThreadInMainThread() ) { ThreadSleep( timeout ); return; } ThreadSleep( timeout ); } //--------------------------------------------------------- // Add a job to the queue //--------------------------------------------------------- void CThreadPool::AddJob( CJob *pJob ) { if ( !pJob ) { return; } if ( pJob->m_ThreadPoolData != JOB_NO_DATA ) { Warning( "Cannot add a thread job already committed to another thread pool\n" ); return; } if ( m_Threads.Count() == 0 ) { // So only threadpool jobs are supposed to execute the jobs, but there are no threadpool threads? Assert( !m_bExecOnThreadPoolThreadsOnly ); pJob->Execute(); return; } int flags = pJob->GetFlags(); if ( !m_bExecOnThreadPoolThreadsOnly && ( ( flags & ( JF_IO | JF_QUEUE ) ) == 0 ) /* @TBD && !m_queue.Count() */ ) { if ( !NumIdleThreads() ) { pJob->Execute(); return; } pJob->SetPriority( JP_HIGH ); } if ( !pJob->CanExecute() ) { // Already handled ExecuteOnce( Warning( "Attempted to add job to job queue that has already been completed\n" ) ); return; } pJob->m_pThreadPool = this; pJob->m_status = JOB_STATUS_PENDING; InsertJobInQueue( pJob ); ++m_nJobs; } //--------------------------------------------------------- // //--------------------------------------------------------- void CThreadPool::InsertJobInQueue( CJob *pJob ) { CJobQueue *pQueue; if ( !( pJob->GetFlags() & JF_SERIAL ) ) { int iThread = pJob->GetServiceThread(); if ( iThread == -1 || !m_Threads.IsValidIndex( iThread ) ) { pQueue = &m_SharedQueue; } else { pQueue = &(m_Threads[iThread]->AccessDirectQueue()); } } else { pQueue = &(m_Threads[0]->AccessDirectQueue()); } m_nJobs -= pQueue->Push( pJob ); } //--------------------------------------------------------- // Add an function object to the queue (master thread) //--------------------------------------------------------- void CThreadPool::AddFunctorInternal( CFunctor *pFunctor, CJob **ppJob, const char *pszDescription, unsigned flags ) { // Note: assumes caller has handled refcount CJob *pJob = new CFunctorJob( pFunctor, pszDescription ); pJob->SetFlags( flags ); AddJob( pJob ); if ( ppJob ) { *ppJob = pJob; } else { pJob->Release(); } } //--------------------------------------------------------- // Remove a job from the queue //--------------------------------------------------------- void CThreadPool::ChangePriority( CJob *pJob, JobPriority_t priority ) { // Right now, only support upping the priority if ( pJob->GetPriority() < priority ) { pJob->SetPriority( priority ); m_SharedQueue.Push( pJob ); } else { ExecuteOnce( if ( pJob->GetPriority() != priority ) DevMsg( "CThreadPool::RemoveJob not implemented right now" ) ); } } //--------------------------------------------------------- // Execute to a specified priority //--------------------------------------------------------- int CThreadPool::ExecuteToPriority( JobPriority_t iToPriority, JobFilter_t pfnFilter ) { SuspendExecution(); CJob *pJob; int nExecuted = 0; int i; int nJobsTotal = GetJobCount(); CUtlVector jobsToPutBack; for ( int iCurPriority = JP_HIGH; iCurPriority >= iToPriority; --iCurPriority ) { for ( i = 0; i < m_Threads.Count(); i++ ) { CJobQueue &queue = m_Threads[i]->AccessDirectQueue(); while ( queue.Count( (JobPriority_t)iCurPriority ) ) { queue.Pop( &pJob ); if ( pfnFilter && !(*pfnFilter)( pJob ) ) { if ( pJob->CanExecute() ) { jobsToPutBack.EnsureCapacity( nJobsTotal ); jobsToPutBack.AddToTail( pJob ); } else { m_nJobs--; pJob->Release(); // an already serviced job in queue, may as well ditch it (as in, main thread probably force executed) } continue; } ServiceJobAndRelease( pJob ); m_nJobs--; nExecuted++; } } while ( m_SharedQueue.Count( (JobPriority_t)iCurPriority ) ) { m_SharedQueue.Pop( &pJob ); if ( pfnFilter && !(*pfnFilter)( pJob ) ) { if ( pJob->CanExecute() ) { jobsToPutBack.EnsureCapacity( nJobsTotal ); jobsToPutBack.AddToTail( pJob ); } else { m_nJobs--; pJob->Release(); // see above } continue; } ServiceJobAndRelease( pJob ); m_nJobs--; nExecuted++; } } for ( i = 0; i < jobsToPutBack.Count(); i++ ) { InsertJobInQueue( jobsToPutBack[i] ); jobsToPutBack[i]->Release(); } ResumeExecution(); return nExecuted; } //--------------------------------------------------------- // //--------------------------------------------------------- int CThreadPool::AbortAll() { SuspendExecution(); CJob *pJob; int iAborted = 0; while ( m_SharedQueue.Pop( &pJob ) ) { pJob->Abort(); pJob->Release(); iAborted++; } for ( int i = 0; i < m_Threads.Count(); i++ ) { CJobQueue &queue = m_Threads[i]->AccessDirectQueue(); while ( queue.Pop( &pJob ) ) { pJob->Abort(); pJob->Release(); iAborted++; } } m_nJobs = 0; ResumeExecution(); return iAborted; } //--------------------------------------------------------- // CThreadPool thread functions //--------------------------------------------------------- bool CThreadPool::Start( const ThreadPoolStartParams_t &startParams, const char *pszName ) { int nThreads = startParams.nThreads; m_bExecOnThreadPoolThreadsOnly = startParams.bExecOnThreadPoolThreadsOnly; if ( nThreads < 0 ) { const CPUInformation &ci = *GetCPUInformation(); if ( startParams.bIOThreads ) { nThreads = ci.m_nLogicalProcessors; } else { nThreads = ( ci.m_nLogicalProcessors / (( ci.m_bHT ) ? 2 : 1) ) - 1; // One per if ( IsPC() ) { if ( nThreads > 3 ) { DevMsg( "Defaulting to limit of 3 worker threads, use -threads on command line if want more\n" ); // Current >4 processor configs don't really work so well, probably due to cache issues? (toml 7/12/2007) nThreads = 3; } } } if ( ( startParams.nThreadsMax >= 0 ) && ( nThreads > startParams.nThreadsMax ) ) { nThreads = startParams.nThreadsMax; } } if ( nThreads <= 0 ) { return true; } int nStackSize = startParams.nStackSize; if ( nStackSize < 0 ) { if ( startParams.bIOThreads ) { nStackSize = IO_STACKSIZE; } else { nStackSize = COMPUTATION_STACKSIZE; } } int priority = startParams.iThreadPriority; if ( priority == SHRT_MIN ) { if ( startParams.bIOThreads ) { priority = THREAD_PRIORITY_HIGHEST; } else { priority = ThreadGetPriority(); } } bool bDistribute; if ( startParams.fDistribute != TRS_NONE ) { bDistribute = ( startParams.fDistribute == TRS_TRUE ); } else { bDistribute = !startParams.bIOThreads; } //-------------------------------------------------------- m_Threads.EnsureCapacity( nThreads ); m_IdleEvents.EnsureCapacity( nThreads ); if ( !pszName ) { pszName = ( startParams.bIOThreads ) ? "IOJobX" : "CmpJobX"; } while ( nThreads-- ) { int iThread = m_Threads.AddToTail(); m_IdleEvents.AddToTail(); m_Threads[iThread] = new CJobThread( this, iThread ); m_IdleEvents[iThread] = &m_Threads[iThread]->GetIdleEvent(); m_Threads[iThread]->SetName( CFmtStr( "%s%d", pszName, iThread ) ); m_Threads[iThread]->Start( nStackSize ); m_Threads[iThread]->GetIdleEvent().Wait(); #ifdef WIN32 ThreadSetPriority( (ThreadHandle_t)m_Threads[iThread]->GetThreadHandle(), priority ); #endif } Distribute( bDistribute, startParams.bUseAffinityTable ? (int *)startParams.iAffinityTable : NULL ); return true; } //--------------------------------------------------------- void CThreadPool::Distribute( bool bDistribute, int *pAffinityTable ) { if ( bDistribute ) { const CPUInformation &ci = *GetCPUInformation(); int nHwThreadsPer = (( ci.m_bHT ) ? 2 : 1); if ( ci.m_nLogicalProcessors > 1 ) { if ( !pAffinityTable ) { #if defined( IS_WINDOWS_PC ) // no affinity table, distribution is cycled across all available HINSTANCE hInst = LoadLibrary( "kernel32.dll" ); if ( hInst ) { typedef DWORD (WINAPI *SetThreadIdealProcessorFn)(ThreadHandle_t hThread, DWORD dwIdealProcessor); SetThreadIdealProcessorFn Thread_SetIdealProcessor = (SetThreadIdealProcessorFn)GetProcAddress( hInst, "SetThreadIdealProcessor" ); if ( Thread_SetIdealProcessor ) { ThreadHandle_t hMainThread = ThreadGetCurrentHandle(); Thread_SetIdealProcessor( hMainThread, 0 ); int iProc = 0; for ( int i = 0; i < m_Threads.Count(); i++ ) { iProc += nHwThreadsPer; if ( iProc >= ci.m_nLogicalProcessors ) { iProc %= ci.m_nLogicalProcessors; if ( nHwThreadsPer > 1 ) { iProc = ( iProc + 1 ) % nHwThreadsPer; } } Thread_SetIdealProcessor((ThreadHandle_t)m_Threads[i]->GetThreadHandle(), iProc); } } FreeLibrary( hInst ); } #else // no affinity table, distribution is cycled across all available int iProc = 0; for ( int i = 0; i < m_Threads.Count(); i++ ) { iProc += nHwThreadsPer; if ( iProc >= ci.m_nLogicalProcessors ) { iProc %= ci.m_nLogicalProcessors; if ( nHwThreadsPer > 1 ) { iProc = ( iProc + 1 ) % nHwThreadsPer; } } #ifdef WIN32 ThreadSetAffinity( (ThreadHandle_t)m_Threads[i]->GetThreadHandle(), 1 << iProc ); #endif } #endif } else { // distribution is from affinity table for ( int i = 0; i < m_Threads.Count(); i++ ) { #ifdef WIN32 ThreadSetAffinity( (ThreadHandle_t)m_Threads[i]->GetThreadHandle(), pAffinityTable[i] ); #endif } } } } else { #ifdef WIN32 DWORD_PTR dwProcessAffinity, dwSystemAffinity; if ( GetProcessAffinityMask( GetCurrentProcess(), &dwProcessAffinity, &dwSystemAffinity ) ) { for ( int i = 0; i < m_Threads.Count(); i++ ) { ThreadSetAffinity( (ThreadHandle_t)m_Threads[i]->GetThreadHandle(), dwProcessAffinity ); } } #endif } } //--------------------------------------------------------- bool CThreadPool::Stop( int timeout ) { for ( int i = 0; i < m_Threads.Count(); i++ ) { m_Threads[i]->CallWorker( TPM_EXIT ); } for ( int i = 0; i < m_Threads.Count(); ++i ) { while( m_Threads[i]->IsAlive() ) { ThreadSleep( 0 ); } delete m_Threads[i]; } m_nJobs = 0; m_SharedQueue.Flush(); m_nIdleThreads = 0; m_Threads.RemoveAll(); m_IdleEvents.RemoveAll(); return true; } //--------------------------------------------------------- CJob *CThreadPool::GetDummyJob() { class CDummyJob : public CJob { public: CDummyJob() { Execute(); } virtual JobStatus_t DoExecute() { return JOB_OK; } }; static CDummyJob dummyJob; dummyJob.AddRef(); return &dummyJob; } //----------------------------------------------------------------------------- namespace ThreadPoolTest { int g_iSleep; CThreadEvent g_done; int g_nTotalToComplete; CThreadPool *g_pTestThreadPool; class CCountJob : public CJob { public: virtual JobStatus_t DoExecute() { m_nCount++; ThreadPause(); if ( g_iSleep >= 0) ThreadSleep( g_iSleep ); if ( bDoWork ) { byte pMemory[1024]; int i; for ( i = 0; i < 1024; i++ ) { pMemory[i] = rand(); } for ( i = 0; i < 50; i++ ) { sqrt( (float)HashBlock( pMemory, 1024 ) + HashBlock( pMemory, 1024 ) + 10.0 ); } bDoWork = false; } if ( m_nCount == g_nTotalToComplete ) g_done.Set(); return 0; } static CInterlockedInt m_nCount; bool bDoWork; }; CInterlockedInt CCountJob::m_nCount; int g_nTotalAtFinish; void Test( bool bDistribute, bool bSleep = true, bool bFinishExecute = false, bool bDoWork = false ) { for ( int bInterleavePushPop = 0; bInterleavePushPop < 2; bInterleavePushPop++ ) { for ( g_iSleep = -10; g_iSleep <= 10; g_iSleep += 10 ) { Msg( "ThreadPoolTest: Testing! Sleep %d, interleave %d \n", g_iSleep, bInterleavePushPop ); int nMaxThreads = ( IsX360() ) ? 6 : 8; int nIncrement = ( IsX360() ) ? 1 : 2; for ( int i = 1; i <= nMaxThreads; i += nIncrement ) { CCountJob::m_nCount = 0; g_nTotalAtFinish = 0; ThreadPoolStartParams_t params; params.nThreads = i; params.fDistribute = ( bDistribute) ? TRS_TRUE : TRS_FALSE; g_pTestThreadPool->Start( params, "Tst" ); if ( !bInterleavePushPop ) { g_pTestThreadPool->SuspendExecution(); } CCountJob jobs[4000]; g_nTotalToComplete = ARRAYSIZE(jobs); CFastTimer timer, suspendTimer; suspendTimer.Start(); timer.Start(); for ( int j = 0; j < ARRAYSIZE(jobs); j++ ) { jobs[j].SetFlags( JF_QUEUE ); jobs[j].bDoWork = bDoWork; g_pTestThreadPool->AddJob( &jobs[j] ); if ( bSleep && j % 16 == 0 ) { ThreadSleep( 0 ); } } if ( !bInterleavePushPop ) { g_pTestThreadPool->ResumeExecution(); } if ( bFinishExecute && g_iSleep <= 1 ) { g_done.Wait(); } g_nTotalAtFinish = CCountJob::m_nCount; timer.End(); g_pTestThreadPool->SuspendExecution(); suspendTimer.End(); g_pTestThreadPool->ResumeExecution(); g_pTestThreadPool->Stop(); g_done.Reset(); int counts[8] = { 0 }; for ( int j = 0; j < ARRAYSIZE(jobs); j++ ) { if ( jobs[j].GetServiceThread() != -1 ) { counts[jobs[j].GetServiceThread()]++; jobs[j].ClearServiceThread(); } } Msg( "ThreadPoolTest: %d threads -- %d (%d) jobs processed in %fms, %fms to suspend (%f/%f) [%d, %d, %d, %d, %d, %d, %d, %d]\n", i, g_nTotalAtFinish, (int)CCountJob::m_nCount, timer.GetDuration().GetMillisecondsF(), suspendTimer.GetDuration().GetMillisecondsF() - timer.GetDuration().GetMillisecondsF(), timer.GetDuration().GetMillisecondsF() / (float)CCountJob::m_nCount, (suspendTimer.GetDuration().GetMillisecondsF())/(float)g_nTotalAtFinish, counts[0], counts[1], counts[2], counts[3], counts[4], counts[5], counts[6], counts[7] ); } } } } bool g_bOutputError; volatile int g_ReadyToExecute; CInterlockedInt g_nReady; class CExecuteTestJob : public CJob { public: virtual JobStatus_t DoExecute() { byte pMemory[1024]; int i; for ( i = 0; i < 1024; i++ ) { pMemory[i] = rand(); } for ( i = 0; i < 50; i++ ) { sqrt( (float)HashBlock( pMemory, 1024 ) + HashBlock( pMemory, 1024 ) + 10.0 ); } if ( AccessEvent()->Check() || IsFinished() ) { if ( !g_bOutputError ) { Msg( "Forced execute test failed!\n" ); DebuggerBreakIfDebugging(); } } return 0; } }; class CExecuteTestExecuteJob : public CJob { public: virtual JobStatus_t DoExecute() { bool bAbort = ( RandomInt( 1, 10 ) == 1 ); g_nReady++; while ( !g_ReadyToExecute ) { ThreadPause(); } if ( !bAbort ) m_pTestJob->Execute(); else m_pTestJob->Abort(); g_nReady--; return 0; } CExecuteTestJob *m_pTestJob; }; void TestForcedExecute() { Msg( "TestForcedExecute\n" ); for ( int tests = 0; tests < 30; tests++ ) { for ( int i = 1; i <= 5; i += 2 ) { g_nReady = 0; ThreadPoolStartParams_t params; params.nThreads = i; params.fDistribute = TRS_TRUE; g_pTestThreadPool->Start( params, "Tst" ); static CExecuteTestJob jobs[4000]; for ( int j = 0; j < ARRAYSIZE(jobs); j++ ) { g_ReadyToExecute = false; for ( int k = 0; k < i; k++ ) { CExecuteTestExecuteJob *pJob = new CExecuteTestExecuteJob; pJob->SetFlags( JF_QUEUE ); pJob->m_pTestJob = &jobs[j]; g_pTestThreadPool->AddJob( pJob ); pJob->Release(); } while ( g_nReady < i ) { ThreadPause(); } g_ReadyToExecute = true; ThreadSleep(); jobs[j].Execute(); while ( g_nReady > 0 ) { ThreadPause(); } } g_pTestThreadPool->Stop(); } } Msg( "TestForcedExecute DONE\n" ); } } // namespace ThreadPoolTest void RunThreadPoolTests() { CThreadPool pool; ThreadPoolTest::g_pTestThreadPool = &pool; RunTSQueueTests(10000); RunTSListTests(10000); #ifdef _WIN32 DWORD_PTR mask1 = 0; --mask1; DWORD_PTR mask2 = 0; --mask2; GetProcessAffinityMask( GetCurrentProcess(), &mask1, &mask2 ); #else int32 mask1=-1; #endif Msg( "ThreadPoolTest: Job distribution speed\n" ); for ( int i = 0; i < 2; i++ ) { bool bToCompletion = ( i % 2 != 0 ); if ( !IsX360() ) { Msg( "ThreadPoolTest: Non-distribute\n" ); ThreadPoolTest::Test( false, true, bToCompletion ); } Msg( "ThreadPoolTest: Distribute\n" ); ThreadPoolTest::Test( true, true, bToCompletion ); Msg( "ThreadPoolTest: One core\n" ); ThreadSetAffinity( 0, 1 ); ThreadPoolTest::Test( false, true, bToCompletion ); ThreadSetAffinity( 0, mask1 ); Msg( "ThreadPoolTest: NO Sleep\n" ); ThreadPoolTest::Test( false, false, bToCompletion ); Msg( "ThreadPoolTest: Distribute\n" ); ThreadPoolTest::Test( true, false, bToCompletion ); Msg( "ThreadPoolTest: One core\n" ); ThreadSetAffinity( 0, 1 ); ThreadPoolTest::Test( false, false, bToCompletion ); ThreadSetAffinity( 0, mask1 ); } Msg( "ThreadPoolTest: Jobs doing work\n" ); for ( int i = 0; i < 2; i++ ) { bool bToCompletion = true;// = ( i % 2 != 0 ); if ( !IsX360() ) { Msg( "ThreadPoolTest: Non-distribute\n" ); ThreadPoolTest::Test( false, true, bToCompletion, true ); } Msg( "ThreadPoolTest: Distribute\n" ); ThreadPoolTest::Test( true, true, bToCompletion, true ); Msg( "ThreadPoolTest: One core\n" ); ThreadSetAffinity( 0, 1 ); ThreadPoolTest::Test( false, true, bToCompletion, true ); ThreadSetAffinity( 0, mask1 ); Msg( "ThreadPoolTest: NO Sleep\n" ); ThreadPoolTest::Test( false, false, bToCompletion, true ); Msg( "ThreadPoolTest: Distribute\n" ); ThreadPoolTest::Test( true, false, bToCompletion, true ); Msg( "ThreadPoolTest: One core\n" ); ThreadSetAffinity( 0, 1 ); ThreadPoolTest::Test( false, false, bToCompletion, true ); ThreadSetAffinity( 0, mask1 ); } #ifdef _WIN32 GetProcessAffinityMask( GetCurrentProcess(), &mask1, &mask2 ); #endif ThreadPoolTest::TestForcedExecute(); }