//========= Copyright Valve Corporation, All rights reserved. ============// // // Purpose: // // $NoKeywords: $ // //===========================================================================// #include "tier0/dbg.h" #include "mathlib/mathlib.h" #include "bone_setup.h" #include #include "collisionutils.h" #include "vstdlib/random.h" #include "tier0/vprof.h" #include "bone_accessor.h" #include "mathlib/ssequaternion.h" #include "bitvec.h" #include "datamanager.h" #include "convar.h" #include "tier0/tslist.h" #include "vphysics_interface.h" #ifdef CLIENT_DLL #include "posedebugger.h" #endif // memdbgon must be the last include file in a .cpp file!!! #include "tier0/memdbgon.h" class CBoneSetup { public: CBoneSetup( const CStudioHdr *pStudioHdr, int boneMask, const float poseParameter[], IPoseDebugger *pPoseDebugger = NULL ); void InitPose( Vector pos[], Quaternion q[] ); void AccumulatePose( Vector pos[], Quaternion q[], int sequence, float cycle, float flWeight, float flTime, CIKContext *pIKContext ); void CalcAutoplaySequences( Vector pos[], Quaternion q[], float flRealTime, CIKContext *pIKContext ); private: void AddSequenceLayers( Vector pos[], Quaternion q[], mstudioseqdesc_t &seqdesc, int sequence, float cycle, float flWeight, float flTime, CIKContext *pIKContext ); void AddLocalLayers( Vector pos[], Quaternion q[], mstudioseqdesc_t &seqdesc, int sequence, float cycle, float flWeight, float flTime, CIKContext *pIKContext ); public: const CStudioHdr *m_pStudioHdr; int m_boneMask; const float *m_flPoseParameter; IPoseDebugger *m_pPoseDebugger; }; // ----------------------------------------------------------------- template class CBoneSetupMemoryPool { public: T *Alloc() { T *p = (T *)m_FreeBlocks.Pop(); if ( !p ) { p = new T[MAXSTUDIOBONES]; if ( ((size_t)p) % TSLIST_NODE_ALIGNMENT != 0 ) { DebuggerBreak(); } } return p; } void Free( T *p ) { m_FreeBlocks.Push( (TSLNodeBase_t *)p ); } private: CTSListBase m_FreeBlocks; }; CBoneSetupMemoryPool g_QaternionPool; CBoneSetupMemoryPool g_VectorPool; CBoneSetupMemoryPool g_MatrixPool; // ----------------------------------------------------------------- CBoneCache *CBoneCache::CreateResource( const bonecacheparams_t ¶ms ) { short studioToCachedIndex[MAXSTUDIOBONES]; short cachedToStudioIndex[MAXSTUDIOBONES]; int cachedBoneCount = 0; for ( int i = 0; i < params.pStudioHdr->numbones(); i++ ) { // skip bones that aren't part of the boneMask (and aren't the root bone) if (i != 0 && !(params.pStudioHdr->boneFlags(i) & params.boneMask)) { studioToCachedIndex[i] = -1; continue; } studioToCachedIndex[i] = cachedBoneCount; cachedToStudioIndex[cachedBoneCount] = i; cachedBoneCount++; } int tableSizeStudio = sizeof(short) * params.pStudioHdr->numbones(); int tableSizeCached = sizeof(short) * cachedBoneCount; int matrixSize = sizeof(matrix3x4_t) * cachedBoneCount; int size = ( sizeof(CBoneCache) + tableSizeStudio + tableSizeCached + matrixSize + 3 ) & ~3; CBoneCache *pMem = (CBoneCache *)malloc( size ); Construct( pMem ); pMem->Init( params, size, studioToCachedIndex, cachedToStudioIndex, cachedBoneCount ); return pMem; } unsigned int CBoneCache::EstimatedSize( const bonecacheparams_t ¶ms ) { // conservative estimate - max size return ( params.pStudioHdr->numbones() * (sizeof(short) + sizeof(short) + sizeof(matrix3x4_t)) + 3 ) & ~3; } void CBoneCache::DestroyResource() { free( this ); } CBoneCache::CBoneCache() { m_size = 0; m_cachedBoneCount = 0; } void CBoneCache::Init( const bonecacheparams_t ¶ms, unsigned int size, short *pStudioToCached, short *pCachedToStudio, int cachedBoneCount ) { m_cachedBoneCount = cachedBoneCount; m_size = size; m_timeValid = params.curtime; m_boneMask = params.boneMask; int studioTableSize = params.pStudioHdr->numbones() * sizeof(short); m_cachedToStudioOffset = studioTableSize; memcpy( StudioToCached(), pStudioToCached, studioTableSize ); int cachedTableSize = cachedBoneCount * sizeof(short); memcpy( CachedToStudio(), pCachedToStudio, cachedTableSize ); m_matrixOffset = ( m_cachedToStudioOffset + cachedTableSize + 3 ) & ~3; UpdateBones( params.pBoneToWorld, params.pStudioHdr->numbones(), params.curtime ); } void CBoneCache::UpdateBones( const matrix3x4_t *pBoneToWorld, int numbones, float curtime ) { matrix3x4_t *pBones = BoneArray(); const short *pCachedToStudio = CachedToStudio(); for ( int i = 0; i < m_cachedBoneCount; i++ ) { int index = pCachedToStudio[i]; MatrixCopy( pBoneToWorld[index], pBones[i] ); } m_timeValid = curtime; } matrix3x4_t *CBoneCache::GetCachedBone( int studioIndex ) { int cachedIndex = StudioToCached()[studioIndex]; if ( cachedIndex >= 0 ) { return BoneArray() + cachedIndex; } return NULL; } void CBoneCache::ReadCachedBones( matrix3x4_t *pBoneToWorld ) { matrix3x4_t *pBones = BoneArray(); const short *pCachedToStudio = CachedToStudio(); for ( int i = 0; i < m_cachedBoneCount; i++ ) { MatrixCopy( pBones[i], pBoneToWorld[pCachedToStudio[i]] ); } } void CBoneCache::ReadCachedBonePointers( matrix3x4_t **bones, int numbones ) { memset( bones, 0, sizeof(matrix3x4_t *) * numbones ); matrix3x4_t *pBones = BoneArray(); const short *pCachedToStudio = CachedToStudio(); for ( int i = 0; i < m_cachedBoneCount; i++ ) { bones[pCachedToStudio[i]] = pBones + i; } } bool CBoneCache::IsValid( float curtime, float dt ) { if ( curtime - m_timeValid <= dt ) return true; return false; } // private functions matrix3x4_t *CBoneCache::BoneArray() { return (matrix3x4_t *)( (char *)(this+1) + m_matrixOffset ); } short *CBoneCache::StudioToCached() { return (short *)( (char *)(this+1) ); } short *CBoneCache::CachedToStudio() { return (short *)( (char *)(this+1) + m_cachedToStudioOffset ); } // Construct a singleton static CDataManager g_StudioBoneCache( 128 * 1024L ); CBoneCache *Studio_GetBoneCache( memhandle_t cacheHandle ) { AUTO_LOCK( g_StudioBoneCache.AccessMutex() ); return g_StudioBoneCache.GetResource_NoLock( cacheHandle ); } memhandle_t Studio_CreateBoneCache( bonecacheparams_t ¶ms ) { AUTO_LOCK( g_StudioBoneCache.AccessMutex() ); return g_StudioBoneCache.CreateResource( params ); } void Studio_DestroyBoneCache( memhandle_t cacheHandle ) { AUTO_LOCK( g_StudioBoneCache.AccessMutex() ); g_StudioBoneCache.DestroyResource( cacheHandle ); } void Studio_InvalidateBoneCache( memhandle_t cacheHandle ) { AUTO_LOCK( g_StudioBoneCache.AccessMutex() ); CBoneCache *pCache = g_StudioBoneCache.GetResource_NoLock( cacheHandle ); if ( pCache ) { pCache->m_timeValid = -1.0f; } } //----------------------------------------------------------------------------- // Purpose: //----------------------------------------------------------------------------- void BuildBoneChain( const CStudioHdr *pStudioHdr, const matrix3x4_t &rootxform, const Vector pos[], const Quaternion q[], int iBone, matrix3x4_t *pBoneToWorld ) { CBoneBitList boneComputed; BuildBoneChain( pStudioHdr, rootxform, pos, q, iBone, pBoneToWorld, boneComputed ); return; } //----------------------------------------------------------------------------- // Purpose: return a sub frame rotation for a single bone //----------------------------------------------------------------------------- void ExtractAnimValue( int frame, mstudioanimvalue_t *panimvalue, float scale, float &v1, float &v2 ) { if ( !panimvalue ) { v1 = v2 = 0; return; } // Avoids a crash reading off the end of the data // There is probably a better long-term solution; Ken is going to look into it. if ( ( panimvalue->num.total == 1 ) && ( panimvalue->num.valid == 1 ) ) { v1 = v2 = panimvalue[1].value * scale; return; } int k = frame; // find the data list that has the frame while (panimvalue->num.total <= k) { k -= panimvalue->num.total; panimvalue += panimvalue->num.valid + 1; if ( panimvalue->num.total == 0 ) { Assert( 0 ); // running off the end of the animation stream is bad v1 = v2 = 0; return; } } if (panimvalue->num.valid > k) { // has valid animation data v1 = panimvalue[k+1].value * scale; if (panimvalue->num.valid > k + 1) { // has valid animation blend data v2 = panimvalue[k+2].value * scale; } else { if (panimvalue->num.total > k + 1) { // data repeats, no blend v2 = v1; } else { // pull blend from first data block in next list v2 = panimvalue[panimvalue->num.valid+2].value * scale; } } } else { // get last valid data block v1 = panimvalue[panimvalue->num.valid].value * scale; if (panimvalue->num.total > k + 1) { // data repeats, no blend v2 = v1; } else { // pull blend from first data block in next list v2 = panimvalue[panimvalue->num.valid + 2].value * scale; } } } void ExtractAnimValue( int frame, mstudioanimvalue_t *panimvalue, float scale, float &v1 ) { if ( !panimvalue ) { v1 = 0; return; } int k = frame; while (panimvalue->num.total <= k) { k -= panimvalue->num.total; panimvalue += panimvalue->num.valid + 1; if ( panimvalue->num.total == 0 ) { Assert( 0 ); // running off the end of the animation stream is bad v1 = 0; return; } } if (panimvalue->num.valid > k) { v1 = panimvalue[k+1].value * scale; } else { // get last valid data block v1 = panimvalue[panimvalue->num.valid].value * scale; } } //----------------------------------------------------------------------------- // Purpose: return a sub frame rotation for a single bone //----------------------------------------------------------------------------- void CalcBoneQuaternion( int frame, float s, const Quaternion &baseQuat, const RadianEuler &baseRot, const Vector &baseRotScale, int iBaseFlags, const Quaternion &baseAlignment, const mstudioanim_t *panim, Quaternion &q ) { if ( panim->flags & STUDIO_ANIM_RAWROT ) { q = *(panim->pQuat48()); Assert( q.IsValid() ); return; } if ( panim->flags & STUDIO_ANIM_RAWROT2 ) { q = *(panim->pQuat64()); Assert( q.IsValid() ); return; } if ( !(panim->flags & STUDIO_ANIM_ANIMROT) ) { if (panim->flags & STUDIO_ANIM_DELTA) { q.Init( 0.0f, 0.0f, 0.0f, 1.0f ); } else { q = baseQuat; } return; } mstudioanim_valueptr_t *pValuesPtr = panim->pRotV(); if (s > 0.001f) { QuaternionAligned q1, q2; RadianEuler angle1, angle2; ExtractAnimValue( frame, pValuesPtr->pAnimvalue( 0 ), baseRotScale.x, angle1.x, angle2.x ); ExtractAnimValue( frame, pValuesPtr->pAnimvalue( 1 ), baseRotScale.y, angle1.y, angle2.y ); ExtractAnimValue( frame, pValuesPtr->pAnimvalue( 2 ), baseRotScale.z, angle1.z, angle2.z ); if (!(panim->flags & STUDIO_ANIM_DELTA)) { angle1.x = angle1.x + baseRot.x; angle1.y = angle1.y + baseRot.y; angle1.z = angle1.z + baseRot.z; angle2.x = angle2.x + baseRot.x; angle2.y = angle2.y + baseRot.y; angle2.z = angle2.z + baseRot.z; } Assert( angle1.IsValid() && angle2.IsValid() ); if (angle1.x != angle2.x || angle1.y != angle2.y || angle1.z != angle2.z) { AngleQuaternion( angle1, q1 ); AngleQuaternion( angle2, q2 ); #ifdef _X360 fltx4 q1simd, q2simd, qsimd; q1simd = LoadAlignedSIMD( q1 ); q2simd = LoadAlignedSIMD( q2 ); qsimd = QuaternionBlendSIMD( q1simd, q2simd, s ); StoreUnalignedSIMD( q.Base(), qsimd ); #else QuaternionBlend( q1, q2, s, q ); #endif } else { AngleQuaternion( angle1, q ); } } else { RadianEuler angle; ExtractAnimValue( frame, pValuesPtr->pAnimvalue( 0 ), baseRotScale.x, angle.x ); ExtractAnimValue( frame, pValuesPtr->pAnimvalue( 1 ), baseRotScale.y, angle.y ); ExtractAnimValue( frame, pValuesPtr->pAnimvalue( 2 ), baseRotScale.z, angle.z ); if (!(panim->flags & STUDIO_ANIM_DELTA)) { angle.x = angle.x + baseRot.x; angle.y = angle.y + baseRot.y; angle.z = angle.z + baseRot.z; } Assert( angle.IsValid() ); AngleQuaternion( angle, q ); } Assert( q.IsValid() ); // align to unified bone if (!(panim->flags & STUDIO_ANIM_DELTA) && (iBaseFlags & BONE_FIXED_ALIGNMENT)) { QuaternionAlign( baseAlignment, q, q ); } } inline void CalcBoneQuaternion( int frame, float s, const mstudiobone_t *pBone, const mstudiolinearbone_t *pLinearBones, const mstudioanim_t *panim, Quaternion &q ) { if (pLinearBones) { CalcBoneQuaternion( frame, s, pLinearBones->quat(panim->bone), pLinearBones->rot(panim->bone), pLinearBones->rotscale(panim->bone), pLinearBones->flags(panim->bone), pLinearBones->qalignment(panim->bone), panim, q ); } else { CalcBoneQuaternion( frame, s, pBone->quat, pBone->rot, pBone->rotscale, pBone->flags, pBone->qAlignment, panim, q ); } } //----------------------------------------------------------------------------- // Purpose: return a sub frame position for a single bone //----------------------------------------------------------------------------- void CalcBonePosition( int frame, float s, const Vector &basePos, const Vector &baseBoneScale, const mstudioanim_t *panim, Vector &pos ) { if (panim->flags & STUDIO_ANIM_RAWPOS) { pos = *(panim->pPos()); Assert( pos.IsValid() ); return; } else if (!(panim->flags & STUDIO_ANIM_ANIMPOS)) { if (panim->flags & STUDIO_ANIM_DELTA) { pos.Init( 0.0f, 0.0f, 0.0f ); } else { pos = basePos; } return; } mstudioanim_valueptr_t *pPosV = panim->pPosV(); int j; if (s > 0.001f) { float v1, v2; for (j = 0; j < 3; j++) { ExtractAnimValue( frame, pPosV->pAnimvalue( j ), baseBoneScale[j], v1, v2 ); pos[j] = v1 * (1.0 - s) + v2 * s; } } else { for (j = 0; j < 3; j++) { ExtractAnimValue( frame, pPosV->pAnimvalue( j ), baseBoneScale[j], pos[j] ); } } if (!(panim->flags & STUDIO_ANIM_DELTA)) { pos.x = pos.x + basePos.x; pos.y = pos.y + basePos.y; pos.z = pos.z + basePos.z; } Assert( pos.IsValid() ); } inline void CalcBonePosition( int frame, float s, const mstudiobone_t *pBone, const mstudiolinearbone_t *pLinearBones, const mstudioanim_t *panim, Vector &pos ) { if (pLinearBones) { CalcBonePosition( frame, s, pLinearBones->pos(panim->bone), pLinearBones->posscale(panim->bone), panim, pos ); } else { CalcBonePosition( frame, s, pBone->pos, pBone->posscale, panim, pos ); } } void SetupSingleBoneMatrix( CStudioHdr *pOwnerHdr, int nSequence, int iFrame, int iBone, matrix3x4_t &mBoneLocal ) { mstudioseqdesc_t &seqdesc = pOwnerHdr->pSeqdesc( nSequence ); mstudioanimdesc_t &animdesc = pOwnerHdr->pAnimdesc( seqdesc.anim( 0, 0 ) ); int iLocalFrame = iFrame; mstudioanim_t *panim = animdesc.pAnim( &iLocalFrame ); float s = 0; mstudiobone_t *pbone = pOwnerHdr->pBone( iBone ); Quaternion boneQuat; Vector bonePos; // search for bone while (panim && panim->bone != iBone) { panim = panim->pNext(); } // look up animation if found, if not, initialize if (panim && seqdesc.weight(iBone) > 0) { CalcBoneQuaternion( iLocalFrame, s, pbone, NULL, panim, boneQuat ); CalcBonePosition ( iLocalFrame, s, pbone, NULL, panim, bonePos ); } else if (animdesc.flags & STUDIO_DELTA) { boneQuat.Init( 0.0f, 0.0f, 0.0f, 1.0f ); bonePos.Init( 0.0f, 0.0f, 0.0f ); } else { boneQuat = pbone->quat; bonePos = pbone->pos; } QuaternionMatrix( boneQuat, bonePos, mBoneLocal ); } //----------------------------------------------------------------------------- // Purpose: //----------------------------------------------------------------------------- static void CalcDecompressedAnimation( const mstudiocompressedikerror_t *pCompressed, int iFrame, float fraq, Vector &pos, Quaternion &q ) { if (fraq > 0.0001f) { Vector p1, p2; ExtractAnimValue( iFrame, pCompressed->pAnimvalue( 0 ), pCompressed->scale[0], p1.x, p2.x ); ExtractAnimValue( iFrame, pCompressed->pAnimvalue( 1 ), pCompressed->scale[1], p1.y, p2.y ); ExtractAnimValue( iFrame, pCompressed->pAnimvalue( 2 ), pCompressed->scale[2], p1.z, p2.z ); pos = p1 * (1 - fraq) + p2 * fraq; Quaternion q1, q2; RadianEuler angle1, angle2; ExtractAnimValue( iFrame, pCompressed->pAnimvalue( 3 ), pCompressed->scale[3], angle1.x, angle2.x ); ExtractAnimValue( iFrame, pCompressed->pAnimvalue( 4 ), pCompressed->scale[4], angle1.y, angle2.y ); ExtractAnimValue( iFrame, pCompressed->pAnimvalue( 5 ), pCompressed->scale[5], angle1.z, angle2.z ); if (angle1.x != angle2.x || angle1.y != angle2.y || angle1.z != angle2.z) { AngleQuaternion( angle1, q1 ); AngleQuaternion( angle2, q2 ); QuaternionBlend( q1, q2, fraq, q ); } else { AngleQuaternion( angle1, q ); } } else { ExtractAnimValue( iFrame, pCompressed->pAnimvalue( 0 ), pCompressed->scale[0], pos.x ); ExtractAnimValue( iFrame, pCompressed->pAnimvalue( 1 ), pCompressed->scale[1], pos.y ); ExtractAnimValue( iFrame, pCompressed->pAnimvalue( 2 ), pCompressed->scale[2], pos.z ); RadianEuler angle; ExtractAnimValue( iFrame, pCompressed->pAnimvalue( 3 ), pCompressed->scale[3], angle.x ); ExtractAnimValue( iFrame, pCompressed->pAnimvalue( 4 ), pCompressed->scale[4], angle.y ); ExtractAnimValue( iFrame, pCompressed->pAnimvalue( 5 ), pCompressed->scale[5], angle.z ); AngleQuaternion( angle, q ); } } //----------------------------------------------------------------------------- // Purpose: translate animations done in a non-standard parent space //----------------------------------------------------------------------------- static void CalcLocalHierarchyAnimation( const CStudioHdr *pStudioHdr, matrix3x4_t *boneToWorld, CBoneBitList &boneComputed, Vector *pos, Quaternion *q, //const mstudioanimdesc_t &animdesc, const mstudiobone_t *pbone, mstudiolocalhierarchy_t *pHierarchy, int iBone, int iNewParent, float cycle, int iFrame, float flFraq, int boneMask ) { #ifdef STAGING_ONLY Assert( iNewParent == -1 || (iNewParent >= 0 && iNewParent < MAXSTUDIOBONES) ); Assert( iBone > 0 ); Assert( iBone < MAXSTUDIOBONES ); #endif // STAGING_ONLY Vector localPos; Quaternion localQ; // make fake root transform static ALIGN16 matrix3x4_t rootXform ALIGN16_POST ( 1.0f, 0, 0, 0, 0, 1.0f, 0, 0, 0, 0, 1.0f, 0 ); // FIXME: missing check to see if seq has a weight for this bone float weight = 1.0f; // check to see if there's a ramp on the influence if ( pHierarchy->tail - pHierarchy->peak < 1.0f ) { float index = cycle; if (pHierarchy->end > 1.0f && index < pHierarchy->start) index += 1.0f; if (index < pHierarchy->start) return; if (index >= pHierarchy->end) return; if (index < pHierarchy->peak && pHierarchy->start != pHierarchy->peak) { weight = (index - pHierarchy->start) / (pHierarchy->peak - pHierarchy->start); } else if (index > pHierarchy->tail && pHierarchy->end != pHierarchy->tail) { weight = (pHierarchy->end - index) / (pHierarchy->end - pHierarchy->tail); } weight = SimpleSpline( weight ); } CalcDecompressedAnimation( pHierarchy->pLocalAnim(), iFrame - pHierarchy->iStart, flFraq, localPos, localQ ); BuildBoneChain( pStudioHdr, rootXform, pos, q, iBone, boneToWorld, boneComputed ); matrix3x4_t localXform; AngleMatrix( localQ, localPos, localXform ); if ( iNewParent != -1 ) { BuildBoneChain( pStudioHdr, rootXform, pos, q, iNewParent, boneToWorld, boneComputed ); ConcatTransforms( boneToWorld[iNewParent], localXform, boneToWorld[iBone] ); } else { boneToWorld[iBone] = localXform; } // back solve Vector p1; Quaternion q1; int n = pbone[iBone].parent; if (n == -1) { if (weight == 1.0f) { MatrixAngles( boneToWorld[iBone], q[iBone], pos[iBone] ); } else { MatrixAngles( boneToWorld[iBone], q1, p1 ); QuaternionSlerp( q[iBone], q1, weight, q[iBone] ); pos[iBone] = Lerp( weight, p1, pos[iBone] ); } } else { matrix3x4_t worldToBone; MatrixInvert( boneToWorld[n], worldToBone ); matrix3x4_t local; ConcatTransforms( worldToBone, boneToWorld[iBone], local ); if (weight == 1.0f) { MatrixAngles( local, q[iBone], pos[iBone] ); } else { MatrixAngles( local, q1, p1 ); QuaternionSlerp( q[iBone], q1, weight, q[iBone] ); pos[iBone] = Lerp( weight, p1, pos[iBone] ); } } } //----------------------------------------------------------------------------- // Purpose: Calc Zeroframe Data //----------------------------------------------------------------------------- static void CalcZeroframeData( const CStudioHdr *pStudioHdr, const studiohdr_t *pAnimStudioHdr, const virtualgroup_t *pAnimGroup, const mstudiobone_t *pAnimbone, mstudioanimdesc_t &animdesc, float fFrame, Vector *pos, Quaternion *q, int boneMask, float flWeight ) { byte *pData = animdesc.pZeroFrameData(); if (!pData) return; int i, j; // Msg("zeroframe %s\n", animdesc.pszName() ); if (animdesc.zeroframecount == 1) { for (j = 0; j < pAnimStudioHdr->numbones; j++) { if (pAnimGroup) i = pAnimGroup->masterBone[j]; else i = j; if (pAnimbone[j].flags & BONE_HAS_SAVEFRAME_POS) { if ((i >= 0) && (pStudioHdr->boneFlags(i) & boneMask)) { Vector p = *(Vector48 *)pData; pos[i] = pos[i] * (1.0f - flWeight) + p * flWeight; Assert( pos[i].IsValid() ); } pData += sizeof( Vector48 ); } if (pAnimbone[j].flags & BONE_HAS_SAVEFRAME_ROT) { if ((i >= 0) && (pStudioHdr->boneFlags(i) & boneMask)) { Quaternion q0 = *(Quaternion64 *)pData; QuaternionBlend( q[i], q0, flWeight, q[i] ); Assert( q[i].IsValid() ); } pData += sizeof( Quaternion64 ); } } } else { float s1; int index = fFrame / animdesc.zeroframespan; if (index >= animdesc.zeroframecount - 1) { index = animdesc.zeroframecount - 2; s1 = 1.0f; } else { s1 = clamp( (fFrame - index * animdesc.zeroframespan) / animdesc.zeroframespan, 0.0f, 1.0f ); } int i0 = max( index - 1, 0 ); int i1 = index; int i2 = min( index + 1, animdesc.zeroframecount - 1 ); for (j = 0; j < pAnimStudioHdr->numbones; j++) { if (pAnimGroup) i = pAnimGroup->masterBone[j]; else i = j; if (pAnimbone[j].flags & BONE_HAS_SAVEFRAME_POS) { if ((i >= 0) && (pStudioHdr->boneFlags(i) & boneMask)) { Vector p0 = *(((Vector48 *)pData) + i0); Vector p1 = *(((Vector48 *)pData) + i1); Vector p2 = *(((Vector48 *)pData) + i2); Vector p3; Hermite_Spline( p0, p1, p2, s1, p3 ); pos[i] = pos[i] * (1.0f - flWeight) + p3 * flWeight; Assert( pos[i].IsValid() ); } pData += sizeof( Vector48 ) * animdesc.zeroframecount; } if (pAnimbone[j].flags & BONE_HAS_SAVEFRAME_ROT) { if ((i >= 0) && (pStudioHdr->boneFlags(i) & boneMask)) { Quaternion q0 = *(((Quaternion64 *)pData) + i0); Quaternion q1 = *(((Quaternion64 *)pData) + i1); Quaternion q2 = *(((Quaternion64 *)pData) + i2); if (flWeight == 1.0f) { Hermite_Spline( q0, q1, q2, s1, q[i] ); } else { Quaternion q3; Hermite_Spline( q0, q1, q2, s1, q3 ); QuaternionBlend( q[i], q3, flWeight, q[i] ); } Assert( q[i].IsValid() ); } pData += sizeof( Quaternion64 ) * animdesc.zeroframecount; } } } } //----------------------------------------------------------------------------- // Purpose: Find and decode a sub-frame of animation, remapping the skeleton bone indexes //----------------------------------------------------------------------------- static void CalcVirtualAnimation( virtualmodel_t *pVModel, const CStudioHdr *pStudioHdr, Vector *pos, Quaternion *q, mstudioseqdesc_t &seqdesc, int sequence, int animation, float cycle, int boneMask ) { //int i, k; const mstudiobone_t *pbone; const virtualgroup_t *pSeqGroup; const studiohdr_t *pSeqStudioHdr; const mstudiolinearbone_t *pSeqLinearBones; const mstudiobone_t *pSeqbone; const mstudioanim_t *panim; const studiohdr_t *pAnimStudioHdr; const mstudiolinearbone_t *pAnimLinearBones; const mstudiobone_t *pAnimbone; const virtualgroup_t *pAnimGroup; pSeqGroup = pVModel->pSeqGroup( sequence ); int baseanimation = pStudioHdr->iRelativeAnim( sequence, animation ); mstudioanimdesc_t &animdesc = ((CStudioHdr *)pStudioHdr)->pAnimdesc( baseanimation ); pSeqStudioHdr = ((CStudioHdr *)pStudioHdr)->pSeqStudioHdr( sequence ); pSeqLinearBones = pSeqStudioHdr->pLinearBones(); pSeqbone = pSeqStudioHdr->pBone( 0 ); pAnimGroup = pVModel->pAnimGroup( baseanimation ); pAnimStudioHdr = ((CStudioHdr *)pStudioHdr)->pAnimStudioHdr( baseanimation ); pAnimLinearBones = pAnimStudioHdr->pLinearBones(); pAnimbone = pAnimStudioHdr->pBone( 0 ); int iFrame; float s; float fFrame = cycle * (animdesc.numframes - 1); iFrame = (int)fFrame; s = (fFrame - iFrame); int iLocalFrame = iFrame; float flStall; panim = animdesc.pAnim( &iLocalFrame, flStall ); float *pweight = seqdesc.pBoneweight( 0 ); pbone = pStudioHdr->pBone( 0 ); for (int i = 0; i < pStudioHdr->numbones(); i++) { if (pStudioHdr->boneFlags(i) & boneMask) { int j = pSeqGroup->boneMap[i]; if (j >= 0 && pweight[j] > 0.0f) { if (animdesc.flags & STUDIO_DELTA) { q[i].Init( 0.0f, 0.0f, 0.0f, 1.0f ); pos[i].Init( 0.0f, 0.0f, 0.0f ); } else if (pSeqLinearBones) { q[i] = pSeqLinearBones->quat(j); pos[i] = pSeqLinearBones->pos(j); } else { q[i] = pSeqbone[j].quat; pos[i] = pSeqbone[j].pos; } #ifdef STUDIO_ENABLE_PERF_COUNTERS pStudioHdr->m_nPerfUsedBones++; #endif } } } // if the animation isn't available, look for the zero frame cache if (!panim) { CalcZeroframeData( ((CStudioHdr *)pStudioHdr), pAnimStudioHdr, pAnimGroup, pAnimbone, animdesc, fFrame, pos, q, boneMask, 1.0 ); return; } // FIXME: change encoding so that bone -1 is never the case while (panim && panim->bone < 255) { int j = pAnimGroup->masterBone[panim->bone]; if ( j >= 0 && ( pStudioHdr->boneFlags(j) & boneMask ) ) { int k = pSeqGroup->boneMap[j]; if (k >= 0 && pweight[k] > 0.0f) { CalcBoneQuaternion( iLocalFrame, s, &pAnimbone[panim->bone], pAnimLinearBones, panim, q[j] ); CalcBonePosition ( iLocalFrame, s, &pAnimbone[panim->bone], pAnimLinearBones, panim, pos[j] ); #ifdef STUDIO_ENABLE_PERF_COUNTERS pStudioHdr->m_nPerfAnimatedBones++; #endif } } panim = panim->pNext(); } // cross fade in previous zeroframe data if (flStall > 0.0f) { CalcZeroframeData( pStudioHdr, pAnimStudioHdr, pAnimGroup, pAnimbone, animdesc, fFrame, pos, q, boneMask, flStall ); } // calculate a local hierarchy override if (animdesc.numlocalhierarchy) { matrix3x4_t *boneToWorld = g_MatrixPool.Alloc(); CBoneBitList boneComputed; int i; for (i = 0; i < animdesc.numlocalhierarchy; i++) { mstudiolocalhierarchy_t *pHierarchy = animdesc.pHierarchy( i ); if ( !pHierarchy ) break; int iBone = pAnimGroup->masterBone[pHierarchy->iBone]; if (iBone >= 0 && (pStudioHdr->boneFlags(iBone) & boneMask)) { if ( pHierarchy->iNewParent != -1 ) { int iNewParent = pAnimGroup->masterBone[pHierarchy->iNewParent]; if (iNewParent >= 0 && (pStudioHdr->boneFlags(iNewParent) & boneMask)) { CalcLocalHierarchyAnimation( pStudioHdr, boneToWorld, boneComputed, pos, q, pbone, pHierarchy, iBone, iNewParent, cycle, iFrame, s, boneMask ); } } else { CalcLocalHierarchyAnimation( pStudioHdr, boneToWorld, boneComputed, pos, q, pbone, pHierarchy, iBone, -1, cycle, iFrame, s, boneMask ); } } } g_MatrixPool.Free( boneToWorld ); } } //----------------------------------------------------------------------------- // Purpose: Find and decode a sub-frame of animation //----------------------------------------------------------------------------- static void CalcAnimation( const CStudioHdr *pStudioHdr, Vector *pos, Quaternion *q, mstudioseqdesc_t &seqdesc, int sequence, int animation, float cycle, int boneMask ) { #ifdef STUDIO_ENABLE_PERF_COUNTERS pStudioHdr->m_nPerfAnimationLayers++; #endif virtualmodel_t *pVModel = pStudioHdr->GetVirtualModel(); if (pVModel) { CalcVirtualAnimation( pVModel, pStudioHdr, pos, q, seqdesc, sequence, animation, cycle, boneMask ); return; } mstudioanimdesc_t &animdesc = ((CStudioHdr *)pStudioHdr)->pAnimdesc( animation ); mstudiobone_t *pbone = pStudioHdr->pBone( 0 ); const mstudiolinearbone_t *pLinearBones = pStudioHdr->pLinearBones(); // int i; int iFrame; float s; float fFrame = cycle * (animdesc.numframes - 1); iFrame = (int)fFrame; s = (fFrame - iFrame); int iLocalFrame = iFrame; float flStall; mstudioanim_t *panim = animdesc.pAnim( &iLocalFrame, flStall ); float *pweight = seqdesc.pBoneweight( 0 ); // if the animation isn't available, look for the zero frame cache if (!panim) { // Msg("zeroframe %s\n", animdesc.pszName() ); // pre initialize for (int i = 0; i < pStudioHdr->numbones(); i++, pbone++, pweight++) { if (*pweight > 0 && (pStudioHdr->boneFlags(i) & boneMask)) { if (animdesc.flags & STUDIO_DELTA) { q[i].Init( 0.0f, 0.0f, 0.0f, 1.0f ); pos[i].Init( 0.0f, 0.0f, 0.0f ); } else { q[i] = pbone->quat; pos[i] = pbone->pos; } } } CalcZeroframeData( pStudioHdr, pStudioHdr->GetRenderHdr(), NULL, pStudioHdr->pBone( 0 ), animdesc, fFrame, pos, q, boneMask, 1.0 ); return; } // BUGBUG: the sequence, the anim, and the model can have all different bone mappings. for (int i = 0; i < pStudioHdr->numbones(); i++, pbone++, pweight++) { if (panim && panim->bone == i) { if (*pweight > 0 && (pStudioHdr->boneFlags(i) & boneMask)) { CalcBoneQuaternion( iLocalFrame, s, pbone, pLinearBones, panim, q[i] ); CalcBonePosition ( iLocalFrame, s, pbone, pLinearBones, panim, pos[i] ); #ifdef STUDIO_ENABLE_PERF_COUNTERS pStudioHdr->m_nPerfAnimatedBones++; pStudioHdr->m_nPerfUsedBones++; #endif } panim = panim->pNext(); } else if (*pweight > 0 && (pStudioHdr->boneFlags(i) & boneMask)) { if (animdesc.flags & STUDIO_DELTA) { q[i].Init( 0.0f, 0.0f, 0.0f, 1.0f ); pos[i].Init( 0.0f, 0.0f, 0.0f ); } else { q[i] = pbone->quat; pos[i] = pbone->pos; } #ifdef STUDIO_ENABLE_PERF_COUNTERS pStudioHdr->m_nPerfUsedBones++; #endif } } // cross fade in previous zeroframe data if (flStall > 0.0f) { CalcZeroframeData( pStudioHdr, pStudioHdr->GetRenderHdr(), NULL, pStudioHdr->pBone( 0 ), animdesc, fFrame, pos, q, boneMask, flStall ); } if (animdesc.numlocalhierarchy) { matrix3x4_t *boneToWorld = g_MatrixPool.Alloc(); CBoneBitList boneComputed; int i; for (i = 0; i < animdesc.numlocalhierarchy; i++) { mstudiolocalhierarchy_t *pHierarchy = animdesc.pHierarchy( i ); if ( !pHierarchy ) break; if (pStudioHdr->boneFlags(pHierarchy->iBone) & boneMask) { if (pStudioHdr->boneFlags(pHierarchy->iNewParent) & boneMask) { CalcLocalHierarchyAnimation( pStudioHdr, boneToWorld, boneComputed, pos, q, pbone, pHierarchy, pHierarchy->iBone, pHierarchy->iNewParent, cycle, iFrame, s, boneMask ); } } } g_MatrixPool.Free( boneToWorld ); } } //----------------------------------------------------------------------------- // Purpose: qt = ( s * p ) * q //----------------------------------------------------------------------------- void QuaternionSM( float s, const Quaternion &p, const Quaternion &q, Quaternion &qt ) { Quaternion p1, q1; QuaternionScale( p, s, p1 ); QuaternionMult( p1, q, q1 ); QuaternionNormalize( q1 ); qt[0] = q1[0]; qt[1] = q1[1]; qt[2] = q1[2]; qt[3] = q1[3]; } #if ALLOW_SIMD_QUATERNION_MATH FORCEINLINE fltx4 QuaternionSMSIMD( float s, const fltx4 &p, const fltx4 &q ) { fltx4 p1, q1, result; p1 = QuaternionScaleSIMD( p, s ); q1 = QuaternionMultSIMD( p1, q ); result = QuaternionNormalizeSIMD( q1 ); return result; } #endif //----------------------------------------------------------------------------- // Purpose: qt = p * ( s * q ) //----------------------------------------------------------------------------- void QuaternionMA( const Quaternion &p, float s, const Quaternion &q, Quaternion &qt ) { Quaternion p1, q1; QuaternionScale( q, s, q1 ); QuaternionMult( p, q1, p1 ); QuaternionNormalize( p1 ); qt[0] = p1[0]; qt[1] = p1[1]; qt[2] = p1[2]; qt[3] = p1[3]; } #if ALLOW_SIMD_QUATERNION_MATH FORCEINLINE fltx4 QuaternionMASIMD( const fltx4 &p, float s, const fltx4 &q ) { fltx4 p1, q1, result; q1 = QuaternionScaleSIMD( q, s ); p1 = QuaternionMultSIMD( p, q1 ); result = QuaternionNormalizeSIMD( p1 ); return result; } #endif //----------------------------------------------------------------------------- // Purpose: qt = p + s * q //----------------------------------------------------------------------------- void QuaternionAccumulate( const Quaternion &p, float s, const Quaternion &q, Quaternion &qt ) { Quaternion q2; QuaternionAlign( p, q, q2 ); qt[0] = p[0] + s * q2[0]; qt[1] = p[1] + s * q2[1]; qt[2] = p[2] + s * q2[2]; qt[3] = p[3] + s * q2[3]; } #if ALLOW_SIMD_QUATERNION_MATH FORCEINLINE fltx4 QuaternionAccumulateSIMD( const fltx4 &p, float s, const fltx4 &q ) { fltx4 q2, s4, result; q2 = QuaternionAlignSIMD( p, q ); s4 = ReplicateX4( s ); result = MaddSIMD( s4, q2, p ); return result; } #endif //----------------------------------------------------------------------------- // Purpose: blend together in world space q1,pos1 with q2,pos2. Return result in q1,pos1. // 0 returns q1, pos1. 1 returns q2, pos2 //----------------------------------------------------------------------------- void WorldSpaceSlerp( const CStudioHdr *pStudioHdr, Quaternion q1[MAXSTUDIOBONES], Vector pos1[MAXSTUDIOBONES], mstudioseqdesc_t &seqdesc, int sequence, const Quaternion q2[MAXSTUDIOBONES], const Vector pos2[MAXSTUDIOBONES], float s, int boneMask ) { int i, j; float s1; // weight of parent for q2, pos2 float s2; // weight for q2, pos2 // make fake root transform matrix3x4_t rootXform; SetIdentityMatrix( rootXform ); // matrices for q2, pos2 matrix3x4_t *srcBoneToWorld = g_MatrixPool.Alloc(); CBoneBitList srcBoneComputed; matrix3x4_t *destBoneToWorld = g_MatrixPool.Alloc(); CBoneBitList destBoneComputed; matrix3x4_t *targetBoneToWorld = g_MatrixPool.Alloc(); CBoneBitList targetBoneComputed; virtualmodel_t *pVModel = pStudioHdr->GetVirtualModel(); const virtualgroup_t *pSeqGroup = NULL; if (pVModel) { pSeqGroup = pVModel->pSeqGroup( sequence ); } mstudiobone_t *pbone = pStudioHdr->pBone( 0 ); for (i = 0; i < pStudioHdr->numbones(); i++) { // skip unused bones if (!(pStudioHdr->boneFlags(i) & boneMask)) { continue; } int n = pbone[i].parent; s1 = 0.0; if (pSeqGroup) { j = pSeqGroup->boneMap[i]; if (j >= 0) { s2 = s * seqdesc.weight( j ); // blend in based on this bones weight if (n != -1) { s1 = s * seqdesc.weight( pSeqGroup->boneMap[n] ); } } else { s2 = 0.0; } } else { s2 = s * seqdesc.weight( i ); // blend in based on this bones weight if (n != -1) { s1 = s * seqdesc.weight( n ); } } if (s1 == 1.0 && s2 == 1.0) { pos1[i] = pos2[i]; q1[i] = q2[i]; } else if (s2 > 0.0) { Quaternion srcQ, destQ; Vector srcPos, destPos; Quaternion targetQ; Vector targetPos; Vector tmp; BuildBoneChain( pStudioHdr, rootXform, pos1, q1, i, destBoneToWorld, destBoneComputed ); BuildBoneChain( pStudioHdr, rootXform, pos2, q2, i, srcBoneToWorld, srcBoneComputed ); MatrixAngles( destBoneToWorld[i], destQ, destPos ); MatrixAngles( srcBoneToWorld[i], srcQ, srcPos ); QuaternionSlerp( destQ, srcQ, s2, targetQ ); AngleMatrix( targetQ, destPos, targetBoneToWorld[i] ); // back solve if (n == -1) { MatrixAngles( targetBoneToWorld[i], q1[i], tmp ); } else { matrix3x4_t worldToBone; MatrixInvert( targetBoneToWorld[n], worldToBone ); matrix3x4_t local; ConcatTransforms( worldToBone, targetBoneToWorld[i], local ); MatrixAngles( local, q1[i], tmp ); // blend bone lengths (local space) pos1[i] = Lerp( s2, pos1[i], pos2[i] ); } } } g_MatrixPool.Free( srcBoneToWorld ); g_MatrixPool.Free( destBoneToWorld ); g_MatrixPool.Free( targetBoneToWorld ); } //----------------------------------------------------------------------------- // Purpose: blend together q1,pos1 with q2,pos2. Return result in q1,pos1. // 0 returns q1, pos1. 1 returns q2, pos2 //----------------------------------------------------------------------------- void SlerpBones( const CStudioHdr *pStudioHdr, Quaternion q1[MAXSTUDIOBONES], Vector pos1[MAXSTUDIOBONES], mstudioseqdesc_t &seqdesc, // source of q2 and pos2 int sequence, const QuaternionAligned q2[MAXSTUDIOBONES], const Vector pos2[MAXSTUDIOBONES], float s, int boneMask ) { if (s <= 0.0f) return; if (s > 1.0f) { s = 1.0f; } if (seqdesc.flags & STUDIO_WORLD) { WorldSpaceSlerp( pStudioHdr, q1, pos1, seqdesc, sequence, q2, pos2, s, boneMask ); return; } int i, j; virtualmodel_t *pVModel = pStudioHdr->GetVirtualModel(); const virtualgroup_t *pSeqGroup = NULL; if (pVModel) { pSeqGroup = pVModel->pSeqGroup( sequence ); } // Build weightlist for all bones int nBoneCount = pStudioHdr->numbones(); float *pS2 = (float*)stackalloc( nBoneCount * sizeof(float) ); for (i = 0; i < nBoneCount; i++) { // skip unused bones if (!(pStudioHdr->boneFlags(i) & boneMask)) { pS2[i] = 0.0f; continue; } if ( !pSeqGroup ) { pS2[i] = s * seqdesc.weight( i ); // blend in based on this bones weight continue; } j = pSeqGroup->boneMap[i]; if ( j >= 0 ) { pS2[i] = s * seqdesc.weight( j ); // blend in based on this bones weight } else { pS2[i] = 0.0; } } float s1, s2; if ( seqdesc.flags & STUDIO_DELTA ) { for ( i = 0; i < nBoneCount; i++ ) { s2 = pS2[i]; if ( s2 <= 0.0f ) continue; if ( seqdesc.flags & STUDIO_POST ) { #ifndef _X360 QuaternionMA( q1[i], s2, q2[i], q1[i] ); #else fltx4 q1simd = LoadUnalignedSIMD( q1[i].Base() ); fltx4 q2simd = LoadAlignedSIMD( q2[i] ); fltx4 result = QuaternionMASIMD( q1simd, s2, q2simd ); StoreUnalignedSIMD( q1[i].Base(), result ); #endif // FIXME: are these correct? pos1[i][0] = pos1[i][0] + pos2[i][0] * s2; pos1[i][1] = pos1[i][1] + pos2[i][1] * s2; pos1[i][2] = pos1[i][2] + pos2[i][2] * s2; } else { #ifndef _X360 QuaternionSM( s2, q2[i], q1[i], q1[i] ); #else fltx4 q1simd = LoadUnalignedSIMD( q1[i].Base() ); fltx4 q2simd = LoadAlignedSIMD( q2[i] ); fltx4 result = QuaternionSMSIMD( s2, q2simd, q1simd ); StoreUnalignedSIMD( q1[i].Base(), result ); #endif // FIXME: are these correct? pos1[i][0] = pos1[i][0] + pos2[i][0] * s2; pos1[i][1] = pos1[i][1] + pos2[i][1] * s2; pos1[i][2] = pos1[i][2] + pos2[i][2] * s2; } } return; } QuaternionAligned q3; for (i = 0; i < nBoneCount; i++) { s2 = pS2[i]; if ( s2 <= 0.0f ) continue; s1 = 1.0 - s2; #ifdef _X360 fltx4 q1simd, q2simd, result; q1simd = LoadUnalignedSIMD( q1[i].Base() ); q2simd = LoadAlignedSIMD( q2[i] ); #endif if ( pStudioHdr->boneFlags(i) & BONE_FIXED_ALIGNMENT ) { #ifndef _X360 QuaternionSlerpNoAlign( q2[i], q1[i], s1, q3 ); #else result = QuaternionSlerpNoAlignSIMD( q2simd, q1simd, s1 ); #endif } else { #ifndef _X360 QuaternionSlerp( q2[i], q1[i], s1, q3 ); #else result = QuaternionSlerpSIMD( q2simd, q1simd, s1 ); #endif } #ifndef _X360 q1[i][0] = q3[0]; q1[i][1] = q3[1]; q1[i][2] = q3[2]; q1[i][3] = q3[3]; #else StoreUnalignedSIMD( q1[i].Base(), result ); #endif pos1[i][0] = pos1[i][0] * s1 + pos2[i][0] * s2; pos1[i][1] = pos1[i][1] * s1 + pos2[i][1] * s2; pos1[i][2] = pos1[i][2] * s1 + pos2[i][2] * s2; } } //----------------------------------------------------------------------------- // Purpose: Inter-animation blend. Assumes both types are identical. // blend together q1,pos1 with q2,pos2. Return result in q1,pos1. // 0 returns q1, pos1. 1 returns q2, pos2 //----------------------------------------------------------------------------- void BlendBones( const CStudioHdr *pStudioHdr, Quaternion q1[MAXSTUDIOBONES], Vector pos1[MAXSTUDIOBONES], mstudioseqdesc_t &seqdesc, int sequence, const Quaternion q2[MAXSTUDIOBONES], const Vector pos2[MAXSTUDIOBONES], float s, int boneMask ) { int i, j; Quaternion q3; virtualmodel_t *pVModel = pStudioHdr->GetVirtualModel(); const virtualgroup_t *pSeqGroup = NULL; if (pVModel) { pSeqGroup = pVModel->pSeqGroup( sequence ); } if (s <= 0) { Assert(0); // shouldn't have been called return; } else if (s >= 1.0) { Assert(0); // shouldn't have been called for (i = 0; i < pStudioHdr->numbones(); i++) { // skip unused bones if (!(pStudioHdr->boneFlags(i) & boneMask)) { continue; } if (pSeqGroup) { j = pSeqGroup->boneMap[i]; } else { j = i; } if (j >= 0 && seqdesc.weight( j ) > 0.0) { q1[i] = q2[i]; pos1[i] = pos2[i]; } } return; } float s2 = s; float s1 = 1.0 - s2; for (i = 0; i < pStudioHdr->numbones(); i++) { // skip unused bones if (!(pStudioHdr->boneFlags(i) & boneMask)) { continue; } if (pSeqGroup) { j = pSeqGroup->boneMap[i]; } else { j = i; } if (j >= 0 && seqdesc.weight( j ) > 0.0) { if (pStudioHdr->boneFlags(i) & BONE_FIXED_ALIGNMENT) { QuaternionBlendNoAlign( q2[i], q1[i], s1, q3 ); } else { QuaternionBlend( q2[i], q1[i], s1, q3 ); } q1[i][0] = q3[0]; q1[i][1] = q3[1]; q1[i][2] = q3[2]; q1[i][3] = q3[3]; pos1[i][0] = pos1[i][0] * s1 + pos2[i][0] * s2; pos1[i][1] = pos1[i][1] * s1 + pos2[i][1] * s2; pos1[i][2] = pos1[i][2] * s1 + pos2[i][2] * s2; } } } //----------------------------------------------------------------------------- // Purpose: Scale a set of bones. Must be of type delta //----------------------------------------------------------------------------- void ScaleBones( const CStudioHdr *pStudioHdr, Quaternion q1[MAXSTUDIOBONES], Vector pos1[MAXSTUDIOBONES], int sequence, float s, int boneMask ) { int i, j; Quaternion q3; mstudioseqdesc_t &seqdesc = ((CStudioHdr *)pStudioHdr)->pSeqdesc( sequence ); virtualmodel_t *pVModel = pStudioHdr->GetVirtualModel(); const virtualgroup_t *pSeqGroup = NULL; if (pVModel) { pSeqGroup = pVModel->pSeqGroup( sequence ); } float s2 = s; float s1 = 1.0 - s2; for (i = 0; i < pStudioHdr->numbones(); i++) { // skip unused bones if (!(pStudioHdr->boneFlags(i) & boneMask)) { continue; } if (pSeqGroup) { j = pSeqGroup->boneMap[i]; } else { j = i; } if (j >= 0 && seqdesc.weight( j ) > 0.0) { QuaternionIdentityBlend( q1[i], s1, q1[i] ); VectorScale( pos1[i], s2, pos1[i] ); } } } //----------------------------------------------------------------------------- // Purpose: resolve a global pose parameter to the specific setting for this sequence //----------------------------------------------------------------------------- void Studio_LocalPoseParameter( const CStudioHdr *pStudioHdr, const float poseParameter[], mstudioseqdesc_t &seqdesc, int iSequence, int iLocalIndex, float &flSetting, int &index ) { if (!pStudioHdr) { flSetting = 0; index = 0; return; } int iPose = pStudioHdr->GetSharedPoseParameter( iSequence, seqdesc.paramindex[iLocalIndex] ); if (iPose == -1) { flSetting = 0; index = 0; return; } const mstudioposeparamdesc_t &Pose = ((CStudioHdr *)pStudioHdr)->pPoseParameter( iPose ); float flValue = poseParameter[iPose]; if (Pose.loop) { float wrap = (Pose.start + Pose.end) / 2.0 + Pose.loop / 2.0; float shift = Pose.loop - wrap; flValue = flValue - Pose.loop * floor((flValue + shift) / Pose.loop); } if (seqdesc.posekeyindex == 0) { float flLocalStart = ((float)seqdesc.paramstart[iLocalIndex] - Pose.start) / (Pose.end - Pose.start); float flLocalEnd = ((float)seqdesc.paramend[iLocalIndex] - Pose.start) / (Pose.end - Pose.start); // convert into local range flSetting = (flValue - flLocalStart) / (flLocalEnd - flLocalStart); // clamp. This shouldn't ever need to happen if it's looping. if (flSetting < 0) flSetting = 0; if (flSetting > 1) flSetting = 1; index = 0; if (seqdesc.groupsize[iLocalIndex] > 2 ) { // estimate index index = (int)(flSetting * (seqdesc.groupsize[iLocalIndex] - 1)); if (index == seqdesc.groupsize[iLocalIndex] - 1) index = seqdesc.groupsize[iLocalIndex] - 2; flSetting = flSetting * (seqdesc.groupsize[iLocalIndex] - 1) - index; } } else { flValue = flValue * (Pose.end - Pose.start) + Pose.start; index = 0; // FIXME: this needs to be 2D // FIXME: this shouldn't be a linear search while (1) { flSetting = (flValue - seqdesc.poseKey( iLocalIndex, index )) / (seqdesc.poseKey( iLocalIndex, index + 1 ) - seqdesc.poseKey( iLocalIndex, index )); /* if (index > 0 && flSetting < 0.0) { index--; continue; } else */ if (index < seqdesc.groupsize[iLocalIndex] - 2 && flSetting > 1.0) { index++; continue; } break; } // clamp. if (flSetting < 0.0f) flSetting = 0.0f; if (flSetting > 1.0f) flSetting = 1.0f; } } void Studio_CalcBoneToBoneTransform( const CStudioHdr *pStudioHdr, int inputBoneIndex, int outputBoneIndex, matrix3x4_t& matrixOut ) { mstudiobone_t *pbone = pStudioHdr->pBone( inputBoneIndex ); matrix3x4_t inputToPose; MatrixInvert( pbone->poseToBone, inputToPose ); ConcatTransforms( pStudioHdr->pBone( outputBoneIndex )->poseToBone, inputToPose, matrixOut ); } //----------------------------------------------------------------------------- // Purpose: calculate a pose for a single sequence //----------------------------------------------------------------------------- void InitPose( const CStudioHdr *pStudioHdr, Vector pos[], Quaternion q[], int boneMask ) { if (!pStudioHdr->pLinearBones()) { for (int i = 0; i < pStudioHdr->numbones(); i++) { if (pStudioHdr->boneFlags( i ) & boneMask ) { mstudiobone_t *pbone = pStudioHdr->pBone( i ); pos[i] = pbone->pos; q[i] = pbone->quat; } } } else { mstudiolinearbone_t *pLinearBones = pStudioHdr->pLinearBones(); for (int i = 0; i < pStudioHdr->numbones(); i++) { if (pStudioHdr->boneFlags( i ) & boneMask ) { pos[i] = pLinearBones->pos(i); q[i] = pLinearBones->quat(i); } } } } inline bool PoseIsAllZeros( const CStudioHdr *pStudioHdr, int sequence, mstudioseqdesc_t &seqdesc, int i0, int i1 ) { int baseanim; // remove "zero" positional blends baseanim = pStudioHdr->iRelativeAnim( sequence, seqdesc.anim(i0 ,i1 ) ); mstudioanimdesc_t &anim = ((CStudioHdr *)pStudioHdr)->pAnimdesc( baseanim ); return (anim.flags & STUDIO_ALLZEROS) != 0; } //----------------------------------------------------------------------------- // Purpose: turn a 2x2 blend into a 3 way triangle blend // Returns: returns the animination indices and barycentric coordinates of a triangle // the triangle is a right triangle, and the diagonal is between elements [0] and [2] //----------------------------------------------------------------------------- static ConVar anim_3wayblend( "anim_3wayblend", "1", FCVAR_REPLICATED, "Toggle the 3-way animation blending code." ); void Calc3WayBlendIndices( int i0, int i1, float s0, float s1, const mstudioseqdesc_t &seqdesc, int *pAnimIndices, float *pWeight ) { // Figure out which bi-section direction we are using to make triangles. bool bEven = ( ( ( i0 + i1 ) & 0x1 ) == 0 ); int x1, y1; int x2, y2; int x3, y3; // diagonal is between elements 1 & 3 // TL to BR if ( bEven ) { if ( s0 > s1 ) { // B x1 = 0; y1 = 0; x2 = 1; y2 = 0; x3 = 1; y3 = 1; pWeight[0] = (1.0f - s0); pWeight[1] = s0 - s1; } else { // C x1 = 1; y1 = 1; x2 = 0; y2 = 1; x3 = 0; y3 = 0; pWeight[0] = s0; pWeight[1] = s1 - s0; } } // BL to TR else { float flTotal = s0 + s1; if( flTotal > 1.0f ) { // D x1 = 1; y1 = 0; x2 = 1; y2 = 1; x3 = 0; y3 = 1; pWeight[0] = (1.0f - s1); pWeight[1] = s0 - 1.0f + s1; } else { // A x1 = 0; y1 = 1; x2 = 0; y2 = 0; x3 = 1; y3 = 0; pWeight[0] = s1; pWeight[1] = 1.0f - s0 - s1; } } pAnimIndices[0] = seqdesc.anim( i0 + x1, i1 + y1 ); pAnimIndices[1] = seqdesc.anim( i0 + x2, i1 + y2 ); pAnimIndices[2] = seqdesc.anim( i0 + x3, i1 + y3 ); /* float w0 = ((x2-x3)*(y3-s1) - (x3-s0)*(y2-y3)) / ((x1-x3)*(y2-y3) - (x2-x3)*(y1-y3)); float w1 = ((x1-x3)*(y3-s1) - (x3-s0)*(y1-y3)) / ((x2-x3)*(y1-y3) - (x1-x3)*(y2-y3)); Assert( pWeight[0] == w0 && pWeight[1] == w1 ); */ // clamp the diagonal if (pWeight[1] < 0.001f) pWeight[1] = 0.0f; pWeight[2] = 1.0f - pWeight[0] - pWeight[1]; Assert( pWeight[0] >= 0.0f && pWeight[0] <= 1.0f ); Assert( pWeight[1] >= 0.0f && pWeight[1] <= 1.0f ); Assert( pWeight[2] >= 0.0f && pWeight[2] <= 1.0f ); } //----------------------------------------------------------------------------- // Purpose: calculate a pose for a single sequence //----------------------------------------------------------------------------- bool CalcPoseSingle( const CStudioHdr *pStudioHdr, Vector pos[], Quaternion q[], mstudioseqdesc_t &seqdesc, int sequence, float cycle, const float poseParameter[], int boneMask, float flTime ) { bool bResult = true; Vector *pos2 = g_VectorPool.Alloc(); Quaternion *q2 = g_QaternionPool.Alloc(); Vector *pos3= g_VectorPool.Alloc(); Quaternion *q3 = g_QaternionPool.Alloc(); if (sequence >= pStudioHdr->GetNumSeq()) { sequence = 0; seqdesc = ((CStudioHdr *)pStudioHdr)->pSeqdesc( sequence ); } int i0 = 0, i1 = 0; float s0 = 0, s1 = 0; Studio_LocalPoseParameter( pStudioHdr, poseParameter, seqdesc, sequence, 0, s0, i0 ); Studio_LocalPoseParameter( pStudioHdr, poseParameter, seqdesc, sequence, 1, s1, i1 ); if (seqdesc.flags & STUDIO_REALTIME) { float cps = Studio_CPS( pStudioHdr, seqdesc, sequence, poseParameter ); cycle = flTime * cps; cycle = cycle - (int)cycle; } else if (seqdesc.flags & STUDIO_CYCLEPOSE) { int iPose = pStudioHdr->GetSharedPoseParameter( sequence, seqdesc.cycleposeindex ); if (iPose != -1) { /* const mstudioposeparamdesc_t &Pose = ((CStudioHdr *)pStudioHdr)->pPoseParameter( iPose ); cycle = poseParameter[ iPose ] * (Pose.end - Pose.start) + Pose.start; */ cycle = poseParameter[ iPose ]; } else { cycle = 0.0f; } } else if (cycle < 0 || cycle >= 1) { if (seqdesc.flags & STUDIO_LOOPING) { cycle = cycle - (int)cycle; if (cycle < 0) cycle += 1; } else { cycle = clamp( cycle, 0.0f, 1.0f ); } } if (s0 < 0.001) { if (s1 < 0.001) { if (PoseIsAllZeros( pStudioHdr, sequence, seqdesc, i0, i1 )) { bResult = false; } else { CalcAnimation( pStudioHdr, pos, q, seqdesc, sequence, seqdesc.anim( i0 , i1 ), cycle, boneMask ); } } else if (s1 > 0.999) { CalcAnimation( pStudioHdr, pos, q, seqdesc, sequence, seqdesc.anim( i0 , i1+1 ), cycle, boneMask ); } else { CalcAnimation( pStudioHdr, pos, q, seqdesc, sequence, seqdesc.anim( i0 , i1 ), cycle, boneMask ); CalcAnimation( pStudioHdr, pos2, q2, seqdesc, sequence, seqdesc.anim( i0 , i1+1 ), cycle, boneMask ); BlendBones( pStudioHdr, q, pos, seqdesc, sequence, q2, pos2, s1, boneMask ); } } else if (s0 > 0.999) { if (s1 < 0.001) { if (PoseIsAllZeros( pStudioHdr, sequence, seqdesc, i0+1, i1 )) { bResult = false; } else { CalcAnimation( pStudioHdr, pos, q, seqdesc, sequence, seqdesc.anim( i0+1, i1 ), cycle, boneMask ); } } else if (s1 > 0.999) { CalcAnimation( pStudioHdr, pos, q, seqdesc, sequence, seqdesc.anim( i0+1, i1+1 ), cycle, boneMask ); } else { CalcAnimation( pStudioHdr, pos, q, seqdesc, sequence, seqdesc.anim( i0+1, i1 ), cycle, boneMask ); CalcAnimation( pStudioHdr, pos2, q2, seqdesc, sequence, seqdesc.anim( i0+1, i1+1 ), cycle, boneMask ); BlendBones( pStudioHdr, q, pos, seqdesc, sequence, q2, pos2, s1, boneMask ); } } else { if (s1 < 0.001) { if (PoseIsAllZeros( pStudioHdr, sequence, seqdesc, i0+1, i1 )) { CalcAnimation( pStudioHdr, pos, q, seqdesc, sequence, seqdesc.anim( i0 ,i1 ), cycle, boneMask ); ScaleBones( pStudioHdr, q, pos, sequence, 1.0 - s0, boneMask ); } else if (PoseIsAllZeros( pStudioHdr, sequence, seqdesc, i0, i1 )) { CalcAnimation( pStudioHdr, pos, q, seqdesc, sequence, seqdesc.anim( i0+1 ,i1 ), cycle, boneMask ); ScaleBones( pStudioHdr, q, pos, sequence, s0, boneMask ); } else { CalcAnimation( pStudioHdr, pos, q, seqdesc, sequence, seqdesc.anim( i0 ,i1 ), cycle, boneMask ); CalcAnimation( pStudioHdr, pos2, q2, seqdesc, sequence, seqdesc.anim( i0+1,i1 ), cycle, boneMask ); BlendBones( pStudioHdr, q, pos, seqdesc, sequence, q2, pos2, s0, boneMask ); } } else if (s1 > 0.999) { CalcAnimation( pStudioHdr, pos, q, seqdesc, sequence, seqdesc.anim( i0 ,i1+1 ), cycle, boneMask ); CalcAnimation( pStudioHdr, pos2, q2, seqdesc, sequence, seqdesc.anim( i0+1,i1+1 ), cycle, boneMask ); BlendBones( pStudioHdr, q, pos, seqdesc, sequence, q2, pos2, s0, boneMask ); } else if ( !anim_3wayblend.GetBool() ) { CalcAnimation( pStudioHdr, pos, q, seqdesc, sequence, seqdesc.anim( i0 ,i1 ), cycle, boneMask ); CalcAnimation( pStudioHdr, pos2, q2, seqdesc, sequence, seqdesc.anim( i0+1,i1 ), cycle, boneMask ); BlendBones( pStudioHdr, q, pos, seqdesc, sequence, q2, pos2, s0, boneMask ); CalcAnimation( pStudioHdr, pos2, q2, seqdesc, sequence, seqdesc.anim( i0 , i1+1), cycle, boneMask ); CalcAnimation( pStudioHdr, pos3, q3, seqdesc, sequence, seqdesc.anim( i0+1, i1+1), cycle, boneMask ); BlendBones( pStudioHdr, q2, pos2, seqdesc, sequence, q3, pos3, s0, boneMask ); BlendBones( pStudioHdr, q, pos, seqdesc, sequence, q2, pos2, s1, boneMask ); } else { int iAnimIndices[3]; float weight[3]; Calc3WayBlendIndices( i0, i1, s0, s1, seqdesc, iAnimIndices, weight ); /* char buf[256]; sprintf( buf, "%d %6.2f %d %6.2f : %6.2f %6.2f %6.2f\n", i0, s0, i1, s1, weight[0], weight[1], weight[2] ); OutputDebugString( buf ); */ if (weight[1] < 0.001) { // on diagonal CalcAnimation( pStudioHdr, pos, q, seqdesc, sequence, iAnimIndices[0], cycle, boneMask ); CalcAnimation( pStudioHdr, pos2, q2, seqdesc, sequence, iAnimIndices[2], cycle, boneMask ); BlendBones( pStudioHdr, q, pos, seqdesc, sequence, q2, pos2, weight[2] / (weight[0] + weight[2]), boneMask ); } else { CalcAnimation( pStudioHdr, pos, q, seqdesc, sequence, iAnimIndices[0], cycle, boneMask ); CalcAnimation( pStudioHdr, pos2, q2, seqdesc, sequence, iAnimIndices[1], cycle, boneMask ); BlendBones( pStudioHdr, q, pos, seqdesc, sequence, q2, pos2, weight[1] / (weight[0] + weight[1]), boneMask ); CalcAnimation( pStudioHdr, pos3, q3, seqdesc, sequence, iAnimIndices[2], cycle, boneMask ); BlendBones( pStudioHdr, q, pos, seqdesc, sequence, q3, pos3, weight[2], boneMask ); } } } g_VectorPool.Free( pos2 ); g_QaternionPool.Free( q2 ); g_VectorPool.Free( pos3 ); g_QaternionPool.Free( q3 ); return bResult; } //----------------------------------------------------------------------------- // Purpose: calculate a pose for a single sequence // adds autolayers, runs local ik rukes //----------------------------------------------------------------------------- void CBoneSetup::AddSequenceLayers( Vector pos[], Quaternion q[], mstudioseqdesc_t &seqdesc, int sequence, float cycle, float flWeight, float flTime, CIKContext *pIKContext ) { for (int i = 0; i < seqdesc.numautolayers; i++) { mstudioautolayer_t *pLayer = seqdesc.pAutolayer( i ); if (pLayer->flags & STUDIO_AL_LOCAL) continue; float layerCycle = cycle; float layerWeight = flWeight; if (pLayer->start != pLayer->end) { float s = 1.0; float index; if (!(pLayer->flags & STUDIO_AL_POSE)) { index = cycle; } else { int iSequence = m_pStudioHdr->iRelativeSeq( sequence, pLayer->iSequence ); int iPose = m_pStudioHdr->GetSharedPoseParameter( iSequence, pLayer->iPose ); if (iPose != -1) { const mstudioposeparamdesc_t &Pose = ((CStudioHdr *)m_pStudioHdr)->pPoseParameter( iPose ); index = m_flPoseParameter[ iPose ] * (Pose.end - Pose.start) + Pose.start; } else { index = 0; } } if (index < pLayer->start) continue; if (index >= pLayer->end) continue; if (index < pLayer->peak && pLayer->start != pLayer->peak) { s = (index - pLayer->start) / (pLayer->peak - pLayer->start); } else if (index > pLayer->tail && pLayer->end != pLayer->tail) { s = (pLayer->end - index) / (pLayer->end - pLayer->tail); } if (pLayer->flags & STUDIO_AL_SPLINE) { s = SimpleSpline( s ); } if ((pLayer->flags & STUDIO_AL_XFADE) && (index > pLayer->tail)) { layerWeight = ( s * flWeight ) / ( 1 - flWeight + s * flWeight ); } else if (pLayer->flags & STUDIO_AL_NOBLEND) { layerWeight = s; } else { layerWeight = flWeight * s; } if (!(pLayer->flags & STUDIO_AL_POSE)) { layerCycle = (cycle - pLayer->start) / (pLayer->end - pLayer->start); } } int iSequence = m_pStudioHdr->iRelativeSeq( sequence, pLayer->iSequence ); AccumulatePose( pos, q, iSequence, layerCycle, layerWeight, flTime, pIKContext ); } } //----------------------------------------------------------------------------- // Purpose: calculate a pose for a single sequence // adds autolayers, runs local ik rukes //----------------------------------------------------------------------------- void CBoneSetup::AddLocalLayers( Vector pos[], Quaternion q[], mstudioseqdesc_t &seqdesc, int sequence, float cycle, float flWeight, float flTime, CIKContext *pIKContext ) { if (!(seqdesc.flags & STUDIO_LOCAL)) { return; } for (int i = 0; i < seqdesc.numautolayers; i++) { mstudioautolayer_t *pLayer = seqdesc.pAutolayer( i ); if (!(pLayer->flags & STUDIO_AL_LOCAL)) continue; float layerCycle = cycle; float layerWeight = flWeight; if (pLayer->start != pLayer->end) { float s = 1.0; if (cycle < pLayer->start) continue; if (cycle >= pLayer->end) continue; if (cycle < pLayer->peak && pLayer->start != pLayer->peak) { s = (cycle - pLayer->start) / (pLayer->peak - pLayer->start); } else if (cycle > pLayer->tail && pLayer->end != pLayer->tail) { s = (pLayer->end - cycle) / (pLayer->end - pLayer->tail); } if (pLayer->flags & STUDIO_AL_SPLINE) { s = SimpleSpline( s ); } if ((pLayer->flags & STUDIO_AL_XFADE) && (cycle > pLayer->tail)) { layerWeight = ( s * flWeight ) / ( 1 - flWeight + s * flWeight ); } else if (pLayer->flags & STUDIO_AL_NOBLEND) { layerWeight = s; } else { layerWeight = flWeight * s; } layerCycle = (cycle - pLayer->start) / (pLayer->end - pLayer->start); } int iSequence = m_pStudioHdr->iRelativeSeq( sequence, pLayer->iSequence ); AccumulatePose( pos, q, iSequence, layerCycle, layerWeight, flTime, pIKContext ); } } //----------------------------------------------------------------------------- // Purpose: my sleezy attempt at an interface only class //----------------------------------------------------------------------------- IBoneSetup::IBoneSetup( const CStudioHdr *pStudioHdr, int boneMask, const float poseParameter[], IPoseDebugger *pPoseDebugger ) { m_pBoneSetup = new CBoneSetup( pStudioHdr, boneMask, poseParameter, pPoseDebugger ); } IBoneSetup::~IBoneSetup( void ) { if ( m_pBoneSetup ) { delete m_pBoneSetup; } } void IBoneSetup::InitPose( Vector pos[], Quaternion q[] ) { ::InitPose( m_pBoneSetup->m_pStudioHdr, pos, q, m_pBoneSetup->m_boneMask ); } void IBoneSetup::AccumulatePose( Vector pos[], Quaternion q[], int sequence, float cycle, float flWeight, float flTime, CIKContext *pIKContext ) { m_pBoneSetup->AccumulatePose( pos, q, sequence, cycle, flWeight, flTime, pIKContext ); } void IBoneSetup::CalcAutoplaySequences( Vector pos[], Quaternion q[], float flRealTime, CIKContext *pIKContext ) { m_pBoneSetup->CalcAutoplaySequences( pos, q, flRealTime, pIKContext ); } void CalcBoneAdj( const CStudioHdr *pStudioHdr, Vector pos[], Quaternion q[], const float controllers[], int boneMask ); // takes a "controllers[]" array normalized to 0..1 and adds in the adjustments to pos[], and q[]. void IBoneSetup::CalcBoneAdj( Vector pos[], Quaternion q[], const float controllers[] ) { ::CalcBoneAdj( m_pBoneSetup->m_pStudioHdr, pos, q, controllers, m_pBoneSetup->m_boneMask ); } CStudioHdr *IBoneSetup::GetStudioHdr() { return (CStudioHdr *)m_pBoneSetup->m_pStudioHdr; } CBoneSetup::CBoneSetup( const CStudioHdr *pStudioHdr, int boneMask, const float poseParameter[], IPoseDebugger *pPoseDebugger ) { m_pStudioHdr = pStudioHdr; m_boneMask = boneMask; m_flPoseParameter = poseParameter; m_pPoseDebugger = pPoseDebugger; } #if 0 //----------------------------------------------------------------------------- // Purpose: calculate a pose for a single sequence // adds autolayers, runs local ik rukes //----------------------------------------------------------------------------- void CalcPose( const CStudioHdr *pStudioHdr, CIKContext *pIKContext, Vector pos[], Quaternion q[], int sequence, float cycle, const float poseParameter[], int boneMask, float flWeight, float flTime ) { mstudioseqdesc_t &seqdesc = ((CStudioHdr *)pStudioHdr)->pSeqdesc( sequence ); Assert( flWeight >= 0.0f && flWeight <= 1.0f ); // This shouldn't be necessary, but the Assert should help us catch whoever is screwing this up flWeight = clamp( flWeight, 0.0f, 1.0f ); // add any IK locks to prevent numautolayers from moving extremities CIKContext seq_ik; if (seqdesc.numiklocks) { seq_ik.Init( pStudioHdr, vec3_angle, vec3_origin, 0.0, 0, boneMask ); // local space relative so absolute position doesn't mater seq_ik.AddSequenceLocks( seqdesc, pos, q ); } CalcPoseSingle( pStudioHdr, pos, q, seqdesc, sequence, cycle, poseParameter, boneMask, flTime ); if ( pIKContext ) { pIKContext->AddDependencies( seqdesc, sequence, cycle, poseParameter, flWeight ); } AddSequenceLayers( pStudioHdr, pIKContext, pos, q, seqdesc, sequence, cycle, poseParameter, boneMask, flWeight, flTime ); if (seqdesc.numiklocks) { seq_ik.SolveSequenceLocks( seqdesc, pos, q ); } } #endif //----------------------------------------------------------------------------- // Purpose: accumulate a pose for a single sequence on top of existing animation // adds autolayers, runs local ik rukes //----------------------------------------------------------------------------- void CBoneSetup::AccumulatePose( Vector pos[], Quaternion q[], int sequence, float cycle, float flWeight, float flTime, CIKContext *pIKContext ) { Vector pos2[MAXSTUDIOBONES]; QuaternionAligned q2[MAXSTUDIOBONES]; Assert( flWeight >= 0.0f && flWeight <= 1.0f ); // This shouldn't be necessary, but the Assert should help us catch whoever is screwing this up flWeight = clamp( flWeight, 0.0f, 1.0f ); if ( sequence < 0 ) return; #ifdef CLIENT_DLL // Trigger pose debugger if (m_pPoseDebugger) { m_pPoseDebugger->AccumulatePose( m_pStudioHdr, pIKContext, pos, q, sequence, cycle, m_flPoseParameter, m_boneMask, flWeight, flTime ); } #endif mstudioseqdesc_t &seqdesc = ((CStudioHdr *)m_pStudioHdr)->pSeqdesc( sequence ); // add any IK locks to prevent extremities from moving CIKContext seq_ik; if (seqdesc.numiklocks) { seq_ik.Init( m_pStudioHdr, vec3_angle, vec3_origin, 0.0, 0, m_boneMask ); // local space relative so absolute position doesn't mater seq_ik.AddSequenceLocks( seqdesc, pos, q ); } if (seqdesc.flags & STUDIO_LOCAL) { ::InitPose( m_pStudioHdr, pos2, q2, m_boneMask ); } if (CalcPoseSingle( m_pStudioHdr, pos2, q2, seqdesc, sequence, cycle, m_flPoseParameter, m_boneMask, flTime )) { // this weight is wrong, the IK rules won't composite at the correct intensity AddLocalLayers( pos2, q2, seqdesc, sequence, cycle, 1.0, flTime, pIKContext ); SlerpBones( m_pStudioHdr, q, pos, seqdesc, sequence, q2, pos2, flWeight, m_boneMask ); } if ( pIKContext ) { pIKContext->AddDependencies( seqdesc, sequence, cycle, m_flPoseParameter, flWeight ); } AddSequenceLayers( pos, q, seqdesc, sequence, cycle, flWeight, flTime, pIKContext ); if (seqdesc.numiklocks) { seq_ik.SolveSequenceLocks( seqdesc, pos, q ); } } //----------------------------------------------------------------------------- // Purpose: blend together q1,pos1 with q2,pos2. Return result in q1,pos1. // 0 returns q1, pos1. 1 returns q2, pos2 //----------------------------------------------------------------------------- void CalcBoneAdj( const CStudioHdr *pStudioHdr, Vector pos[], Quaternion q[], const float controllers[], int boneMask ) { int i, j, k; float value; mstudiobonecontroller_t *pbonecontroller; Vector p0; RadianEuler a0; Quaternion q0; for (j = 0; j < pStudioHdr->numbonecontrollers(); j++) { pbonecontroller = pStudioHdr->pBonecontroller( j ); k = pbonecontroller->bone; if (pStudioHdr->boneFlags( k ) & boneMask) { i = pbonecontroller->inputfield; value = controllers[i]; if (value < 0) value = 0; if (value > 1.0) value = 1.0; value = (1.0 - value) * pbonecontroller->start + value * pbonecontroller->end; switch(pbonecontroller->type & STUDIO_TYPES) { case STUDIO_XR: a0.Init( value * (M_PI / 180.0), 0, 0 ); AngleQuaternion( a0, q0 ); QuaternionSM( 1.0, q0, q[k], q[k] ); break; case STUDIO_YR: a0.Init( 0, value * (M_PI / 180.0), 0 ); AngleQuaternion( a0, q0 ); QuaternionSM( 1.0, q0, q[k], q[k] ); break; case STUDIO_ZR: a0.Init( 0, 0, value * (M_PI / 180.0) ); AngleQuaternion( a0, q0 ); QuaternionSM( 1.0, q0, q[k], q[k] ); break; case STUDIO_X: pos[k].x += value; break; case STUDIO_Y: pos[k].y += value; break; case STUDIO_Z: pos[k].z += value; break; } } } } void CalcBoneDerivatives( Vector &velocity, AngularImpulse &angVel, const matrix3x4_t &prev, const matrix3x4_t ¤t, float dt ) { float scale = 1.0; if ( dt > 0 ) { scale = 1.0 / dt; } Vector endPosition, startPosition, deltaAxis; QAngle endAngles, startAngles; float deltaAngle; MatrixAngles( prev, startAngles, startPosition ); MatrixAngles( current, endAngles, endPosition ); velocity.x = (endPosition.x - startPosition.x) * scale; velocity.y = (endPosition.y - startPosition.y) * scale; velocity.z = (endPosition.z - startPosition.z) * scale; RotationDeltaAxisAngle( startAngles, endAngles, deltaAxis, deltaAngle ); VectorScale( deltaAxis, (deltaAngle * scale), angVel ); } void CalcBoneVelocityFromDerivative( const QAngle &vecAngles, Vector &velocity, AngularImpulse &angVel, const matrix3x4_t ¤t ) { Vector vecLocalVelocity; AngularImpulse LocalAngVel; Quaternion q; float angle; MatrixAngles( current, q, vecLocalVelocity ); QuaternionAxisAngle( q, LocalAngVel, angle ); LocalAngVel *= angle; matrix3x4_t matAngles; AngleMatrix( vecAngles, matAngles ); VectorTransform( vecLocalVelocity, matAngles, velocity ); VectorTransform( LocalAngVel, matAngles, angVel ); } class CIKSolver { public: //-------- SOLVE TWO LINK INVERSE KINEMATICS ------------- // Author: Ken Perlin // // Given a two link joint from [0,0,0] to end effector position P, // let link lengths be a and b, and let norm |P| = c. Clearly a+b <= c. // // Problem: find a "knee" position Q such that |Q| = a and |P-Q| = b. // // In the case of a point on the x axis R = [c,0,0], there is a // closed form solution S = [d,e,0], where |S| = a and |R-S| = b: // // d2+e2 = a2 -- because |S| = a // (c-d)2+e2 = b2 -- because |R-S| = b // // c2-2cd+d2+e2 = b2 -- combine the two equations // c2-2cd = b2 - a2 // c-2d = (b2-a2)/c // d - c/2 = (a2-b2)/c / 2 // // d = (c + (a2-b2/c) / 2 -- to solve for d and e. // e = sqrt(a2-d2) static float findD(float a, float b, float c) { return (c + (a*a-b*b)/c) / 2; } static float findE(float a, float d) { return sqrt(a*a-d*d); } // This leads to a solution to the more general problem: // // (1) R = Mfwd(P) -- rotate P onto the x axis // (2) Solve for S // (3) Q = Minv(S) -- rotate back again float Mfwd[3][3]; float Minv[3][3]; bool solve(float A, float B, float const P[], float const D[], float Q[]) { float R[3]; defineM(P,D); rot(Minv,P,R); float r = length(R); float d = findD(A,B,r); float e = findE(A,d); float S[3] = {d,e,0}; rot(Mfwd,S,Q); return d > (r - B) && d < A; } // If "knee" position Q needs to be as close as possible to some point D, // then choose M such that M(D) is in the y>0 half of the z=0 plane. // // Given that constraint, define the forward and inverse of M as follows: void defineM(float const P[], float const D[]) { float *X = Minv[0], *Y = Minv[1], *Z = Minv[2]; // Minv defines a coordinate system whose x axis contains P, so X = unit(P). int i; for (i = 0 ; i < 3 ; i++) X[i] = P[i]; normalize(X); // Its y axis is perpendicular to P, so Y = unit( E - X(E·X) ). float dDOTx = dot(D,X); for (i = 0 ; i < 3 ; i++) Y[i] = D[i] - dDOTx * X[i]; normalize(Y); // Its z axis is perpendicular to both X and Y, so Z = X×Y. cross(X,Y,Z); // Mfwd = (Minv)T, since transposing inverts a rotation matrix. for (i = 0 ; i < 3 ; i++) { Mfwd[i][0] = Minv[0][i]; Mfwd[i][1] = Minv[1][i]; Mfwd[i][2] = Minv[2][i]; } } //------------ GENERAL VECTOR MATH SUPPORT ----------- static float dot(float const a[], float const b[]) { return a[0]*b[0] + a[1]*b[1] + a[2]*b[2]; } static float length(float const v[]) { return sqrt( dot(v,v) ); } static void normalize(float v[]) { float norm = length(v); for (int i = 0 ; i < 3 ; i++) v[i] /= norm; } static void cross(float const a[], float const b[], float c[]) { c[0] = a[1] * b[2] - a[2] * b[1]; c[1] = a[2] * b[0] - a[0] * b[2]; c[2] = a[0] * b[1] - a[1] * b[0]; } static void rot(float const M[3][3], float const src[], float dst[]) { for (int i = 0 ; i < 3 ; i++) dst[i] = dot(M[i],src); } }; //----------------------------------------------------------------------------- // Purpose: visual debugging code //----------------------------------------------------------------------------- #if 1 inline void debugLine(const Vector& origin, const Vector& dest, int r, int g, int b, bool noDepthTest, float duration) { }; #else extern void drawLine( const Vector &p1, const Vector &p2, int r = 0, int g = 0, int b = 1, bool noDepthTest = true, float duration = 0.1 ); void debugLine(const Vector& origin, const Vector& dest, int r, int g, int b, bool noDepthTest, float duration) { drawLine( origin, dest, r, g, b, noDepthTest, duration ); } #endif //----------------------------------------------------------------------------- // Purpose: for a 2 bone chain, find the IK solution and reset the matrices //----------------------------------------------------------------------------- bool Studio_SolveIK( mstudioikchain_t *pikchain, Vector &targetFoot, matrix3x4_t *pBoneToWorld ) { if (pikchain->pLink(0)->kneeDir.LengthSqr() > 0.0) { Vector targetKneeDir, targetKneePos; // FIXME: knee length should be as long as the legs Vector tmp = pikchain->pLink( 0 )->kneeDir; VectorRotate( tmp, pBoneToWorld[ pikchain->pLink( 0 )->bone ], targetKneeDir ); MatrixPosition( pBoneToWorld[ pikchain->pLink( 1 )->bone ], targetKneePos ); return Studio_SolveIK( pikchain->pLink( 0 )->bone, pikchain->pLink( 1 )->bone, pikchain->pLink( 2 )->bone, targetFoot, targetKneePos, targetKneeDir, pBoneToWorld ); } else { return Studio_SolveIK( pikchain->pLink( 0 )->bone, pikchain->pLink( 1 )->bone, pikchain->pLink( 2 )->bone, targetFoot, pBoneToWorld ); } } #define KNEEMAX_EPSILON 0.9998 // (0.9998 is about 1 degree) //----------------------------------------------------------------------------- // Purpose: Solve Knee position for a known hip and foot location, but no specific knee direction preference //----------------------------------------------------------------------------- bool Studio_SolveIK( int iThigh, int iKnee, int iFoot, Vector &targetFoot, matrix3x4_t *pBoneToWorld ) { Vector worldFoot, worldKnee, worldThigh; MatrixPosition( pBoneToWorld[ iThigh ], worldThigh ); MatrixPosition( pBoneToWorld[ iKnee ], worldKnee ); MatrixPosition( pBoneToWorld[ iFoot ], worldFoot ); //debugLine( worldThigh, worldKnee, 0, 0, 255, true, 0 ); //debugLine( worldKnee, worldFoot, 0, 0, 255, true, 0 ); Vector ikFoot, ikKnee; ikFoot = targetFoot - worldThigh; ikKnee = worldKnee - worldThigh; float l1 = (worldKnee-worldThigh).Length(); float l2 = (worldFoot-worldKnee).Length(); float l3 = (worldFoot-worldThigh).Length(); // leg too straight to figure out knee? if (l3 > (l1 + l2) * KNEEMAX_EPSILON) { return false; } Vector ikHalf = (worldFoot-worldThigh) * (l1 / l3); // FIXME: what to do when the knee completely straight? Vector ikKneeDir = ikKnee - ikHalf; VectorNormalize( ikKneeDir ); return Studio_SolveIK( iThigh, iKnee, iFoot, targetFoot, worldKnee, ikKneeDir, pBoneToWorld ); } //----------------------------------------------------------------------------- // Purpose: Realign the matrix so that its X axis points along the desired axis. //----------------------------------------------------------------------------- void Studio_AlignIKMatrix( matrix3x4_t &mMat, const Vector &vAlignTo ) { Vector tmp1, tmp2, tmp3; // Column 0 (X) becomes the vector. tmp1 = vAlignTo; VectorNormalize( tmp1 ); MatrixSetColumn( tmp1, 0, mMat ); // Column 1 (Y) is the cross of the vector and column 2 (Z). MatrixGetColumn( mMat, 2, tmp3 ); tmp2 = tmp3.Cross( tmp1 ); VectorNormalize( tmp2 ); // FIXME: check for X being too near to Z MatrixSetColumn( tmp2, 1, mMat ); // Column 2 (Z) is the cross of columns 0 (X) and 1 (Y). tmp3 = tmp1.Cross( tmp2 ); MatrixSetColumn( tmp3, 2, mMat ); } //----------------------------------------------------------------------------- // Purpose: Solve Knee position for a known hip and foot location, and a known knee direction //----------------------------------------------------------------------------- bool Studio_SolveIK( int iThigh, int iKnee, int iFoot, Vector &targetFoot, Vector &targetKneePos, Vector &targetKneeDir, matrix3x4_t *pBoneToWorld ) { Vector worldFoot, worldKnee, worldThigh; MatrixPosition( pBoneToWorld[ iThigh ], worldThigh ); MatrixPosition( pBoneToWorld[ iKnee ], worldKnee ); MatrixPosition( pBoneToWorld[ iFoot ], worldFoot ); //debugLine( worldThigh, worldKnee, 0, 0, 255, true, 0 ); //debugLine( worldThigh, worldThigh + targetKneeDir, 0, 0, 255, true, 0 ); // debugLine( worldKnee, targetKnee, 0, 0, 255, true, 0 ); Vector ikFoot, ikTargetKnee, ikKnee; ikFoot = targetFoot - worldThigh; ikKnee = targetKneePos - worldThigh; float l1 = (worldKnee-worldThigh).Length(); float l2 = (worldFoot-worldKnee).Length(); // exaggerate knee targets for legs that are nearly straight // FIXME: should be configurable, and the ikKnee should be from the original animation, not modifed float d = (targetFoot-worldThigh).Length() - min( l1, l2 ); d = max( l1 + l2, d ); // FIXME: too short knee directions cause trouble d = d * 100; ikTargetKnee = ikKnee + targetKneeDir * d; // debugLine( worldKnee, worldThigh + ikTargetKnee, 0, 0, 255, true, 0 ); int color[3] = { 0, 255, 0 }; // too far away? (0.9998 is about 1 degree) if (ikFoot.Length() > (l1 + l2) * KNEEMAX_EPSILON) { VectorNormalize( ikFoot ); VectorScale( ikFoot, (l1 + l2) * KNEEMAX_EPSILON, ikFoot ); color[0] = 255; color[1] = 0; color[2] = 0; } // too close? // limit distance to about an 80 degree knee bend float minDist = max( fabs(l1 - l2) * 1.15, min( l1, l2 ) * 0.15 ); if (ikFoot.Length() < minDist) { // too close to get an accurate vector, just use original vector ikFoot = (worldFoot - worldThigh); VectorNormalize( ikFoot ); VectorScale( ikFoot, minDist, ikFoot ); } CIKSolver ik; if (ik.solve( l1, l2, ikFoot.Base(), ikTargetKnee.Base(), ikKnee.Base() )) { matrix3x4_t& mWorldThigh = pBoneToWorld[ iThigh ]; matrix3x4_t& mWorldKnee = pBoneToWorld[ iKnee ]; matrix3x4_t& mWorldFoot = pBoneToWorld[ iFoot ]; //debugLine( worldThigh, ikKnee + worldThigh, 255, 0, 0, true, 0 ); //debugLine( ikKnee + worldThigh, ikFoot + worldThigh, 255, 0, 0, true,0 ); // debugLine( worldThigh, ikKnee + worldThigh, color[0], color[1], color[2], true, 0 ); // debugLine( ikKnee + worldThigh, ikFoot + worldThigh, color[0], color[1], color[2], true,0 ); // build transformation matrix for thigh Studio_AlignIKMatrix( mWorldThigh, ikKnee ); Studio_AlignIKMatrix( mWorldKnee, ikFoot - ikKnee ); mWorldKnee[0][3] = ikKnee.x + worldThigh.x; mWorldKnee[1][3] = ikKnee.y + worldThigh.y; mWorldKnee[2][3] = ikKnee.z + worldThigh.z; mWorldFoot[0][3] = ikFoot.x + worldThigh.x; mWorldFoot[1][3] = ikFoot.y + worldThigh.y; mWorldFoot[2][3] = ikFoot.z + worldThigh.z; return true; } else { /* debugLine( worldThigh, worldThigh + ikKnee, 255, 0, 0, true, 0 ); debugLine( worldThigh + ikKnee, worldThigh + ikFoot, 255, 0, 0, true, 0 ); debugLine( worldThigh + ikFoot, worldThigh, 255, 0, 0, true, 0 ); debugLine( worldThigh + ikKnee, worldThigh + ikTargetKnee, 255, 0, 0, true, 0 ); */ return false; } } //----------------------------------------------------------------------------- // Purpose: //----------------------------------------------------------------------------- float Studio_IKRuleWeight( mstudioikrule_t &ikRule, const mstudioanimdesc_t *panim, float flCycle, int &iFrame, float &fraq ) { if (ikRule.end > 1.0f && flCycle < ikRule.start) { flCycle = flCycle + 1.0f; } float value = 0.0f; fraq = (panim->numframes - 1) * (flCycle - ikRule.start) + ikRule.iStart; iFrame = (int)fraq; fraq = fraq - iFrame; if (flCycle < ikRule.start) { iFrame = ikRule.iStart; fraq = 0.0f; return 0.0f; } else if (flCycle < ikRule.peak ) { value = (flCycle - ikRule.start) / (ikRule.peak - ikRule.start); } else if (flCycle < ikRule.tail ) { return 1.0f; } else if (flCycle < ikRule.end ) { value = 1.0f - ((flCycle - ikRule.tail) / (ikRule.end - ikRule.tail)); } else { fraq = (panim->numframes - 1) * (ikRule.end - ikRule.start) + ikRule.iStart; iFrame = (int)fraq; fraq = fraq - iFrame; } return SimpleSpline( value ); } float Studio_IKRuleWeight( ikcontextikrule_t &ikRule, float flCycle ) { if (ikRule.end > 1.0f && flCycle < ikRule.start) { flCycle = flCycle + 1.0f; } float value = 0.0f; if (flCycle < ikRule.start) { return 0.0f; } else if (flCycle < ikRule.peak ) { value = (flCycle - ikRule.start) / (ikRule.peak - ikRule.start); } else if (flCycle < ikRule.tail ) { return 1.0f; } else if (flCycle < ikRule.end ) { value = 1.0f - ((flCycle - ikRule.tail) / (ikRule.end - ikRule.tail)); } return 3.0f * value * value - 2.0f * value * value * value; } //----------------------------------------------------------------------------- // Purpose: //----------------------------------------------------------------------------- bool Studio_IKShouldLatch( ikcontextikrule_t &ikRule, float flCycle ) { if (ikRule.end > 1.0f && flCycle < ikRule.start) { flCycle = flCycle + 1.0f; } if (flCycle < ikRule.peak ) { return false; } else if (flCycle < ikRule.end ) { return true; } return false; } //----------------------------------------------------------------------------- // Purpose: //----------------------------------------------------------------------------- float Studio_IKTail( ikcontextikrule_t &ikRule, float flCycle ) { if (ikRule.end > 1.0f && flCycle < ikRule.start) { flCycle = flCycle + 1.0f; } if (flCycle <= ikRule.tail ) { return 0.0f; } else if (flCycle < ikRule.end ) { return ((flCycle - ikRule.tail) / (ikRule.end - ikRule.tail)); } return 0.0; } //----------------------------------------------------------------------------- // Purpose: //----------------------------------------------------------------------------- bool Studio_IKAnimationError( const CStudioHdr *pStudioHdr, mstudioikrule_t *pRule, const mstudioanimdesc_t *panim, float flCycle, Vector &pos, Quaternion &q, float &flWeight ) { float fraq; int iFrame; flWeight = Studio_IKRuleWeight( *pRule, panim, flCycle, iFrame, fraq ); Assert( fraq >= 0.0 && fraq < 1.0 ); Assert( flWeight >= 0.0f && flWeight <= 1.0f ); // This shouldn't be necessary, but the Assert should help us catch whoever is screwing this up flWeight = clamp( flWeight, 0.0f, 1.0f ); if (pRule->type != IK_GROUND && flWeight < 0.0001) return false; mstudioikerror_t *pError = pRule->pError( iFrame ); if (pError != NULL) { if (fraq < 0.001) { q = pError[0].q; pos = pError[0].pos; } else { QuaternionBlend( pError[0].q, pError[1].q, fraq, q ); pos = pError[0].pos * (1.0f - fraq) + pError[1].pos * fraq; } return true; } mstudiocompressedikerror_t *pCompressed = pRule->pCompressedError(); if (pCompressed != NULL) { CalcDecompressedAnimation( pCompressed, iFrame - pRule->iStart, fraq, pos, q ); return true; } // no data, disable IK rule Assert( 0 ); flWeight = 0.0f; return false; } //----------------------------------------------------------------------------- // Purpose: For a specific sequence:rule, find where it starts, stops, and what // the estimated offset from the connection point is. // return true if the rule is within bounds. //----------------------------------------------------------------------------- bool Studio_IKSequenceError( const CStudioHdr *pStudioHdr, mstudioseqdesc_t &seqdesc, int iSequence, float flCycle, int iRule, const float poseParameter[], mstudioanimdesc_t *panim[4], float weight[4], ikcontextikrule_t &ikRule ) { int i; memset( &ikRule, 0, sizeof(ikRule) ); ikRule.start = ikRule.peak = ikRule.tail = ikRule.end = 0; mstudioikrule_t *prevRule = NULL; // find overall influence for (i = 0; i < 4; i++) { if (weight[i]) { if (iRule >= panim[i]->numikrules || panim[i]->numikrules != panim[0]->numikrules) { Assert( 0 ); return false; } mstudioikrule_t *pRule = panim[i]->pIKRule( iRule ); if (pRule == NULL) return false; float dt = 0.0; if (prevRule != NULL) { if (pRule->start - prevRule->start > 0.5) { dt = -1.0; } else if (pRule->start - prevRule->start < -0.5) { dt = 1.0; } } else { prevRule = pRule; } ikRule.start += (pRule->start + dt) * weight[i]; ikRule.peak += (pRule->peak + dt) * weight[i]; ikRule.tail += (pRule->tail + dt) * weight[i]; ikRule.end += (pRule->end + dt) * weight[i]; } } if (ikRule.start > 1.0) { ikRule.start -= 1.0; ikRule.peak -= 1.0; ikRule.tail -= 1.0; ikRule.end -= 1.0; } else if (ikRule.start < 0.0) { ikRule.start += 1.0; ikRule.peak += 1.0; ikRule.tail += 1.0; ikRule.end += 1.0; } ikRule.flWeight = Studio_IKRuleWeight( ikRule, flCycle ); if (ikRule.flWeight <= 0.001f) { // go ahead and allow IK_GROUND rules a virtual looping section if ( panim[0]->pIKRule( iRule ) == NULL ) return false; if ((panim[0]->flags & STUDIO_LOOPING) && panim[0]->pIKRule( iRule )->type == IK_GROUND && ikRule.end - ikRule.start > 0.75 ) { ikRule.flWeight = 0.001; flCycle = ikRule.end - 0.001; } else { return false; } } Assert( ikRule.flWeight > 0.0f ); ikRule.pos.Init(); ikRule.q.Init(); // find target error float total = 0.0f; for (i = 0; i < 4; i++) { if (weight[i]) { Vector pos1; Quaternion q1; float w; mstudioikrule_t *pRule = panim[i]->pIKRule( iRule ); if (pRule == NULL) return false; ikRule.chain = pRule->chain; // FIXME: this is anim local ikRule.bone = pRule->bone; // FIXME: this is anim local ikRule.type = pRule->type; ikRule.slot = pRule->slot; ikRule.height += pRule->height * weight[i]; ikRule.floor += pRule->floor * weight[i]; ikRule.radius += pRule->radius * weight[i]; ikRule.drop += pRule->drop * weight[i]; ikRule.top += pRule->top * weight[i]; // keep track of tail condition ikRule.release += Studio_IKTail( ikRule, flCycle ) * weight[i]; // only check rules with error values switch( ikRule.type ) { case IK_SELF: case IK_WORLD: case IK_GROUND: case IK_ATTACHMENT: { int bResult = Studio_IKAnimationError( pStudioHdr, pRule, panim[i], flCycle, pos1, q1, w ); if (bResult) { ikRule.pos = ikRule.pos + pos1 * weight[i]; QuaternionAccumulate( ikRule.q, weight[i], q1, ikRule.q ); total += weight[i]; } } break; default: total += weight[i]; break; } ikRule.latched = Studio_IKShouldLatch( ikRule, flCycle ) * ikRule.flWeight; if (ikRule.type == IK_ATTACHMENT) { ikRule.szLabel = pRule->pszAttachment(); } } } if (total <= 0.0001f) { return false; } if (total < 0.999f) { VectorScale( ikRule.pos, 1.0f / total, ikRule.pos ); QuaternionScale( ikRule.q, 1.0f / total, ikRule.q ); } if (ikRule.type == IK_SELF && ikRule.bone != -1) { // FIXME: this is anim local, not seq local! ikRule.bone = pStudioHdr->RemapSeqBone( iSequence, ikRule.bone ); if (ikRule.bone == -1) return false; } QuaternionNormalize( ikRule.q ); return true; } //----------------------------------------------------------------------------- // Purpose: //----------------------------------------------------------------------------- CIKContext::CIKContext() { m_target.EnsureCapacity( 12 ); // FIXME: this sucks, shouldn't it be grown? m_iFramecounter = -1; m_pStudioHdr = NULL; m_flTime = -1.0f; m_target.SetSize( 0 ); } void CIKContext::Init( const CStudioHdr *pStudioHdr, const QAngle &angles, const Vector &pos, float flTime, int iFramecounter, int boneMask ) { m_pStudioHdr = pStudioHdr; m_ikChainRule.RemoveAll(); // m_numikrules = 0; if (pStudioHdr->numikchains()) { m_ikChainRule.SetSize( pStudioHdr->numikchains() ); // FIXME: Brutal hackery to prevent a crash if (m_target.Count() == 0) { m_target.SetSize(12); memset( m_target.Base(), 0, sizeof(m_target[0])*m_target.Count() ); ClearTargets(); } } else { m_target.SetSize( 0 ); } AngleMatrix( angles, pos, m_rootxform ); m_iFramecounter = iFramecounter; m_flTime = flTime; m_boneMask = boneMask; } void CIKContext::AddDependencies( mstudioseqdesc_t &seqdesc, int iSequence, float flCycle, const float poseParameters[], float flWeight ) { int i; if ( m_pStudioHdr->numikchains() == 0) return; if (seqdesc.numikrules == 0) return; ikcontextikrule_t ikrule; Assert( flWeight >= 0.0f && flWeight <= 1.0f ); // This shouldn't be necessary, but the Assert should help us catch whoever is screwing this up flWeight = clamp( flWeight, 0.0f, 1.0f ); // unify this if (seqdesc.flags & STUDIO_REALTIME) { float cps = Studio_CPS( m_pStudioHdr, seqdesc, iSequence, poseParameters ); flCycle = m_flTime * cps; flCycle = flCycle - (int)flCycle; } else if (flCycle < 0 || flCycle >= 1) { if (seqdesc.flags & STUDIO_LOOPING) { flCycle = flCycle - (int)flCycle; if (flCycle < 0) flCycle += 1; } else { flCycle = max( 0.f, min( flCycle, 0.9999f ) ); } } mstudioanimdesc_t *panim[4]; float weight[4]; Studio_SeqAnims( m_pStudioHdr, seqdesc, iSequence, poseParameters, panim, weight ); // FIXME: add proper number of rules!!! for (i = 0; i < seqdesc.numikrules; i++) { if ( !Studio_IKSequenceError( m_pStudioHdr, seqdesc, iSequence, flCycle, i, poseParameters, panim, weight, ikrule ) ) continue; // don't add rule if the bone isn't going to be calculated int bone = m_pStudioHdr->pIKChain( ikrule.chain )->pLink( 2 )->bone; if ( !(m_pStudioHdr->boneFlags( bone ) & m_boneMask)) continue; // or if its relative bone isn't going to be calculated if ( ikrule.bone >= 0 && !(m_pStudioHdr->boneFlags( ikrule.bone ) & m_boneMask)) continue; // FIXME: Brutal hackery to prevent a crash if (m_target.Count() == 0) { m_target.SetSize(12); memset( m_target.Base(), 0, sizeof(m_target[0])*m_target.Count() ); ClearTargets(); } ikrule.flRuleWeight = flWeight; if (ikrule.flRuleWeight * ikrule.flWeight > 0.999) { if ( ikrule.type != IK_UNLATCH) { // clear out chain if rule is 100% m_ikChainRule.Element( ikrule.chain ).RemoveAll( ); if ( ikrule.type == IK_RELEASE) { continue; } } } int nIndex = m_ikChainRule.Element( ikrule.chain ).AddToTail( ); m_ikChainRule.Element( ikrule.chain ).Element( nIndex ) = ikrule; } } //----------------------------------------------------------------------------- // Purpose: //----------------------------------------------------------------------------- void CIKContext::AddAutoplayLocks( Vector pos[], Quaternion q[] ) { // skip all array access if no autoplay locks. if (m_pStudioHdr->GetNumIKAutoplayLocks() == 0) { return; } matrix3x4_t *boneToWorld = g_MatrixPool.Alloc(); CBoneBitList boneComputed; int ikOffset = m_ikLock.AddMultipleToTail( m_pStudioHdr->GetNumIKAutoplayLocks() ); memset( &m_ikLock[ikOffset], 0, sizeof(ikcontextikrule_t)*m_pStudioHdr->GetNumIKAutoplayLocks() ); for (int i = 0; i < m_pStudioHdr->GetNumIKAutoplayLocks(); i++) { const mstudioiklock_t &lock = ((CStudioHdr *)m_pStudioHdr)->pIKAutoplayLock( i ); mstudioikchain_t *pchain = m_pStudioHdr->pIKChain( lock.chain ); int bone = pchain->pLink( 2 )->bone; // don't bother with iklock if the bone isn't going to be calculated if ( !(m_pStudioHdr->boneFlags( bone ) & m_boneMask)) continue; // eval current ik'd bone BuildBoneChain( pos, q, bone, boneToWorld, boneComputed ); ikcontextikrule_t &ikrule = m_ikLock[ i + ikOffset ]; ikrule.chain = lock.chain; ikrule.slot = i; ikrule.type = IK_WORLD; MatrixAngles( boneToWorld[bone], ikrule.q, ikrule.pos ); // save off current knee direction if (pchain->pLink(0)->kneeDir.LengthSqr() > 0.0) { Vector tmp = pchain->pLink( 0 )->kneeDir; VectorRotate( pchain->pLink( 0 )->kneeDir, boneToWorld[ pchain->pLink( 0 )->bone ], ikrule.kneeDir ); MatrixPosition( boneToWorld[ pchain->pLink( 1 )->bone ], ikrule.kneePos ); } else { ikrule.kneeDir.Init( ); } } g_MatrixPool.Free( boneToWorld ); } //----------------------------------------------------------------------------- // Purpose: //----------------------------------------------------------------------------- void CIKContext::AddSequenceLocks( mstudioseqdesc_t &seqdesc, Vector pos[], Quaternion q[] ) { if ( m_pStudioHdr->numikchains() == 0) { return; } if ( seqdesc.numiklocks == 0 ) { return; } matrix3x4_t *boneToWorld = g_MatrixPool.Alloc(); CBoneBitList boneComputed; int ikOffset = m_ikLock.AddMultipleToTail( seqdesc.numiklocks ); memset( &m_ikLock[ikOffset], 0, sizeof(ikcontextikrule_t) * seqdesc.numiklocks ); for (int i = 0; i < seqdesc.numiklocks; i++) { mstudioiklock_t *plock = seqdesc.pIKLock( i ); mstudioikchain_t *pchain = m_pStudioHdr->pIKChain( plock->chain ); int bone = pchain->pLink( 2 )->bone; // don't bother with iklock if the bone isn't going to be calculated if ( !(m_pStudioHdr->boneFlags( bone ) & m_boneMask)) continue; // eval current ik'd bone BuildBoneChain( pos, q, bone, boneToWorld, boneComputed ); ikcontextikrule_t &ikrule = m_ikLock[i+ikOffset]; ikrule.chain = i; ikrule.slot = i; ikrule.type = IK_WORLD; MatrixAngles( boneToWorld[bone], ikrule.q, ikrule.pos ); // save off current knee direction if (pchain->pLink(0)->kneeDir.LengthSqr() > 0.0) { VectorRotate( pchain->pLink( 0 )->kneeDir, boneToWorld[ pchain->pLink( 0 )->bone ], ikrule.kneeDir ); } else { ikrule.kneeDir.Init( ); } } g_MatrixPool.Free( boneToWorld ); } //----------------------------------------------------------------------------- // Purpose: build boneToWorld transforms for a specific bone //----------------------------------------------------------------------------- void CIKContext::BuildBoneChain( const Vector pos[], const Quaternion q[], int iBone, matrix3x4_t *pBoneToWorld, CBoneBitList &boneComputed ) { Assert( m_pStudioHdr->boneFlags( iBone ) & m_boneMask ); ::BuildBoneChain( m_pStudioHdr, m_rootxform, pos, q, iBone, pBoneToWorld, boneComputed ); } //----------------------------------------------------------------------------- // Purpose: build boneToWorld transforms for a specific bone //----------------------------------------------------------------------------- void BuildBoneChain( const CStudioHdr *pStudioHdr, const matrix3x4_t &rootxform, const Vector pos[], const Quaternion q[], int iBone, matrix3x4_t *pBoneToWorld, CBoneBitList &boneComputed ) { if ( boneComputed.IsBoneMarked(iBone) ) return; matrix3x4_t bonematrix; QuaternionMatrix( q[iBone], pos[iBone], bonematrix ); int parent = pStudioHdr->boneParent( iBone ); if (parent == -1) { ConcatTransforms( rootxform, bonematrix, pBoneToWorld[iBone] ); } else { // evil recursive!!! BuildBoneChain( pStudioHdr, rootxform, pos, q, parent, pBoneToWorld, boneComputed ); ConcatTransforms( pBoneToWorld[parent], bonematrix, pBoneToWorld[iBone]); } boneComputed.MarkBone(iBone); } //----------------------------------------------------------------------------- // Purpose: turn a specific bones boneToWorld transform into a pos and q in parents bonespace //----------------------------------------------------------------------------- void SolveBone( const CStudioHdr *pStudioHdr, int iBone, matrix3x4_t *pBoneToWorld, Vector pos[], Quaternion q[] ) { int iParent = pStudioHdr->boneParent( iBone ); matrix3x4_t worldToBone; MatrixInvert( pBoneToWorld[iParent], worldToBone ); matrix3x4_t local; ConcatTransforms( worldToBone, pBoneToWorld[iBone], local ); MatrixAngles( local, q[iBone], pos[iBone] ); } //----------------------------------------------------------------------------- // Purpose: //----------------------------------------------------------------------------- void CIKTarget::SetOwner( int entindex, const Vector &pos, const QAngle &angles ) { latched.owner = entindex; latched.absOrigin = pos; latched.absAngles = angles; } //----------------------------------------------------------------------------- // Purpose: //----------------------------------------------------------------------------- void CIKTarget::ClearOwner( void ) { latched.owner = -1; } //----------------------------------------------------------------------------- // Purpose: //----------------------------------------------------------------------------- int CIKTarget::GetOwner( void ) { return latched.owner; } //----------------------------------------------------------------------------- // Purpose: update the latched IK values that are in a moving frame of reference //----------------------------------------------------------------------------- void CIKTarget::UpdateOwner( int entindex, const Vector &pos, const QAngle &angles ) { if (pos == latched.absOrigin && angles == latched.absAngles) return; matrix3x4_t in, out; AngleMatrix( angles, pos, in ); AngleIMatrix( latched.absAngles, latched.absOrigin, out ); matrix3x4_t tmp1, tmp2; QuaternionMatrix( latched.q, latched.pos, tmp1 ); ConcatTransforms( out, tmp1, tmp2 ); ConcatTransforms( in, tmp2, tmp1 ); MatrixAngles( tmp1, latched.q, latched.pos ); } //----------------------------------------------------------------------------- // Purpose: sets the ground position of an ik target //----------------------------------------------------------------------------- void CIKTarget::SetPos( const Vector &pos ) { est.pos = pos; } //----------------------------------------------------------------------------- // Purpose: sets the ground "identity" orientation of an ik target //----------------------------------------------------------------------------- void CIKTarget::SetAngles( const QAngle &angles ) { AngleQuaternion( angles, est.q ); } //----------------------------------------------------------------------------- // Purpose: sets the ground "identity" orientation of an ik target //----------------------------------------------------------------------------- void CIKTarget::SetQuaternion( const Quaternion &q ) { est.q = q; } //----------------------------------------------------------------------------- // Purpose: calculates a ground "identity" orientation based on the surface // normal of the ground and the desired ground identity orientation //----------------------------------------------------------------------------- void CIKTarget::SetNormal( const Vector &normal ) { // recalculate foot angle based on slope of surface matrix3x4_t m1; Vector forward, right; QuaternionMatrix( est.q, m1 ); MatrixGetColumn( m1, 1, right ); forward = CrossProduct( right, normal ); right = CrossProduct( normal, forward ); MatrixSetColumn( forward, 0, m1 ); MatrixSetColumn( right, 1, m1 ); MatrixSetColumn( normal, 2, m1 ); QAngle a1; Vector p1; MatrixAngles( m1, est.q, p1 ); } //----------------------------------------------------------------------------- // Purpose: estimates the ground impact at the center location assuming a the edge of // an Z axis aligned disc collided with it the surface. //----------------------------------------------------------------------------- void CIKTarget::SetPosWithNormalOffset( const Vector &pos, const Vector &normal ) { // assume it's a disc edge intersecting with the floor, so try to estimate the z location of the center est.pos = pos; if (normal.z > 0.9999) { return; } // clamp at 45 degrees else if (normal.z > 0.707) { // tan == sin / cos float tan = sqrt( 1 - normal.z * normal.z ) / normal.z; est.pos.z = est.pos.z - est.radius * tan; } else { est.pos.z = est.pos.z - est.radius; } } //----------------------------------------------------------------------------- // Purpose: //----------------------------------------------------------------------------- void CIKTarget::SetOnWorld( bool bOnWorld ) { est.onWorld = bOnWorld; } //----------------------------------------------------------------------------- // Purpose: //----------------------------------------------------------------------------- bool CIKTarget::IsActive() { return (est.flWeight > 0.0f); } //----------------------------------------------------------------------------- // Purpose: //----------------------------------------------------------------------------- void CIKTarget::IKFailed( void ) { latched.deltaPos.Init(); latched.deltaQ.Init(); latched.pos = ideal.pos; latched.q = ideal.q; est.latched = 0.0; est.flWeight = 0.0; est.onWorld = false; } //----------------------------------------------------------------------------- // Purpose: //----------------------------------------------------------------------------- void CIKTarget::MoveReferenceFrame( Vector &deltaPos, QAngle &deltaAngles ) { est.pos -= deltaPos; latched.pos -= deltaPos; offset.pos -= deltaPos; ideal.pos -= deltaPos; } //----------------------------------------------------------------------------- // Purpose: Invalidate any IK locks. //----------------------------------------------------------------------------- void CIKContext::ClearTargets( void ) { int i; for (i = 0; i < m_target.Count(); i++) { m_target[i].latched.iFramecounter = -9999; } } //----------------------------------------------------------------------------- // Purpose: Run through the rules that survived and turn a specific bones boneToWorld // transform into a pos and q in parents bonespace //----------------------------------------------------------------------------- void CIKContext::UpdateTargets( Vector pos[], Quaternion q[], matrix3x4_t boneToWorld[], CBoneBitList &boneComputed ) { int i, j; for (i = 0; i < m_target.Count(); i++) { m_target[i].est.flWeight = 0.0f; m_target[i].est.latched = 1.0f; m_target[i].est.release = 1.0f; m_target[i].est.height = 0.0f; m_target[i].est.floor = 0.0f; m_target[i].est.radius = 0.0f; m_target[i].offset.pos.Init(); m_target[i].offset.q.Init(); } AutoIKRelease( ); for (j = 0; j < m_ikChainRule.Count(); j++) { for (i = 0; i < m_ikChainRule.Element( j ).Count(); i++) { ikcontextikrule_t *pRule = &m_ikChainRule.Element( j ).Element( i ); // ikchainresult_t *pChainRule = &chainRule[ m_ikRule[i].chain ]; switch( pRule->type ) { case IK_ATTACHMENT: case IK_GROUND: // case IK_SELF: { matrix3x4_t footTarget; CIKTarget *pTarget = &m_target[pRule->slot]; pTarget->chain = pRule->chain; pTarget->type = pRule->type; if (pRule->type == IK_ATTACHMENT) { pTarget->offset.pAttachmentName = pRule->szLabel; } else { pTarget->offset.pAttachmentName = NULL; } if (pRule->flRuleWeight == 1.0f || pTarget->est.flWeight == 0.0f) { pTarget->offset.q = pRule->q; pTarget->offset.pos = pRule->pos; pTarget->est.height = pRule->height; pTarget->est.floor = pRule->floor; pTarget->est.radius = pRule->radius; pTarget->est.latched = pRule->latched * pRule->flRuleWeight; pTarget->est.release = pRule->release; pTarget->est.flWeight = pRule->flWeight * pRule->flRuleWeight; } else { QuaternionSlerp( pTarget->offset.q, pRule->q, pRule->flRuleWeight, pTarget->offset.q ); pTarget->offset.pos = Lerp( pRule->flRuleWeight, pTarget->offset.pos, pRule->pos ); pTarget->est.height = Lerp( pRule->flRuleWeight, pTarget->est.height, pRule->height ); pTarget->est.floor = Lerp( pRule->flRuleWeight, pTarget->est.floor, pRule->floor ); pTarget->est.radius = Lerp( pRule->flRuleWeight, pTarget->est.radius, pRule->radius ); //pTarget->est.latched = Lerp( pRule->flRuleWeight, pTarget->est.latched, pRule->latched ); pTarget->est.latched = min( pTarget->est.latched, pRule->latched ); pTarget->est.release = Lerp( pRule->flRuleWeight, pTarget->est.release, pRule->release ); pTarget->est.flWeight = Lerp( pRule->flRuleWeight, pTarget->est.flWeight, pRule->flWeight ); } if ( pRule->type == IK_GROUND ) { pTarget->latched.deltaPos.z = 0; pTarget->est.pos.z = pTarget->est.floor + m_rootxform[2][3]; } } break; case IK_UNLATCH: { CIKTarget *pTarget = &m_target[pRule->slot]; if (pRule->latched > 0.0) pTarget->est.latched = 0.0; else pTarget->est.latched = min( pTarget->est.latched, 1.0f - pRule->flWeight ); } break; case IK_RELEASE: { CIKTarget *pTarget = &m_target[pRule->slot]; if (pRule->latched > 0.0) pTarget->est.latched = 0.0; else pTarget->est.latched = min( pTarget->est.latched, 1.0f - pRule->flWeight ); pTarget->est.flWeight = (pTarget->est.flWeight) * (1 - pRule->flWeight * pRule->flRuleWeight); } break; } } } for (i = 0; i < m_target.Count(); i++) { CIKTarget *pTarget = &m_target[i]; if (pTarget->est.flWeight > 0.0) { mstudioikchain_t *pchain = m_pStudioHdr->pIKChain( pTarget->chain ); // ikchainresult_t *pChainRule = &chainRule[ i ]; int bone = pchain->pLink( 2 )->bone; // eval current ik'd bone BuildBoneChain( pos, q, bone, boneToWorld, boneComputed ); // xform IK target error into world space matrix3x4_t local; matrix3x4_t worldFootpad; QuaternionMatrix( pTarget->offset.q, pTarget->offset.pos, local ); MatrixInvert( local, local ); ConcatTransforms( boneToWorld[bone], local, worldFootpad ); if (pTarget->est.latched == 1.0) { pTarget->latched.bNeedsLatch = true; } else { pTarget->latched.bNeedsLatch = false; } // disable latched position if it looks invalid if (m_iFramecounter < 0 || pTarget->latched.iFramecounter < m_iFramecounter - 1 || pTarget->latched.iFramecounter > m_iFramecounter) { pTarget->latched.bHasLatch = false; pTarget->latched.influence = 0.0; } pTarget->latched.iFramecounter = m_iFramecounter; // find ideal contact position MatrixAngles( worldFootpad, pTarget->ideal.q, pTarget->ideal.pos ); pTarget->est.q = pTarget->ideal.q; pTarget->est.pos = pTarget->ideal.pos; float latched = pTarget->est.latched; if (pTarget->latched.bHasLatch) { if (pTarget->est.latched == 1.0) { // keep track of latch position error from ideal contact position pTarget->latched.deltaPos = pTarget->latched.pos - pTarget->est.pos; QuaternionSM( -1, pTarget->est.q, pTarget->latched.q, pTarget->latched.deltaQ ); pTarget->est.q = pTarget->latched.q; pTarget->est.pos = pTarget->latched.pos; } else if (pTarget->est.latched > 0.0) { // ramp out latch differences during decay phase of rule if (latched > 0 && latched < pTarget->latched.influence) { // latching has decreased float dt = pTarget->latched.influence - latched; if (pTarget->latched.influence > 0.0) dt = dt / pTarget->latched.influence; VectorScale( pTarget->latched.deltaPos, (1-dt), pTarget->latched.deltaPos ); QuaternionScale( pTarget->latched.deltaQ, (1-dt), pTarget->latched.deltaQ ); } // move ideal contact position by latched error factor pTarget->est.pos = pTarget->est.pos + pTarget->latched.deltaPos; QuaternionMA( pTarget->est.q, 1, pTarget->latched.deltaQ, pTarget->est.q ); pTarget->latched.q = pTarget->est.q; pTarget->latched.pos = pTarget->est.pos; } else { pTarget->latched.bHasLatch = false; pTarget->latched.q = pTarget->est.q; pTarget->latched.pos = pTarget->est.pos; pTarget->latched.deltaPos.Init(); pTarget->latched.deltaQ.Init(); } pTarget->latched.influence = latched; } // check for illegal requests Vector p1, p2, p3; MatrixPosition( boneToWorld[pchain->pLink( 0 )->bone], p1 ); // hip MatrixPosition( boneToWorld[pchain->pLink( 1 )->bone], p2 ); // knee MatrixPosition( boneToWorld[pchain->pLink( 2 )->bone], p3 ); // foot float d1 = (p2 - p1).Length(); float d2 = (p3 - p2).Length(); if (pTarget->latched.bHasLatch) { //float d3 = (p3 - p1).Length(); float d4 = (p3 + pTarget->latched.deltaPos - p1).Length(); // unstick feet when distance is too great if ((d4 < fabs( d1 - d2 ) || d4 * 0.95 > d1 + d2) && pTarget->est.latched > 0.2) { pTarget->error.flTime = m_flTime; } // unstick feet when angle is too great if (pTarget->est.latched > 0.2) { float d = fabs( pTarget->latched.deltaQ.w ) * 2.0f - 1.0f; // QuaternionDotProduct( pTarget->latched.q, pTarget->est.q ); // FIXME: cos(45), make property of chain if (d < 0.707) { pTarget->error.flTime = m_flTime; } } } Vector dt = pTarget->est.pos - p1; pTarget->trace.hipToFoot = VectorNormalize( dt ); pTarget->trace.hipToKnee = d1; pTarget->trace.kneeToFoot = d2; pTarget->trace.hip = p1; pTarget->trace.knee = p2; pTarget->trace.closest = p1 + dt * (fabs( d1 - d2 ) * 1.01); pTarget->trace.farthest = p1 + dt * (d1 + d2) * 0.99; pTarget->trace.lowest = p1 + Vector( 0, 0, -1 ) * (d1 + d2) * 0.99; // pTarget->trace.endpos = pTarget->est.pos; } } } //----------------------------------------------------------------------------- // Purpose: insert release rules if the ik rules were in error //----------------------------------------------------------------------------- void CIKContext::AutoIKRelease( void ) { int i; for (i = 0; i < m_target.Count(); i++) { CIKTarget *pTarget = &m_target[i]; float dt = m_flTime - pTarget->error.flTime; if (pTarget->error.bInError || dt < 0.5) { if (!pTarget->error.bInError) { pTarget->error.ramp = 0.0; pTarget->error.flErrorTime = pTarget->error.flTime; pTarget->error.bInError = true; } float ft = m_flTime - pTarget->error.flErrorTime; if (dt < 0.25) { pTarget->error.ramp = min( pTarget->error.ramp + ft * 4.0, 1.0 ); } else { pTarget->error.ramp = max( pTarget->error.ramp - ft * 4.0, 0.0 ); } if (pTarget->error.ramp > 0.0) { ikcontextikrule_t ikrule; ikrule.chain = pTarget->chain; ikrule.bone = 0; ikrule.type = IK_RELEASE; ikrule.slot = i; ikrule.flWeight = SimpleSpline( pTarget->error.ramp ); ikrule.flRuleWeight = 1.0; ikrule.latched = dt < 0.25 ? 0.0 : ikrule.flWeight; // don't bother with AutoIKRelease if the bone isn't going to be calculated // this code is crashing for some unknown reason. if ( pTarget->chain >= 0 && pTarget->chain < m_pStudioHdr->numikchains()) { mstudioikchain_t *pchain = m_pStudioHdr->pIKChain( pTarget->chain ); if (pchain != NULL) { int bone = pchain->pLink( 2 )->bone; if (bone >= 0 && bone < m_pStudioHdr->numbones()) { mstudiobone_t *pBone = m_pStudioHdr->pBone( bone ); if (pBone != NULL) { if ( !(m_pStudioHdr->boneFlags( bone ) & m_boneMask)) { pTarget->error.bInError = false; continue; } /* char buf[256]; sprintf( buf, "dt %.4f ft %.4f weight %.4f latched %.4f\n", dt, ft, ikrule.flWeight, ikrule.latched ); OutputDebugString( buf ); */ int nIndex = m_ikChainRule.Element( ikrule.chain ).AddToTail( ); m_ikChainRule.Element( ikrule.chain ).Element( nIndex ) = ikrule; } else { DevWarning( 1, "AutoIKRelease (%s) got a NULL pBone %d\n", m_pStudioHdr->pszName(), bone ); } } else { DevWarning( 1, "AutoIKRelease (%s) got an out of range bone %d (%d)\n", m_pStudioHdr->pszName(), bone, m_pStudioHdr->numbones() ); } } else { DevWarning( 1, "AutoIKRelease (%s) got a NULL pchain %d\n", m_pStudioHdr->pszName(), pTarget->chain ); } } else { DevWarning( 1, "AutoIKRelease (%s) got an out of range chain %d (%d)\n", m_pStudioHdr->pszName(), pTarget->chain, m_pStudioHdr->numikchains()); } } else { pTarget->error.bInError = false; } pTarget->error.flErrorTime = m_flTime; } } } void CIKContext::SolveDependencies( Vector pos[], Quaternion q[], matrix3x4_t boneToWorld[], CBoneBitList &boneComputed ) { // ASSERT_NO_REENTRY(); matrix3x4_t worldTarget; int i, j; ikchainresult_t chainResult[32]; // allocate!!! // init chain rules for (i = 0; i < m_pStudioHdr->numikchains(); i++) { mstudioikchain_t *pchain = m_pStudioHdr->pIKChain( i ); ikchainresult_t *pChainResult = &chainResult[ i ]; int bone = pchain->pLink( 2 )->bone; pChainResult->target = -1; pChainResult->flWeight = 0.0; // don't bother with chain if the bone isn't going to be calculated if ( !(m_pStudioHdr->boneFlags( bone ) & m_boneMask)) continue; // eval current ik'd bone BuildBoneChain( pos, q, bone, boneToWorld, boneComputed ); MatrixAngles( boneToWorld[bone], pChainResult->q, pChainResult->pos ); } for (j = 0; j < m_ikChainRule.Count(); j++) { for (i = 0; i < m_ikChainRule.Element( j ).Count(); i++) { ikcontextikrule_t *pRule = &m_ikChainRule.Element( j ).Element( i ); ikchainresult_t *pChainResult = &chainResult[ pRule->chain ]; pChainResult->target = -1; switch( pRule->type ) { case IK_SELF: { // xform IK target error into world space matrix3x4_t local; QuaternionMatrix( pRule->q, pRule->pos, local ); // eval target bone space if (pRule->bone != -1) { BuildBoneChain( pos, q, pRule->bone, boneToWorld, boneComputed ); ConcatTransforms( boneToWorld[pRule->bone], local, worldTarget ); } else { ConcatTransforms( m_rootxform, local, worldTarget ); } float flWeight = pRule->flWeight * pRule->flRuleWeight; pChainResult->flWeight = pChainResult->flWeight * (1 - flWeight) + flWeight; Vector p2; Quaternion q2; // target p and q MatrixAngles( worldTarget, q2, p2 ); // debugLine( pChainResult->pos, p2, 0, 0, 255, true, 0.1 ); // blend in position and angles pChainResult->pos = pChainResult->pos * (1.0 - flWeight) + p2 * flWeight; QuaternionSlerp( pChainResult->q, q2, flWeight, pChainResult->q ); } break; case IK_WORLD: Assert( 0 ); break; case IK_ATTACHMENT: break; case IK_GROUND: break; case IK_RELEASE: { // move target back towards original location float flWeight = pRule->flWeight * pRule->flRuleWeight; mstudioikchain_t *pchain = m_pStudioHdr->pIKChain( pRule->chain ); int bone = pchain->pLink( 2 )->bone; Vector p2; Quaternion q2; BuildBoneChain( pos, q, bone, boneToWorld, boneComputed ); MatrixAngles( boneToWorld[bone], q2, p2 ); // blend in position and angles pChainResult->pos = pChainResult->pos * (1.0 - flWeight) + p2 * flWeight; QuaternionSlerp( pChainResult->q, q2, flWeight, pChainResult->q ); } break; case IK_UNLATCH: { /* pChainResult->flWeight = pChainResult->flWeight * (1 - pRule->flWeight) + pRule->flWeight; pChainResult->pos = pChainResult->pos * (1.0 - pRule->flWeight ) + pChainResult->local.pos * pRule->flWeight; QuaternionSlerp( pChainResult->q, pChainResult->local.q, pRule->flWeight, pChainResult->q ); */ } break; } } } for (i = 0; i < m_target.Count(); i++) { CIKTarget *pTarget = &m_target[i]; if (m_target[i].est.flWeight > 0.0) { matrix3x4_t worldFootpad; matrix3x4_t local; //mstudioikchain_t *pchain = m_pStudioHdr->pIKChain( m_target[i].chain ); ikchainresult_t *pChainResult = &chainResult[ pTarget->chain ]; AngleMatrix(pTarget->offset.q, pTarget->offset.pos, local ); AngleMatrix( pTarget->est.q, pTarget->est.pos, worldFootpad ); ConcatTransforms( worldFootpad, local, worldTarget ); Vector p2; Quaternion q2; // target p and q MatrixAngles( worldTarget, q2, p2 ); // MatrixAngles( worldTarget, pChainResult->q, pChainResult->pos ); // blend in position and angles pChainResult->flWeight = pTarget->est.flWeight; pChainResult->pos = pChainResult->pos * (1.0 - pChainResult->flWeight ) + p2 * pChainResult->flWeight; QuaternionSlerp( pChainResult->q, q2, pChainResult->flWeight, pChainResult->q ); } if (pTarget->latched.bNeedsLatch) { // keep track of latch position pTarget->latched.bHasLatch = true; pTarget->latched.q = pTarget->est.q; pTarget->latched.pos = pTarget->est.pos; } } for (i = 0; i < m_pStudioHdr->numikchains(); i++) { ikchainresult_t *pChainResult = &chainResult[ i ]; mstudioikchain_t *pchain = m_pStudioHdr->pIKChain( i ); if (pChainResult->flWeight > 0.0) { Vector tmp; MatrixPosition( boneToWorld[pchain->pLink( 2 )->bone], tmp ); // debugLine( pChainResult->pos, tmp, 255, 255, 255, true, 0.1 ); // do exact IK solution // FIXME: once per link! if (Studio_SolveIK(pchain, pChainResult->pos, boneToWorld )) { Vector p3; MatrixGetColumn( boneToWorld[pchain->pLink( 2 )->bone], 3, p3 ); QuaternionMatrix( pChainResult->q, p3, boneToWorld[pchain->pLink( 2 )->bone] ); // rebuild chain // FIXME: is this needed if everyone past this uses the boneToWorld array? SolveBone( m_pStudioHdr, pchain->pLink( 2 )->bone, boneToWorld, pos, q ); SolveBone( m_pStudioHdr, pchain->pLink( 1 )->bone, boneToWorld, pos, q ); SolveBone( m_pStudioHdr, pchain->pLink( 0 )->bone, boneToWorld, pos, q ); } else { // FIXME: need to invalidate the targets that forced this... if (pChainResult->target != -1) { CIKTarget *pTarget = &m_target[pChainResult->target]; VectorScale( pTarget->latched.deltaPos, 0.8, pTarget->latched.deltaPos ); QuaternionScale( pTarget->latched.deltaQ, 0.8, pTarget->latched.deltaQ ); } } } } #if 0 Vector p1, p2, p3; Quaternion q1, q2, q3; // current p and q MatrixAngles( boneToWorld[bone], q1, p1 ); // target p and q MatrixAngles( worldTarget, q2, p2 ); // blend in position and angles p3 = p1 * (1.0 - m_ikRule[i].flWeight ) + p2 * m_ikRule[i].flWeight; // do exact IK solution // FIXME: once per link! Studio_SolveIK(pchain, p3, boneToWorld ); // force angle (bad?) QuaternionSlerp( q1, q2, m_ikRule[i].flWeight, q3 ); MatrixGetColumn( boneToWorld[bone], 3, p3 ); QuaternionMatrix( q3, p3, boneToWorld[bone] ); // rebuild chain SolveBone( m_pStudioHdr, pchain->pLink( 2 )->bone, boneToWorld, pos, q ); SolveBone( m_pStudioHdr, pchain->pLink( 1 )->bone, boneToWorld, pos, q ); SolveBone( m_pStudioHdr, pchain->pLink( 0 )->bone, boneToWorld, pos, q ); #endif } //----------------------------------------------------------------------------- // Purpose: //----------------------------------------------------------------------------- void CIKContext::SolveAutoplayLocks( Vector pos[], Quaternion q[] ) { matrix3x4_t *boneToWorld = g_MatrixPool.Alloc(); CBoneBitList boneComputed; int i; for (i = 0; i < m_ikLock.Count(); i++) { const mstudioiklock_t &lock = ((CStudioHdr *)m_pStudioHdr)->pIKAutoplayLock( i ); SolveLock( &lock, i, pos, q, boneToWorld, boneComputed ); } g_MatrixPool.Free( boneToWorld ); } //----------------------------------------------------------------------------- // Purpose: //----------------------------------------------------------------------------- void CIKContext::SolveSequenceLocks( mstudioseqdesc_t &seqdesc, Vector pos[], Quaternion q[] ) { matrix3x4_t *boneToWorld = g_MatrixPool.Alloc(); CBoneBitList boneComputed; int i; for (i = 0; i < m_ikLock.Count(); i++) { mstudioiklock_t *plock = seqdesc.pIKLock( i ); SolveLock( plock, i, pos, q, boneToWorld, boneComputed ); } g_MatrixPool.Free( boneToWorld ); } //----------------------------------------------------------------------------- // Purpose: //----------------------------------------------------------------------------- void CIKContext::AddAllLocks( Vector pos[], Quaternion q[] ) { // skip all array access if no autoplay locks. if (m_pStudioHdr->GetNumIKChains() == 0) { return; } matrix3x4_t *boneToWorld = g_MatrixPool.Alloc(); CBoneBitList boneComputed; int ikOffset = m_ikLock.AddMultipleToTail( m_pStudioHdr->GetNumIKChains() ); memset( &m_ikLock[ikOffset], 0, sizeof(ikcontextikrule_t)*m_pStudioHdr->GetNumIKChains() ); for (int i = 0; i < m_pStudioHdr->GetNumIKChains(); i++) { mstudioikchain_t *pchain = m_pStudioHdr->pIKChain( i ); int bone = pchain->pLink( 2 )->bone; // don't bother with iklock if the bone isn't going to be calculated if ( !(m_pStudioHdr->boneFlags( bone ) & m_boneMask)) continue; // eval current ik'd bone BuildBoneChain( pos, q, bone, boneToWorld, boneComputed ); ikcontextikrule_t &ikrule = m_ikLock[ i + ikOffset ]; ikrule.chain = i; ikrule.slot = i; ikrule.type = IK_WORLD; MatrixAngles( boneToWorld[bone], ikrule.q, ikrule.pos ); // save off current knee direction if (pchain->pLink(0)->kneeDir.LengthSqr() > 0.0) { Vector tmp = pchain->pLink( 0 )->kneeDir; VectorRotate( pchain->pLink( 0 )->kneeDir, boneToWorld[ pchain->pLink( 0 )->bone ], ikrule.kneeDir ); MatrixPosition( boneToWorld[ pchain->pLink( 1 )->bone ], ikrule.kneePos ); } else { ikrule.kneeDir.Init( ); } } g_MatrixPool.Free( boneToWorld ); } //----------------------------------------------------------------------------- // Purpose: //----------------------------------------------------------------------------- void CIKContext::SolveAllLocks( Vector pos[], Quaternion q[] ) { matrix3x4_t *boneToWorld = g_MatrixPool.Alloc(); CBoneBitList boneComputed; int i; mstudioiklock_t lock; for (i = 0; i < m_ikLock.Count(); i++) { lock.chain = i; lock.flPosWeight = 1.0; lock.flLocalQWeight = 0.0; lock.flags = 0; SolveLock( &lock, i, pos, q, boneToWorld, boneComputed ); } g_MatrixPool.Free( boneToWorld ); } //----------------------------------------------------------------------------- // Purpose: //----------------------------------------------------------------------------- void CIKContext::SolveLock( const mstudioiklock_t *plock, int i, Vector pos[], Quaternion q[], matrix3x4_t boneToWorld[], CBoneBitList &boneComputed ) { mstudioikchain_t *pchain = m_pStudioHdr->pIKChain( plock->chain ); int bone = pchain->pLink( 2 )->bone; // don't bother with iklock if the bone isn't going to be calculated if ( !(m_pStudioHdr->boneFlags( bone ) & m_boneMask)) return; // eval current ik'd bone BuildBoneChain( pos, q, bone, boneToWorld, boneComputed ); Vector p1, p2, p3; Quaternion q2, q3; // current p and q MatrixPosition( boneToWorld[bone], p1 ); // blend in position p3 = p1 * (1.0 - plock->flPosWeight ) + m_ikLock[i].pos * plock->flPosWeight; // do exact IK solution if (m_ikLock[i].kneeDir.LengthSqr() > 0) { Studio_SolveIK(pchain->pLink( 0 )->bone, pchain->pLink( 1 )->bone, pchain->pLink( 2 )->bone, p3, m_ikLock[i].kneePos, m_ikLock[i].kneeDir, boneToWorld ); } else { Studio_SolveIK(pchain, p3, boneToWorld ); } // slam orientation MatrixPosition( boneToWorld[bone], p3 ); QuaternionMatrix( m_ikLock[i].q, p3, boneToWorld[bone] ); // rebuild chain q2 = q[ bone ]; SolveBone( m_pStudioHdr, pchain->pLink( 2 )->bone, boneToWorld, pos, q ); QuaternionSlerp( q[bone], q2, plock->flLocalQWeight, q[bone] ); SolveBone( m_pStudioHdr, pchain->pLink( 1 )->bone, boneToWorld, pos, q ); SolveBone( m_pStudioHdr, pchain->pLink( 0 )->bone, boneToWorld, pos, q ); } //----------------------------------------------------------------------------- // Purpose: run all animations that automatically play and are driven off of poseParameters //----------------------------------------------------------------------------- void CBoneSetup::CalcAutoplaySequences( Vector pos[], Quaternion q[], float flRealTime, CIKContext *pIKContext ) { // ASSERT_NO_REENTRY(); int i; if ( pIKContext ) { pIKContext->AddAutoplayLocks( pos, q ); } unsigned short *pList = NULL; int count = m_pStudioHdr->GetAutoplayList( &pList ); for (i = 0; i < count; i++) { int sequenceIndex = pList[i]; mstudioseqdesc_t &seqdesc = ((CStudioHdr *)m_pStudioHdr)->pSeqdesc( sequenceIndex ); if (seqdesc.flags & STUDIO_AUTOPLAY) { float cycle = 0; float cps = Studio_CPS( m_pStudioHdr, seqdesc, sequenceIndex, m_flPoseParameter ); cycle = flRealTime * cps; cycle = cycle - (int)cycle; AccumulatePose( pos, q, sequenceIndex, cycle, 1.0, flRealTime, pIKContext ); } } if ( pIKContext ) { pIKContext->SolveAutoplayLocks( pos, q ); } } //----------------------------------------------------------------------------- // Purpose: //----------------------------------------------------------------------------- void Studio_BuildMatrices( const CStudioHdr *pStudioHdr, const QAngle& angles, const Vector& origin, const Vector pos[], const Quaternion q[], int iBone, float flScale, matrix3x4_t bonetoworld[MAXSTUDIOBONES], int boneMask ) { int i, j; int chain[MAXSTUDIOBONES] = {}; int chainlength = 0; if (iBone < -1 || iBone >= pStudioHdr->numbones()) iBone = 0; // build list of what bones to use if (iBone == -1) { // all bones chainlength = pStudioHdr->numbones(); for (i = 0; i < pStudioHdr->numbones(); i++) { chain[chainlength - i - 1] = i; } } else { // only the parent bones i = iBone; while (i != -1) { chain[chainlength++] = i; i = pStudioHdr->boneParent( i ); } } matrix3x4_t bonematrix; matrix3x4_t rotationmatrix; // model to world transformation AngleMatrix( angles, origin, rotationmatrix ); // Account for a change in scale if ( flScale < 1.0f-FLT_EPSILON || flScale > 1.0f+FLT_EPSILON ) { Vector vecOffset; MatrixGetColumn( rotationmatrix, 3, vecOffset ); vecOffset -= origin; vecOffset *= flScale; vecOffset += origin; MatrixSetColumn( vecOffset, 3, rotationmatrix ); // Scale it uniformly VectorScale( rotationmatrix[0], flScale, rotationmatrix[0] ); VectorScale( rotationmatrix[1], flScale, rotationmatrix[1] ); VectorScale( rotationmatrix[2], flScale, rotationmatrix[2] ); } for (j = chainlength - 1; j >= 0; j--) { i = chain[j]; if (pStudioHdr->boneFlags(i) & boneMask) { QuaternionMatrix( q[i], pos[i], bonematrix ); if (pStudioHdr->boneParent(i) == -1) { ConcatTransforms (rotationmatrix, bonematrix, bonetoworld[i]); } else { ConcatTransforms (bonetoworld[pStudioHdr->boneParent(i)], bonematrix, bonetoworld[i]); } } } } //----------------------------------------------------------------------------- // Purpose: look at single column vector of another bones local transformation // and generate a procedural transformation based on how that column // points down the 6 cardinal axis (all negative weights are clamped to 0). //----------------------------------------------------------------------------- void DoAxisInterpBone( mstudiobone_t *pbones, int ibone, CBoneAccessor &bonetoworld ) { matrix3x4_t bonematrix; Vector control; mstudioaxisinterpbone_t *pProc = (mstudioaxisinterpbone_t *)pbones[ibone].pProcedure( ); const matrix3x4_t &controlBone = bonetoworld.GetBone( pProc->control ); if (pProc && pbones[pProc->control].parent != -1) { Vector tmp; // pull out the control column tmp.x = controlBone[0][pProc->axis]; tmp.y = controlBone[1][pProc->axis]; tmp.z = controlBone[2][pProc->axis]; // invert it back into parent's space. VectorIRotate( tmp, bonetoworld.GetBone( pbones[pProc->control].parent ), control ); #if 0 matrix3x4_t tmpmatrix; matrix3x4_t controlmatrix; MatrixInvert( bonetoworld.GetBone( pbones[pProc->control].parent ), tmpmatrix ); ConcatTransforms( tmpmatrix, bonetoworld.GetBone( pProc->control ), controlmatrix ); // pull out the control column control.x = controlmatrix[0][pProc->axis]; control.y = controlmatrix[1][pProc->axis]; control.z = controlmatrix[2][pProc->axis]; #endif } else { // pull out the control column control.x = controlBone[0][pProc->axis]; control.y = controlBone[1][pProc->axis]; control.z = controlBone[2][pProc->axis]; } Quaternion *q1, *q2, *q3; Vector *p1, *p2, *p3; // find axial control inputs float a1 = control.x; float a2 = control.y; float a3 = control.z; if (a1 >= 0) { q1 = &pProc->quat[0]; p1 = &pProc->pos[0]; } else { a1 = -a1; q1 = &pProc->quat[1]; p1 = &pProc->pos[1]; } if (a2 >= 0) { q2 = &pProc->quat[2]; p2 = &pProc->pos[2]; } else { a2 = -a2; q2 = &pProc->quat[3]; p2 = &pProc->pos[3]; } if (a3 >= 0) { q3 = &pProc->quat[4]; p3 = &pProc->pos[4]; } else { a3 = -a3; q3 = &pProc->quat[5]; p3 = &pProc->pos[5]; } // do a three-way blend Vector p; Quaternion v, tmp; if (a1 + a2 > 0) { float t = 1.0 / (a1 + a2 + a3); // FIXME: do a proper 3-way Quat blend! QuaternionSlerp( *q2, *q1, a1 / (a1 + a2), tmp ); QuaternionSlerp( tmp, *q3, a3 * t, v ); VectorScale( *p1, a1 * t, p ); VectorMA( p, a2 * t, *p2, p ); VectorMA( p, a3 * t, *p3, p ); } else { QuaternionSlerp( *q3, *q3, 0, v ); // ??? no quat copy? p = *p3; } QuaternionMatrix( v, p, bonematrix ); ConcatTransforms (bonetoworld.GetBone( pbones[ibone].parent ), bonematrix, bonetoworld.GetBoneForWrite( ibone )); } //----------------------------------------------------------------------------- // Purpose: Generate a procedural transformation based on how that another bones // local transformation matches a set of target orientations. //----------------------------------------------------------------------------- void DoQuatInterpBone( mstudiobone_t *pbones, int ibone, CBoneAccessor &bonetoworld ) { matrix3x4_t bonematrix; Vector control; mstudioquatinterpbone_t *pProc = (mstudioquatinterpbone_t *)pbones[ibone].pProcedure( ); if (pProc && pbones[pProc->control].parent != -1) { Quaternion src; float weight[32]; float scale = 0.0; Quaternion quat; Vector pos; matrix3x4_t tmpmatrix; matrix3x4_t controlmatrix; MatrixInvert( bonetoworld.GetBone( pbones[pProc->control].parent), tmpmatrix ); ConcatTransforms( tmpmatrix, bonetoworld.GetBone( pProc->control ), controlmatrix ); MatrixAngles( controlmatrix, src, pos ); // FIXME: make a version without pos int i; for (i = 0; i < pProc->numtriggers; i++) { float dot = fabs( QuaternionDotProduct( pProc->pTrigger( i )->trigger, src ) ); // FIXME: a fast acos should be acceptable dot = clamp( dot, -1.f, 1.f ); weight[i] = 1 - (2 * acos( dot ) * pProc->pTrigger( i )->inv_tolerance ); weight[i] = max( 0.f, weight[i] ); scale += weight[i]; } if (scale <= 0.001) // EPSILON? { AngleMatrix( pProc->pTrigger( 0 )->quat, pProc->pTrigger( 0 )->pos, bonematrix ); ConcatTransforms ( bonetoworld.GetBone( pbones[ibone].parent ), bonematrix, bonetoworld.GetBoneForWrite( ibone ) ); return; } scale = 1.0 / scale; quat.Init( 0, 0, 0, 0); pos.Init( ); for (i = 0; i < pProc->numtriggers; i++) { if (weight[i]) { float s = weight[i] * scale; mstudioquatinterpinfo_t *pTrigger = pProc->pTrigger( i ); QuaternionAlign( pTrigger->quat, quat, quat ); quat.x = quat.x + s * pTrigger->quat.x; quat.y = quat.y + s * pTrigger->quat.y; quat.z = quat.z + s * pTrigger->quat.z; quat.w = quat.w + s * pTrigger->quat.w; pos.x = pos.x + s * pTrigger->pos.x; pos.y = pos.y + s * pTrigger->pos.y; pos.z = pos.z + s * pTrigger->pos.z; } } Assert( QuaternionNormalize( quat ) != 0); QuaternionMatrix( quat, pos, bonematrix ); } ConcatTransforms (bonetoworld.GetBone( pbones[ibone].parent ), bonematrix, bonetoworld.GetBoneForWrite( ibone )); } /* * This is for DoAimAtBone below, was just for testing, not needed in general * but to turn it back on, uncomment this and the section in DoAimAtBone() below * static ConVar aim_constraint( "aim_constraint", "1", FCVAR_REPLICATED, "Toggle Helper Bones" ); */ //----------------------------------------------------------------------------- // Purpose: Generate a procedural transformation so that one bone points at // another point on the model //----------------------------------------------------------------------------- void DoAimAtBone( mstudiobone_t *pBones, int iBone, CBoneAccessor &bonetoworld, const CStudioHdr *pStudioHdr ) { mstudioaimatbone_t *pProc = (mstudioaimatbone_t *)pBones[iBone].pProcedure(); if ( !pProc ) { return; } /* * Uncomment this if the ConVar above is uncommented * if ( !aim_constraint.GetBool() ) { // If the aim constraint is turned off then just copy the parent transform // plus the offset value matrix3x4_t boneToWorldSpace; MatrixCopy ( bonetoworld.GetBone( pProc->parent ), boneToWorldSpace ); Vector boneWorldPosition; VectorTransform( pProc->basepos, boneToWorldSpace, boneWorldPosition ); MatrixSetColumn( boneWorldPosition, 3, boneToWorldSpace ); MatrixCopy( boneToWorldSpace, bonetoworld.GetBoneForWrite( iBone ) ); return; } */ // The world matrix of the bone to change matrix3x4_t boneMatrix; // Guaranteed to be unit length const Vector &userAimVector( pProc->aimvector ); // Guaranteed to be unit length const Vector &userUpVector( pProc->upvector ); // Get to get position of bone but also for up reference matrix3x4_t parentSpace; MatrixCopy ( bonetoworld.GetBone( pProc->parent ), parentSpace ); // World space position of the bone to aim Vector aimWorldPosition; VectorTransform( pProc->basepos, parentSpace, aimWorldPosition ); // The worldspace matrix of the bone to aim at matrix3x4_t aimAtSpace; if ( pStudioHdr ) { // This means it's AIMATATTACH const mstudioattachment_t &attachment( ((CStudioHdr *)pStudioHdr)->pAttachment( pProc->aim ) ); ConcatTransforms( bonetoworld.GetBone( attachment.localbone ), attachment.local, aimAtSpace ); } else { MatrixCopy( bonetoworld.GetBone( pProc->aim ), aimAtSpace ); } Vector aimAtWorldPosition; MatrixGetColumn( aimAtSpace, 3, aimAtWorldPosition ); // make sure the redundant parent info is correct Assert( pProc->parent == pBones[iBone].parent ); // make sure the redundant position info is correct Assert( pProc->basepos.DistToSqr( pBones[iBone].pos ) < 0.1 ); // The aim and up data is relative to this bone, not the parent bone matrix3x4_t bonematrix, boneLocalToWorld; AngleMatrix( pBones[iBone].quat, pProc->basepos, bonematrix ); ConcatTransforms( bonetoworld.GetBone( pProc->parent ), bonematrix, boneLocalToWorld ); Vector aimVector; VectorSubtract( aimAtWorldPosition, aimWorldPosition, aimVector ); VectorNormalizeFast( aimVector ); Vector axis; CrossProduct( userAimVector, aimVector, axis ); VectorNormalizeFast( axis ); Assert( 1.0f - fabs( DotProduct( userAimVector, aimVector ) ) > FLT_EPSILON ); float angle( acosf( DotProduct( userAimVector, aimVector ) ) ); Quaternion aimRotation; AxisAngleQuaternion( axis, RAD2DEG( angle ), aimRotation ); if ( ( 1.0f - fabs( DotProduct( userUpVector, userAimVector ) ) ) > FLT_EPSILON ) { matrix3x4_t aimRotationMatrix; QuaternionMatrix( aimRotation, aimRotationMatrix ); Vector tmpV; Vector tmp_pUp; VectorRotate( userUpVector, aimRotationMatrix, tmp_pUp ); VectorScale( aimVector, DotProduct( aimVector, tmp_pUp ), tmpV ); Vector pUp; VectorSubtract( tmp_pUp, tmpV, pUp ); VectorNormalizeFast( pUp ); Vector tmp_pParentUp; VectorRotate( userUpVector, boneLocalToWorld, tmp_pParentUp ); VectorScale( aimVector, DotProduct( aimVector, tmp_pParentUp ), tmpV ); Vector pParentUp; VectorSubtract( tmp_pParentUp, tmpV, pParentUp ); VectorNormalizeFast( pParentUp ); Quaternion upRotation; //Assert( 1.0f - fabs( DotProduct( pUp, pParentUp ) ) > FLT_EPSILON ); if( 1.0f - fabs( DotProduct( pUp, pParentUp ) ) > FLT_EPSILON ) { angle = acos( DotProduct( pUp, pParentUp ) ); CrossProduct( pUp, pParentUp, axis ); } else { angle = 0; axis = pUp; } VectorNormalizeFast( axis ); AxisAngleQuaternion( axis, RAD2DEG( angle ), upRotation ); Quaternion boneRotation; QuaternionMult( upRotation, aimRotation, boneRotation ); QuaternionMatrix( boneRotation, aimWorldPosition, boneMatrix ); } else { QuaternionMatrix( aimRotation, aimWorldPosition, boneMatrix ); } MatrixCopy( boneMatrix, bonetoworld.GetBoneForWrite( iBone ) ); } //----------------------------------------------------------------------------- // Purpose: //----------------------------------------------------------------------------- bool CalcProceduralBone( const CStudioHdr *pStudioHdr, int iBone, CBoneAccessor &bonetoworld ) { mstudiobone_t *pbones = pStudioHdr->pBone( 0 ); if ( pStudioHdr->boneFlags(iBone) & BONE_ALWAYS_PROCEDURAL ) { switch( pbones[iBone].proctype ) { case STUDIO_PROC_AXISINTERP: DoAxisInterpBone( pbones, iBone, bonetoworld ); return true; case STUDIO_PROC_QUATINTERP: DoQuatInterpBone( pbones, iBone, bonetoworld ); return true; case STUDIO_PROC_AIMATBONE: DoAimAtBone( pbones, iBone, bonetoworld, NULL ); return true; case STUDIO_PROC_AIMATATTACH: DoAimAtBone( pbones, iBone, bonetoworld, pStudioHdr ); return true; default: return false; } } return false; } //----------------------------------------------------------------------------- // Purpose: Lookup a bone controller //----------------------------------------------------------------------------- static mstudiobonecontroller_t* FindController( const CStudioHdr *pStudioHdr, int iController) { // find first controller that matches the index for (int i = 0; i < pStudioHdr->numbonecontrollers(); i++) { if (pStudioHdr->pBonecontroller( i )->inputfield == iController) return pStudioHdr->pBonecontroller( i ); } return NULL; } //----------------------------------------------------------------------------- // Purpose: converts a ranged bone controller value into a 0..1 encoded value // Output: ctlValue contains 0..1 encoding. // returns clamped ranged value //----------------------------------------------------------------------------- float Studio_SetController( const CStudioHdr *pStudioHdr, int iController, float flValue, float &ctlValue ) { if (! pStudioHdr) return flValue; mstudiobonecontroller_t *pbonecontroller = FindController(pStudioHdr, iController); if(!pbonecontroller) { ctlValue = 0; return flValue; } // wrap 0..360 if it's a rotational controller if (pbonecontroller->type & (STUDIO_XR | STUDIO_YR | STUDIO_ZR)) { // ugly hack, invert value if end < start if (pbonecontroller->end < pbonecontroller->start) flValue = -flValue; // does the controller not wrap? if (pbonecontroller->start + 359.0 >= pbonecontroller->end) { if (flValue > ((pbonecontroller->start + pbonecontroller->end) / 2.0) + 180) flValue = flValue - 360; if (flValue < ((pbonecontroller->start + pbonecontroller->end) / 2.0) - 180) flValue = flValue + 360; } else { if (flValue > 360) flValue = flValue - (int)(flValue / 360.0) * 360.0; else if (flValue < 0) flValue = flValue + (int)((flValue / -360.0) + 1) * 360.0; } } ctlValue = (flValue - pbonecontroller->start) / (pbonecontroller->end - pbonecontroller->start); if (ctlValue < 0) ctlValue = 0; if (ctlValue > 1) ctlValue = 1; float flReturnVal = ((1.0 - ctlValue)*pbonecontroller->start + ctlValue *pbonecontroller->end); // ugly hack, invert value if a rotational controller and end < start if (pbonecontroller->type & (STUDIO_XR | STUDIO_YR | STUDIO_ZR) && pbonecontroller->end < pbonecontroller->start ) { flReturnVal *= -1; } return flReturnVal; } //----------------------------------------------------------------------------- // Purpose: converts a 0..1 encoded bone controller value into a ranged value // Output: returns ranged value //----------------------------------------------------------------------------- float Studio_GetController( const CStudioHdr *pStudioHdr, int iController, float ctlValue ) { if (!pStudioHdr) return 0.0; mstudiobonecontroller_t *pbonecontroller = FindController(pStudioHdr, iController); if(!pbonecontroller) return 0; return ctlValue * (pbonecontroller->end - pbonecontroller->start) + pbonecontroller->start; } //----------------------------------------------------------------------------- // Purpose: Calculates default values for the pose parameters // Output: fills in an array //----------------------------------------------------------------------------- void Studio_CalcDefaultPoseParameters( const CStudioHdr *pStudioHdr, float flPoseParameter[], int nCount ) { int nPoseCount = pStudioHdr->GetNumPoseParameters(); int nNumParams = MIN( nCount, MAXSTUDIOPOSEPARAM ); for ( int i = 0; i < nNumParams; ++i ) { // Default to middle of the pose parameter range flPoseParameter[ i ] = 0.5f; if ( i < nPoseCount ) { const mstudioposeparamdesc_t &Pose = ((CStudioHdr *)pStudioHdr)->pPoseParameter( i ); // Want to try for a zero state. If one doesn't exist set it to .5 by default. if ( Pose.start < 0.0f && Pose.end > 0.0f ) { float flPoseDelta = Pose.end - Pose.start; flPoseParameter[i] = -Pose.start / flPoseDelta; } } } } //----------------------------------------------------------------------------- // Purpose: converts a ranged pose parameter value into a 0..1 encoded value // Output: ctlValue contains 0..1 encoding. // returns clamped ranged value //----------------------------------------------------------------------------- float Studio_SetPoseParameter( const CStudioHdr *pStudioHdr, int iParameter, float flValue, float &ctlValue ) { if (iParameter < 0 || iParameter >= pStudioHdr->GetNumPoseParameters()) { return 0; } const mstudioposeparamdesc_t &PoseParam = ((CStudioHdr *)pStudioHdr)->pPoseParameter( iParameter ); Assert( IsFinite( flValue ) ); if (PoseParam.loop) { float wrap = (PoseParam.start + PoseParam.end) / 2.0 + PoseParam.loop / 2.0; float shift = PoseParam.loop - wrap; flValue = flValue - PoseParam.loop * floor((flValue + shift) / PoseParam.loop); } ctlValue = (flValue - PoseParam.start) / (PoseParam.end - PoseParam.start); if (ctlValue < 0) ctlValue = 0; if (ctlValue > 1) ctlValue = 1; Assert( IsFinite( ctlValue ) ); return ctlValue * (PoseParam.end - PoseParam.start) + PoseParam.start; } //----------------------------------------------------------------------------- // Purpose: converts a 0..1 encoded pose parameter value into a ranged value // Output: returns ranged value //----------------------------------------------------------------------------- float Studio_GetPoseParameter( const CStudioHdr *pStudioHdr, int iParameter, float ctlValue ) { if (iParameter < 0 || iParameter >= pStudioHdr->GetNumPoseParameters()) { return 0; } const mstudioposeparamdesc_t &PoseParam = ((CStudioHdr *)pStudioHdr)->pPoseParameter( iParameter ); return ctlValue * (PoseParam.end - PoseParam.start) + PoseParam.start; } #pragma warning (disable : 4701) //----------------------------------------------------------------------------- // Purpose: //----------------------------------------------------------------------------- static int ClipRayToHitbox( const Ray_t &ray, mstudiobbox_t *pbox, matrix3x4_t& matrix, trace_t &tr ) { const float flProjEpsilon = 0.01f; // scale by current t so hits shorten the ray and increase the likelihood of early outs Vector delta2; VectorScale( ray.m_Delta, (0.5f * tr.fraction), delta2 ); // OPTIMIZE: Store this in the box instead of computing it here // compute center in local space Vector boxextents; boxextents.x = (pbox->bbmin.x + pbox->bbmax.x) * 0.5; boxextents.y = (pbox->bbmin.y + pbox->bbmax.y) * 0.5; boxextents.z = (pbox->bbmin.z + pbox->bbmax.z) * 0.5; Vector boxCenter; // transform to world space VectorTransform( boxextents, matrix, boxCenter ); // calc extents from local center boxextents.x = pbox->bbmax.x - boxextents.x; boxextents.y = pbox->bbmax.y - boxextents.y; boxextents.z = pbox->bbmax.z - boxextents.z; // OPTIMIZE: This is optimized for world space. If the transform is fast enough, it may make more // sense to just xform and call UTIL_ClipToBox() instead. MEASURE THIS. // save the extents of the ray along Vector extent, uextent; Vector segmentCenter; segmentCenter.x = ray.m_Start.x + delta2.x - boxCenter.x; segmentCenter.y = ray.m_Start.y + delta2.y - boxCenter.y; segmentCenter.z = ray.m_Start.z + delta2.z - boxCenter.z; extent.Init(); // check box axes for separation for ( int j = 0; j < 3; j++ ) { extent[j] = delta2.x * matrix[0][j] + delta2.y * matrix[1][j] + delta2.z * matrix[2][j]; uextent[j] = fabsf(extent[j]); float coord = segmentCenter.x * matrix[0][j] + segmentCenter.y * matrix[1][j] + segmentCenter.z * matrix[2][j]; coord = fabsf(coord); if ( coord > (boxextents[j] + uextent[j]) ) return -1; } // now check cross axes for separation float tmp, tmpfix, cextent; Vector cross; CrossProduct( delta2, segmentCenter, cross ); cextent = cross.x * matrix[0][0] + cross.y * matrix[1][0] + cross.z * matrix[2][0]; cextent = fabsf(cextent); tmp = boxextents[1]*uextent[2] + boxextents[2]*uextent[1]; tmpfix = MAX(tmp, flProjEpsilon); if ( cextent > tmpfix ) return -1; // if ( cextent > tmp && cextent <= tmpfix ) // DevWarning( "ClipRayToHitbox trace precision error case\n" ); cextent = cross.x * matrix[0][1] + cross.y * matrix[1][1] + cross.z * matrix[2][1]; cextent = fabsf(cextent); tmp = boxextents[0]*uextent[2] + boxextents[2]*uextent[0]; tmpfix = MAX(tmp, flProjEpsilon); if ( cextent > tmpfix ) return -1; // if ( cextent > tmp && cextent <= tmpfix ) // DevWarning( "ClipRayToHitbox trace precision error case\n" ); cextent = cross.x * matrix[0][2] + cross.y * matrix[1][2] + cross.z * matrix[2][2]; cextent = fabsf(cextent); tmp = boxextents[0]*uextent[1] + boxextents[1]*uextent[0]; tmpfix = MAX(tmp, flProjEpsilon); if ( cextent > tmpfix ) return -1; // if ( cextent > tmp && cextent <= tmpfix ) // DevWarning( "ClipRayToHitbox trace precision error case\n" ); // !!! We hit this box !!! compute intersection point and return Vector start; // Compute ray start in bone space VectorITransform( ray.m_Start, matrix, start ); // extent is delta2 in bone space, recompute delta in bone space VectorScale( extent, 2, extent ); // delta was prescaled by the current t, so no need to see if this intersection // is closer trace_t boxTrace; if ( !IntersectRayWithBox( start, extent, pbox->bbmin, pbox->bbmax, 0.0f, &boxTrace ) ) return -1; Assert( IsFinite(boxTrace.fraction) ); tr.fraction *= boxTrace.fraction; tr.startsolid = boxTrace.startsolid; int hitside = boxTrace.plane.type; if ( boxTrace.plane.normal[hitside] >= 0 ) { hitside += 3; } return hitside; } #pragma warning (default : 4701) //----------------------------------------------------------------------------- // Purpose: //----------------------------------------------------------------------------- bool SweepBoxToStudio( IPhysicsSurfaceProps *pProps, const Ray_t& ray, CStudioHdr *pStudioHdr, mstudiohitboxset_t *set, matrix3x4_t **hitboxbones, int fContentsMask, trace_t &tr ) { tr.fraction = 1.0; tr.startsolid = false; // OPTIMIZE: Partition these? Ray_t clippedRay = ray; int hitbox = -1; for ( int i = 0; i < set->numhitboxes; i++ ) { mstudiobbox_t *pbox = set->pHitbox(i); // Filter based on contents mask int fBoneContents = pStudioHdr->pBone( pbox->bone )->contents; if ( ( fBoneContents & fContentsMask ) == 0 ) continue; //FIXME: Won't work with scaling! trace_t obbTrace; if ( IntersectRayWithOBB( clippedRay, *hitboxbones[pbox->bone], pbox->bbmin, pbox->bbmax, 0.0f, &obbTrace ) ) { tr.startpos = obbTrace.startpos; tr.endpos = obbTrace.endpos; tr.plane = obbTrace.plane; tr.startsolid = obbTrace.startsolid; tr.allsolid = obbTrace.allsolid; // This logic here is to shorten the ray each time to get more early outs tr.fraction *= obbTrace.fraction; clippedRay.m_Delta *= obbTrace.fraction; hitbox = i; if (tr.startsolid) break; } } if ( hitbox >= 0 ) { tr.hitgroup = set->pHitbox(hitbox)->group; tr.hitbox = hitbox; const mstudiobone_t *pBone = pStudioHdr->pBone( set->pHitbox(hitbox)->bone ); tr.contents = pBone->contents | CONTENTS_HITBOX; tr.physicsbone = pBone->physicsbone; tr.surface.name = "**studio**"; tr.surface.flags = SURF_HITBOX; tr.surface.surfaceProps = pProps->GetSurfaceIndex( pBone->pszSurfaceProp() ); Assert( tr.physicsbone >= 0 ); return true; } return false; } //----------------------------------------------------------------------------- // Purpose: //----------------------------------------------------------------------------- bool TraceToStudio( IPhysicsSurfaceProps *pProps, const Ray_t& ray, CStudioHdr *pStudioHdr, mstudiohitboxset_t *set, matrix3x4_t **hitboxbones, int fContentsMask, const Vector &vecOrigin, float flScale, trace_t &tr ) { if ( !ray.m_IsRay ) { return SweepBoxToStudio( pProps, ray, pStudioHdr, set, hitboxbones, fContentsMask, tr ); } tr.fraction = 1.0; tr.startsolid = false; // no hit yet int hitbox = -1; int hitside = -1; // OPTIMIZE: Partition these? for ( int i = 0; i < set->numhitboxes; i++ ) { mstudiobbox_t *pbox = set->pHitbox(i); // Filter based on contents mask int fBoneContents = pStudioHdr->pBone( pbox->bone )->contents; if ( ( fBoneContents & fContentsMask ) == 0 ) continue; // columns are axes of the bones in world space, translation is in world space matrix3x4_t& matrix = *hitboxbones[pbox->bone]; // Because we're sending in a matrix with scale data, and because the matrix inversion in the hitbox // code does not handle that case, we pre-scale the bones and ray down here and do our collision checks // in unscaled space. We can then rescale the results afterwards. int side = -1; if ( flScale < 1.0f-FLT_EPSILON || flScale > 1.0f+FLT_EPSILON ) { matrix3x4_t matScaled; MatrixCopy( matrix, matScaled ); float invScale = 1.0f / flScale; Vector vecBoneOrigin; MatrixGetColumn( matScaled, 3, vecBoneOrigin ); // Pre-scale the origin down Vector vecNewOrigin = vecBoneOrigin - vecOrigin; vecNewOrigin *= invScale; vecNewOrigin += vecOrigin; MatrixSetColumn( vecNewOrigin, 3, matScaled ); // Scale it uniformly VectorScale( matScaled[0], invScale, matScaled[0] ); VectorScale( matScaled[1], invScale, matScaled[1] ); VectorScale( matScaled[2], invScale, matScaled[2] ); // Pre-scale our ray as well Vector vecRayStart = ray.m_Start - vecOrigin; vecRayStart *= invScale; vecRayStart += vecOrigin; Vector vecRayDelta = ray.m_Delta * invScale; Ray_t newRay; newRay.Init( vecRayStart, vecRayStart + vecRayDelta ); side = ClipRayToHitbox( newRay, pbox, matScaled, tr ); } else { side = ClipRayToHitbox( ray, pbox, matrix, tr ); } if ( side >= 0 ) { hitbox = i; hitside = side; } } if ( hitbox >= 0 ) { mstudiobbox_t *pbox = set->pHitbox(hitbox); VectorMA( ray.m_Start, tr.fraction, ray.m_Delta, tr.endpos ); tr.hitgroup = set->pHitbox(hitbox)->group; tr.hitbox = hitbox; const mstudiobone_t *pBone = pStudioHdr->pBone( pbox->bone ); tr.contents = pBone->contents | CONTENTS_HITBOX; tr.physicsbone = pBone->physicsbone; tr.surface.name = "**studio**"; tr.surface.flags = SURF_HITBOX; tr.surface.surfaceProps = pProps->GetSurfaceIndex( pBone->pszSurfaceProp() ); Assert( tr.physicsbone >= 0 ); matrix3x4_t& matrix = *hitboxbones[pbox->bone]; if ( hitside >= 3 ) { hitside -= 3; tr.plane.normal[0] = matrix[0][hitside]; tr.plane.normal[1] = matrix[1][hitside]; tr.plane.normal[2] = matrix[2][hitside]; //tr.plane.dist = DotProduct( tr.plane.normal, Vector(matrix[0][3], matrix[1][3], matrix[2][3] ) ) + pbox->bbmax[hitside]; } else { tr.plane.normal[0] = -matrix[0][hitside]; tr.plane.normal[1] = -matrix[1][hitside]; tr.plane.normal[2] = -matrix[2][hitside]; //tr.plane.dist = DotProduct( tr.plane.normal, Vector(matrix[0][3], matrix[1][3], matrix[2][3] ) ) - pbox->bbmin[hitside]; } // simpler plane constant equation tr.plane.dist = DotProduct( tr.endpos, tr.plane.normal ); tr.plane.type = 3; return true; } return false; } //----------------------------------------------------------------------------- // Purpose: returns array of animations and weightings for a sequence based on current pose parameters //----------------------------------------------------------------------------- void Studio_SeqAnims( const CStudioHdr *pStudioHdr, mstudioseqdesc_t &seqdesc, int iSequence, const float poseParameter[], mstudioanimdesc_t *panim[4], float *weight ) { #if _DEBUG VPROF_INCREMENT_COUNTER("SEQ_ANIMS",1); #endif if (!pStudioHdr || iSequence >= pStudioHdr->GetNumSeq()) { weight[0] = weight[1] = weight[2] = weight[3] = 0.0; return; } int i0 = 0, i1 = 0; float s0 = 0, s1 = 0; Studio_LocalPoseParameter( pStudioHdr, poseParameter, seqdesc, iSequence, 0, s0, i0 ); Studio_LocalPoseParameter( pStudioHdr, poseParameter, seqdesc, iSequence, 1, s1, i1 ); panim[0] = &((CStudioHdr *)pStudioHdr)->pAnimdesc( pStudioHdr->iRelativeAnim( iSequence, seqdesc.anim( i0 , i1 ) ) ); weight[0] = (1 - s0) * (1 - s1); panim[1] = &((CStudioHdr *)pStudioHdr)->pAnimdesc( pStudioHdr->iRelativeAnim( iSequence, seqdesc.anim( i0+1, i1 ) ) ); weight[1] = (s0) * (1 - s1); panim[2] = &((CStudioHdr *)pStudioHdr)->pAnimdesc( pStudioHdr->iRelativeAnim( iSequence, seqdesc.anim( i0 , i1+1 ) ) ); weight[2] = (1 - s0) * (s1); panim[3] = &((CStudioHdr *)pStudioHdr)->pAnimdesc( pStudioHdr->iRelativeAnim( iSequence, seqdesc.anim( i0+1, i1+1 ) ) ); weight[3] = (s0) * (s1); Assert( weight[0] >= 0.0f && weight[1] >= 0.0f && weight[2] >= 0.0f && weight[3] >= 0.0f ); } //----------------------------------------------------------------------------- // Purpose: returns max frame number for a sequence //----------------------------------------------------------------------------- int Studio_MaxFrame( const CStudioHdr *pStudioHdr, int iSequence, const float poseParameter[] ) { mstudioanimdesc_t *panim[4]; float weight[4]; mstudioseqdesc_t &seqdesc = ((CStudioHdr *)pStudioHdr)->pSeqdesc( iSequence ); Studio_SeqAnims( pStudioHdr, seqdesc, iSequence, poseParameter, panim, weight ); float maxFrame = 0; for (int i = 0; i < 4; i++) { if (weight[i] > 0) { maxFrame += panim[i]->numframes * weight[i]; } } if ( maxFrame > 1 ) maxFrame -= 1; // FIXME: why does the weights sometimes not exactly add it 1.0 and this sometimes rounds down? return (maxFrame + 0.01); } //----------------------------------------------------------------------------- // Purpose: returns frames per second of a sequence //----------------------------------------------------------------------------- float Studio_FPS( const CStudioHdr *pStudioHdr, int iSequence, const float poseParameter[] ) { mstudioanimdesc_t *panim[4]; float weight[4]; mstudioseqdesc_t &seqdesc = ((CStudioHdr *)pStudioHdr)->pSeqdesc( iSequence ); Studio_SeqAnims( pStudioHdr, seqdesc, iSequence, poseParameter, panim, weight ); float t = 0; for (int i = 0; i < 4; i++) { if (weight[i] > 0) { t += panim[i]->fps * weight[i]; } } return t; } //----------------------------------------------------------------------------- // Purpose: returns cycles per second of a sequence (cycles/second) //----------------------------------------------------------------------------- float Studio_CPS( const CStudioHdr *pStudioHdr, mstudioseqdesc_t &seqdesc, int iSequence, const float poseParameter[] ) { mstudioanimdesc_t *panim[4]; float weight[4]; Studio_SeqAnims( pStudioHdr, seqdesc, iSequence, poseParameter, panim, weight ); float t = 0; for (int i = 0; i < 4; i++) { if (weight[i] > 0 && panim[i]->numframes > 1) { t += (panim[i]->fps / (panim[i]->numframes - 1)) * weight[i]; } } return t; } //----------------------------------------------------------------------------- // Purpose: returns length (in seconds) of a sequence (seconds/cycle) //----------------------------------------------------------------------------- float Studio_Duration( const CStudioHdr *pStudioHdr, int iSequence, const float poseParameter[] ) { mstudioseqdesc_t &seqdesc = ((CStudioHdr *)pStudioHdr)->pSeqdesc( iSequence ); float cps = Studio_CPS( pStudioHdr, seqdesc, iSequence, poseParameter ); if( cps == 0 ) return 0.0f; return 1.0f/cps; } //----------------------------------------------------------------------------- // Purpose: calculate changes in position and angle relative to the start of an animations cycle // Output: updated position and angle, relative to the origin // returns false if animation is not a movement animation //----------------------------------------------------------------------------- bool Studio_AnimPosition( mstudioanimdesc_t *panim, float flCycle, Vector &vecPos, QAngle &vecAngle ) { float prevframe = 0; vecPos.Init( ); vecAngle.Init( ); if (panim->nummovements == 0) return false; int iLoops = 0; if (flCycle > 1.0) { iLoops = (int)flCycle; } else if (flCycle < 0.0) { iLoops = (int)flCycle - 1; } flCycle = flCycle - iLoops; float flFrame = flCycle * (panim->numframes - 1); for (int i = 0; i < panim->nummovements; i++) { mstudiomovement_t *pmove = panim->pMovement( i ); if (pmove->endframe >= flFrame) { float f = (flFrame - prevframe) / (pmove->endframe - prevframe); float d = pmove->v0 * f + 0.5 * (pmove->v1 - pmove->v0) * f * f; vecPos = vecPos + d * pmove->vector; vecAngle.y = vecAngle.y * (1 - f) + pmove->angle * f; if (iLoops != 0) { mstudiomovement_t *pmoveAnim = panim->pMovement( panim->nummovements - 1 ); vecPos = vecPos + iLoops * pmoveAnim->position; vecAngle.y = vecAngle.y + iLoops * pmoveAnim->angle; } return true; } else { prevframe = pmove->endframe; vecPos = pmove->position; vecAngle.y = pmove->angle; } } return false; } //----------------------------------------------------------------------------- // Purpose: calculate instantaneous velocity in ips at a given point // in the animations cycle // Output: velocity vector, relative to identity orientation // returns false if animation is not a movement animation //----------------------------------------------------------------------------- bool Studio_AnimVelocity( mstudioanimdesc_t *panim, float flCycle, Vector &vecVelocity ) { float prevframe = 0; float flFrame = flCycle * (panim->numframes - 1); flFrame = flFrame - (int)(flFrame / (panim->numframes - 1)); for (int i = 0; i < panim->nummovements; i++) { mstudiomovement_t *pmove = panim->pMovement( i ); if (pmove->endframe >= flFrame) { float f = (flFrame - prevframe) / (pmove->endframe - prevframe); float vel = pmove->v0 * (1 - f) + pmove->v1 * f; // scale from per block to per sec velocity vel = vel * panim->fps / (pmove->endframe - prevframe); vecVelocity = pmove->vector * vel; return true; } else { prevframe = pmove->endframe; } } return false; } //----------------------------------------------------------------------------- // Purpose: calculate changes in position and angle between two points in an animation cycle // Output: updated position and angle, relative to CycleFrom being at the origin // returns false if animation is not a movement animation //----------------------------------------------------------------------------- bool Studio_AnimMovement( mstudioanimdesc_t *panim, float flCycleFrom, float flCycleTo, Vector &deltaPos, QAngle &deltaAngle ) { if (panim->nummovements == 0) return false; Vector startPos; QAngle startA; Studio_AnimPosition( panim, flCycleFrom, startPos, startA ); Vector endPos; QAngle endA; Studio_AnimPosition( panim, flCycleTo, endPos, endA ); Vector tmp = endPos - startPos; deltaAngle.y = endA.y - startA.y; VectorYawRotate( tmp, -startA.y, deltaPos ); return true; } //----------------------------------------------------------------------------- // Purpose: finds how much of an animation to play to move given linear distance //----------------------------------------------------------------------------- float Studio_FindAnimDistance( mstudioanimdesc_t *panim, float flDist ) { float prevframe = 0; if (flDist <= 0) return 0.0; for (int i = 0; i < panim->nummovements; i++) { mstudiomovement_t *pmove = panim->pMovement( i ); float flMove = (pmove->v0 + pmove->v1) * 0.5; if (flMove >= flDist) { float root1, root2; // d = V0 * t + 1/2 (V1-V0) * t^2 if (SolveQuadratic( 0.5 * (pmove->v1 - pmove->v0), pmove->v0, -flDist, root1, root2 )) { float cpf = 1.0 / (panim->numframes - 1); // cycles per frame return (prevframe + root1 * (pmove->endframe - prevframe)) * cpf; } return 0.0; } else { flDist -= flMove; prevframe = pmove->endframe; } } return 1.0; } //----------------------------------------------------------------------------- // Purpose: calculate changes in position and angle between two points in a sequences cycle // Output: updated position and angle, relative to CycleFrom being at the origin // returns false if sequence is not a movement sequence //----------------------------------------------------------------------------- bool Studio_SeqMovement( const CStudioHdr *pStudioHdr, int iSequence, float flCycleFrom, float flCycleTo, const float poseParameter[], Vector &deltaPos, QAngle &deltaAngles ) { mstudioanimdesc_t *panim[4]; float weight[4]; mstudioseqdesc_t &seqdesc = ((CStudioHdr *)pStudioHdr)->pSeqdesc( iSequence ); Studio_SeqAnims( pStudioHdr, seqdesc, iSequence, poseParameter, panim, weight ); deltaPos.Init( ); deltaAngles.Init( ); bool found = false; for (int i = 0; i < 4; i++) { if (weight[i]) { Vector localPos; QAngle localAngles; localPos.Init(); localAngles.Init(); if (Studio_AnimMovement( panim[i], flCycleFrom, flCycleTo, localPos, localAngles )) { found = true; deltaPos = deltaPos + localPos * weight[i]; // FIXME: this makes no sense deltaAngles = deltaAngles + localAngles * weight[i]; } else if (!(panim[i]->flags & STUDIO_DELTA) && panim[i]->nummovements == 0 && seqdesc.weight(0) > 0.0) { found = true; } } } return found; } //----------------------------------------------------------------------------- // Purpose: calculate instantaneous velocity in ips at a given point in the sequence's cycle // Output: velocity vector, relative to identity orientation // returns false if sequence is not a movement sequence //----------------------------------------------------------------------------- bool Studio_SeqVelocity( const CStudioHdr *pStudioHdr, int iSequence, float flCycle, const float poseParameter[], Vector &vecVelocity ) { mstudioanimdesc_t *panim[4]; float weight[4]; mstudioseqdesc_t &seqdesc = ((CStudioHdr *)pStudioHdr)->pSeqdesc( iSequence ); Studio_SeqAnims( pStudioHdr, seqdesc, iSequence, poseParameter, panim, weight ); vecVelocity.Init( ); bool found = false; for (int i = 0; i < 4; i++) { if (weight[i]) { Vector vecLocalVelocity; if (Studio_AnimVelocity( panim[i], flCycle, vecLocalVelocity )) { vecVelocity = vecVelocity + vecLocalVelocity * weight[i]; found = true; } } } return found; } //----------------------------------------------------------------------------- // Purpose: finds how much of an sequence to play to move given linear distance //----------------------------------------------------------------------------- float Studio_FindSeqDistance( const CStudioHdr *pStudioHdr, int iSequence, const float poseParameter[], float flDist ) { mstudioanimdesc_t *panim[4]; float weight[4]; mstudioseqdesc_t &seqdesc = ((CStudioHdr *)pStudioHdr)->pSeqdesc( iSequence ); Studio_SeqAnims( pStudioHdr, seqdesc, iSequence, poseParameter, panim, weight ); float flCycle = 0; for (int i = 0; i < 4; i++) { if (weight[i]) { float flLocalCycle = Studio_FindAnimDistance( panim[i], flDist ); flCycle = flCycle + flLocalCycle * weight[i]; } } return flCycle; } //----------------------------------------------------------------------------- // Purpose: lookup attachment by name //----------------------------------------------------------------------------- int Studio_FindAttachment( const CStudioHdr *pStudioHdr, const char *pAttachmentName ) { if ( pStudioHdr && pStudioHdr->SequencesAvailable() ) { // Extract the bone index from the name for (int i = 0; i < pStudioHdr->GetNumAttachments(); i++) { if (!V_stricmp(pAttachmentName,((CStudioHdr *)pStudioHdr)->pAttachment(i).pszName( ))) { return i; } } } return -1; } //----------------------------------------------------------------------------- // Purpose: lookup attachments by substring. Randomly return one of the matching attachments. //----------------------------------------------------------------------------- int Studio_FindRandomAttachment( const CStudioHdr *pStudioHdr, const char *pAttachmentName ) { if ( pStudioHdr ) { // First move them all matching attachments into a list CUtlVector matchingAttachments; // Extract the bone index from the name for (int i = 0; i < pStudioHdr->GetNumAttachments(); i++) { if ( strstr( ((CStudioHdr *)pStudioHdr)->pAttachment(i).pszName(), pAttachmentName ) ) { matchingAttachments.AddToTail(i); } } // Then randomly return one of the attachments if ( matchingAttachments.Size() > 0 ) return matchingAttachments[ RandomInt( 0, matchingAttachments.Size()-1 ) ]; } return -1; } //----------------------------------------------------------------------------- // Purpose: lookup bone by name //----------------------------------------------------------------------------- int Studio_BoneIndexByName( const CStudioHdr *pStudioHdr, const char *pName ) { if ( pStudioHdr ) { // binary search for the bone matching pName int start = 0, end = pStudioHdr->numbones()-1; const byte *pBoneTable = pStudioHdr->GetBoneTableSortedByName(); mstudiobone_t *pbones = pStudioHdr->pBone( 0 ); while (start <= end) { int mid = (start + end) >> 1; int cmp = Q_stricmp( pbones[pBoneTable[mid]].pszName(), pName ); if ( cmp < 0 ) { start = mid + 1; } else if ( cmp > 0 ) { end = mid - 1; } else { return pBoneTable[mid]; } } } return -1; } const char *Studio_GetDefaultSurfaceProps( CStudioHdr *pstudiohdr ) { return pstudiohdr->pszSurfaceProp(); } float Studio_GetMass( CStudioHdr *pstudiohdr ) { return pstudiohdr->mass(); } //----------------------------------------------------------------------------- // Purpose: return pointer to sequence key value buffer //----------------------------------------------------------------------------- const char *Studio_GetKeyValueText( const CStudioHdr *pStudioHdr, int iSequence ) { if (pStudioHdr && pStudioHdr->SequencesAvailable()) { if (iSequence >= 0 && iSequence < pStudioHdr->GetNumSeq()) { return ((CStudioHdr *)pStudioHdr)->pSeqdesc( iSequence ).KeyValueText(); } } return NULL; } bool Studio_PrefetchSequence( const CStudioHdr *pStudioHdr, int iSequence ) { bool pendingload = false; mstudioseqdesc_t &seqdesc = ((CStudioHdr *)pStudioHdr)->pSeqdesc( iSequence ); int size0 = seqdesc.groupsize[ 0 ]; int size1 = seqdesc.groupsize[ 1 ]; for ( int i = 0; i < size0; ++i ) { for ( int j = 0; j < size1; ++j ) { mstudioanimdesc_t &animdesc = ((CStudioHdr *)pStudioHdr)->pAnimdesc( seqdesc.anim( i, j ) ); int iFrame = 0; mstudioanim_t *panim = animdesc.pAnim( &iFrame ); if ( !panim ) { pendingload = true; } } } // Everything for this sequence is resident? return !pendingload; } //----------------------------------------------------------------------------- // Purpose: Drive a flex controller from a component of a bone //----------------------------------------------------------------------------- void Studio_RunBoneFlexDrivers( float *pflFlexControllerWeights, const CStudioHdr *pStudioHdr, const Vector *pvPositions, const matrix3x4_t *pBoneToWorld, const matrix3x4_t &mRootToWorld ) { bool bRootToWorldInvComputed = false; matrix3x4_t mRootToWorldInv; matrix3x4_t mParentInv; matrix3x4_t mBoneLocal; const int nBoneFlexDriverCount = pStudioHdr->BoneFlexDriverCount(); for ( int i = 0; i < nBoneFlexDriverCount; ++i ) { const mstudioboneflexdriver_t *pBoneFlexDriver = pStudioHdr->BoneFlexDriver( i ); const mstudiobone_t *pStudioBone = pStudioHdr->pBone( pBoneFlexDriver->m_nBoneIndex ); const int nControllerCount = pBoneFlexDriver->m_nControlCount; if ( pStudioBone->flags & BONE_USED_BY_BONE_MERGE ) { // The local space version of the bone is not available if this is a bonemerged bone // so do the slow computation of the local version of the bone from boneToWorld if ( pStudioBone->parent < 0 ) { if ( !bRootToWorldInvComputed ) { MatrixInvert( mRootToWorld, mRootToWorldInv ); bRootToWorldInvComputed = true; } MatrixMultiply( mRootToWorldInv, pBoneToWorld[ pBoneFlexDriver->m_nBoneIndex ], mBoneLocal ); } else { MatrixInvert( pBoneToWorld[ pStudioBone->parent ], mParentInv ); MatrixMultiply( mParentInv, pBoneToWorld[ pBoneFlexDriver->m_nBoneIndex ], mBoneLocal ); } for ( int j = 0; j < nControllerCount; ++j ) { const mstudioboneflexdrivercontrol_t *pController = pBoneFlexDriver->pBoneFlexDriverControl( j ); const mstudioflexcontroller_t *pFlexController = pStudioHdr->pFlexcontroller( static_cast< LocalFlexController_t >( pController->m_nFlexControllerIndex ) ); if ( pFlexController->localToGlobal < 0 ) continue; Assert( pController->m_nFlexControllerIndex >= 0 && pController->m_nFlexControllerIndex < pStudioHdr->numflexcontrollers() ); Assert( pController->m_nBoneComponent >= 0 && pController->m_nBoneComponent <= 2 ); pflFlexControllerWeights[pFlexController->localToGlobal] = RemapValClamped( mBoneLocal[pController->m_nBoneComponent][3], pController->m_flMin, pController->m_flMax, 0.0f, 1.0f ); } } else { // Use the local space version of the bone directly for non-bonemerged bones const Vector &position = pvPositions[ pBoneFlexDriver->m_nBoneIndex ]; for ( int j = 0; j < nControllerCount; ++j ) { const mstudioboneflexdrivercontrol_t *pController = pBoneFlexDriver->pBoneFlexDriverControl( j ); const mstudioflexcontroller_t *pFlexController = pStudioHdr->pFlexcontroller( static_cast< LocalFlexController_t >( pController->m_nFlexControllerIndex ) ); if ( pFlexController->localToGlobal < 0 ) continue; Assert( pController->m_nFlexControllerIndex >= 0 && pController->m_nFlexControllerIndex < pStudioHdr->numflexcontrollers() ); Assert( pController->m_nBoneComponent >= 0 && pController->m_nBoneComponent <= 2 ); pflFlexControllerWeights[pFlexController->localToGlobal] = RemapValClamped( position[pController->m_nBoneComponent], pController->m_flMin, pController->m_flMax, 0.0f, 1.0f ); } } } }