//========= Copyright Valve Corporation, All rights reserved. ============// // // Purpose: // // $NoKeywords: $ // //===========================================================================// #ifndef TIER1_STRTOOLS_H #define TIER1_STRTOOLS_H #include "tier0/platform.h" #include #include #ifdef _WIN32 #pragma once #elif POSIX #include #include #include #endif #include #include class CUtlBuffer; class CUtlString; #ifdef _WIN64 #define str_size unsigned int #else #define str_size size_t #endif template< class T, class I > class CUtlMemory; template< class T, class A > class CUtlVector; //----------------------------------------------------------------------------- // Portable versions of standard string functions //----------------------------------------------------------------------------- void _V_memset ( const char* file, int line, void *dest, int fill, int count ); void _V_memcpy ( const char* file, int line, void *dest, const void *src, int count ); void _V_memmove ( const char* file, int line, void *dest, const void *src, int count ); int _V_memcmp ( const char* file, int line, const void *m1, const void *m2, int count ); int _V_strlen ( const char* file, int line, const char *str ); void _V_strcpy ( const char* file, int line, char *dest, const char *src ); char* _V_strrchr ( const char* file, int line, const char *s, char c ); int _V_strcmp ( const char* file, int line, const char *s1, const char *s2 ); int _V_wcscmp ( const char* file, int line, const wchar_t *s1, const wchar_t *s2 ); char* _V_strstr ( const char* file, int line, const char *s1, const char *search ); int _V_wcslen ( const char* file, int line, const wchar_t *pwch ); wchar_t* _V_wcslower (const char* file, int line, wchar_t *start); wchar_t* _V_wcsupr (const char* file, int line, wchar_t *start); // ASCII-optimized functions which fall back to CRT only when necessary char *V_strupr( char *start ); char *V_strlower( char *start ); int V_stricmp( const char *s1, const char *s2 ); int V_strncmp( const char *s1, const char *s2, int count ); int V_strnicmp( const char *s1, const char *s2, int n ); //----------------------------------------------------------------------------- // Purpose: Slightly modified strtok. Does not modify the input string. Does // not skip over more than one separator at a time. This allows parsing // strings where tokens between separators may or may not be present: // // Door01,,,0 would be parsed as "Door01" "" "" "0" // Door01,Open,,0 would be parsed as "Door01" "Open" "" "0" // // Input : token - Returns with a token, or zero length if the token was missing. // str - String to parse. // sep - Character to use as separator. UNDONE: allow multiple separator chars // Output : Returns a pointer to the next token to be parsed. //----------------------------------------------------------------------------- const char *nexttoken(char *token, size_t nMaxTokenLen, const char *str, char sep); template inline const char *nexttoken( OUT_Z_ARRAY char (&pToken)[maxLenInChars], const char *str, char sep) { return nexttoken( pToken, maxLenInChars, str, sep ); } #ifdef POSIX inline char *strupr( char *start ) { return V_strupr( start ); } inline char *strlwr( char *start ) { return V_strlower( start ); } inline wchar_t *_wcslwr( wchar_t *start ) { wchar_t *str = start; while( str && *str ) { *str = (wchar_t)towlower(static_cast(*str)); str++; } return start; }; inline wchar_t *_wcsupr( wchar_t *start ) { wchar_t *str = start; while( str && *str ) { *str = (wchar_t)towupper(static_cast(*str)); str++; } return start; }; #endif // POSIX #ifdef _DEBUG #define V_memset(dest, fill, count) _V_memset (__FILE__, __LINE__, (dest), (fill), (count)) #define V_memcpy(dest, src, count) _V_memcpy (__FILE__, __LINE__, (dest), (src), (count)) #define V_memmove(dest, src, count) _V_memmove (__FILE__, __LINE__, (dest), (src), (count)) #define V_memcmp(m1, m2, count) _V_memcmp (__FILE__, __LINE__, (m1), (m2), (count)) #define V_strlen(str) _V_strlen (__FILE__, __LINE__, (str)) #define V_strcpy(dest, src) _V_strcpy (__FILE__, __LINE__, (dest), (src)) #define V_strrchr(s, c) _V_strrchr (__FILE__, __LINE__, (s), (c)) #define V_strcmp(s1, s2) _V_strcmp (__FILE__, __LINE__, (s1), (s2)) #define V_wcscmp(s1, s2) _V_wcscmp (__FILE__, __LINE__, (s1), (s2)) #define V_strstr(s1, search ) _V_strstr (__FILE__, __LINE__, (s1), (search) ) #define V_wcslen(pwch) _V_wcslen (__FILE__, __LINE__, (pwch)) #define V_wcslower(start) _V_wcslower (__FILE__, __LINE__, (start)) #define V_wcsupr(start) _V_wcsupr (__FILE__, __LINE__, (start)) #else inline void V_memset (void *dest, int fill, int count) { memset( dest, fill, count ); } inline void V_memcpy (void *dest, const void *src, int count) { memcpy( dest, src, count ); } inline void V_memmove (void *dest, const void *src, int count) { memmove( dest, src, count ); } inline int V_memcmp (const void *m1, const void *m2, int count){ return memcmp( m1, m2, count ); } inline int V_strlen (const char *str) { return (int) strlen ( str ); } inline void V_strcpy (char *dest, const char *src) { strcpy( dest, src ); } inline int V_wcslen(const wchar_t *pwch) { return (int)wcslen(pwch); } inline char* V_strrchr (const char *s, char c) { return (char*)strrchr( s, c ); } inline int V_strcmp (const char *s1, const char *s2) { return strcmp( s1, s2 ); } inline int V_wcscmp (const wchar_t *s1, const wchar_t *s2) { return wcscmp( s1, s2 ); } inline char* V_strstr( const char *s1, const char *search ) { return (char*)strstr( s1, search ); } inline wchar_t* V_wcslower (wchar_t *start) { return _wcslwr( start ); } inline wchar_t* V_wcsupr (wchar_t *start) { return _wcsupr( start ); } #endif int V_atoi (const char *str); int64 V_atoi64(const char *str); uint64 V_atoui64(const char *str); int64 V_strtoi64( const char *nptr, char **endptr, int base ); uint64 V_strtoui64( const char *nptr, char **endptr, int base ); float V_atof(const char *str); char* V_stristr( char* pStr, const char* pSearch ); const char* V_stristr( const char* pStr, const char* pSearch ); const char* V_strnistr( const char* pStr, const char* pSearch, int n ); const char* V_strnchr( const char* pStr, char c, int n ); inline int V_strcasecmp (const char *s1, const char *s2) { return V_stricmp(s1, s2); } inline int V_strncasecmp (const char *s1, const char *s2, int n) { return V_strnicmp(s1, s2, n); } void V_qsort_s( void *base, size_t num, size_t width, int ( __cdecl *compare )(void *, const void *, const void *), void *context ); // returns string immediately following prefix, (ie str+strlen(prefix)) or NULL if prefix not found const char *StringAfterPrefix ( const char *str, const char *prefix ); const char *StringAfterPrefixCaseSensitive( const char *str, const char *prefix ); inline bool StringHasPrefix ( const char *str, const char *prefix ) { return StringAfterPrefix ( str, prefix ) != NULL; } inline bool StringHasPrefixCaseSensitive( const char *str, const char *prefix ) { return StringAfterPrefixCaseSensitive( str, prefix ) != NULL; } template< bool CASE_SENSITIVE > inline bool _V_strEndsWithInner( const char *pStr, const char *pSuffix ) { int nSuffixLen = V_strlen( pSuffix ); int nStringLen = V_strlen( pStr ); if ( nSuffixLen == 0 ) return true; // All strings end with the empty string (matches Java & .NET behaviour) if ( nStringLen < nSuffixLen ) return false; pStr += nStringLen - nSuffixLen; if ( CASE_SENSITIVE ) return !V_strcmp( pStr, pSuffix ); else return !V_stricmp( pStr, pSuffix ); } // Does 'pStr' end with 'pSuffix'? (case sensitive/insensitive variants) inline bool V_strEndsWith( const char *pStr, const char *pSuffix ) { return _V_strEndsWithInner( pStr, pSuffix ); } inline bool V_striEndsWith( const char *pStr, const char *pSuffix ) { return _V_strEndsWithInner( pStr, pSuffix ); } // Normalizes a float string in place. // (removes leading zeros, trailing zeros after the decimal point, and the decimal point itself where possible) void V_normalizeFloatString( char* pFloat ); // this is locale-unaware and therefore faster version of standard isdigit() // It also avoids sign-extension errors. inline bool V_isdigit( char c ) { return c >= '0' && c <= '9'; } inline bool V_iswdigit( int c ) { return ( ( (uint)( c - '0' ) ) < 10 ); } inline bool V_isempty( const char* pszString ) { return !pszString || !pszString[ 0 ]; } // The islower/isdigit/etc. functions all expect a parameter that is either // 0-0xFF or EOF. It is easy to violate this constraint simply by passing // 'char' to these functions instead of unsigned char. // The V_ functions handle the char/unsigned char mismatch by taking a // char parameter and casting it to unsigned char so that chars with the // sign bit set will be zero extended instead of sign extended. // Not that EOF cannot be passed to these functions. // // These functions could also be used for optimizations if locale // considerations make some of the CRT functions slow. //#undef isdigit // In case this is implemented as a macro //#define isdigit use_V_isdigit_instead_of_isdigit inline bool V_isalpha(char c) { return isalpha( (unsigned char)c ) != 0; } //#undef isalpha //#define isalpha use_V_isalpha_instead_of_isalpha inline bool V_isalnum(char c) { return isalnum( (unsigned char)c ) != 0; } //#undef isalnum //#define isalnum use_V_isalnum_instead_of_isalnum inline bool V_isprint(char c) { return isprint( (unsigned char)c ) != 0; } //#undef isprint //#define isprint use_V_isprint_instead_of_isprint inline bool V_isxdigit(char c) { return isxdigit( (unsigned char)c ) != 0; } //#undef isxdigit //#define isxdigit use_V_isxdigit_instead_of_isxdigit inline bool V_ispunct(char c) { return ispunct( (unsigned char)c ) != 0; } //#undef ispunct //#define ispunct use_V_ispunct_instead_of_ispunct inline bool V_isgraph(char c) { return isgraph( (unsigned char)c ) != 0; } //#undef isgraph //#define isgraph use_V_isgraph_instead_of_isgraph inline bool V_isupper(char c) { return isupper( (unsigned char)c ) != 0; } //#undef isupper //#define isupper use_V_isupper_instead_of_isupper inline bool V_islower(char c) { return islower( (unsigned char)c ) != 0; } //#undef islower //#define islower use_V_islower_instead_of_islower inline bool V_iscntrl(char c) { return iscntrl( (unsigned char)c ) != 0; } //#undef iscntrl //#define iscntrl use_V_iscntrl_instead_of_iscntrl inline bool V_isspace(char c) { return isspace( (unsigned char)c ) != 0; } //#undef isspace //#define isspace use_V_isspace_instead_of_isspace //----------------------------------------------------------------------------- // Purpose: returns true if it's a valid hex string //----------------------------------------------------------------------------- inline bool V_isvalidhex( char const *in, int inputchars ) { if ( inputchars < 2 ) return false; if ( inputchars % 2 == 1 ) return false; for ( int i = 0; i < inputchars; i++ ) { char c = in[i]; if ( !( (c >= '0' && c <= '9') || (c >= 'a' && c <= 'f') || (c >= 'A' && c <= 'F') ) ) { return false; } } return true; } //----------------------------------------------------------------------------- // Purpose: Checks if the string is lower case // NOTE: Only works with ASCII strings //----------------------------------------------------------------------------- inline bool V_isstrlower( const char *pch ) { const char *pCurrent = pch; while ( *pCurrent != '\0' ) { if ( *pCurrent >= 'A' && *pCurrent <= 'Z' ) return false; pCurrent++; } return true; } // These are versions of functions that guarantee NULL termination. // // maxLen is the maximum number of bytes in the destination string. // pDest[maxLen-1] is always NULL terminated if pSrc's length is >= maxLen. // // This means the last parameter can usually be a sizeof() of a string. void V_strncpy( OUT_Z_CAP(maxLenInChars) char *pDest, const char *pSrc, int maxLenInChars ); // Ultimate safe strcpy function, for arrays only -- buffer size is inferred by the compiler template void V_strcpy_safe( OUT_Z_ARRAY char (&pDest)[maxLenInChars], const char *pSrc ) { V_strncpy( pDest, pSrc, (int)maxLenInChars ); } // A function which duplicates a string using new[] to allocate the new string. inline char *V_strdup( const char *pSrc ) { int nLen = V_strlen( pSrc ); char *pResult = new char [ nLen+1 ]; V_memcpy( pResult, pSrc, nLen+1 ); return pResult; } void V_wcsncpy( OUT_Z_BYTECAP(maxLenInBytes) wchar_t *pDest, wchar_t const *pSrc, int maxLenInBytes ); template void V_wcscpy_safe( OUT_Z_ARRAY wchar_t (&pDest)[maxLenInChars], wchar_t const *pSrc ) { V_wcsncpy( pDest, pSrc, maxLenInChars * sizeof(*pDest) ); } #define COPY_ALL_CHARACTERS -1 char *V_strncat( INOUT_Z_CAP(cchDest) char *pDest, const char *pSrc, size_t cchDest, int max_chars_to_copy=COPY_ALL_CHARACTERS ); template char *V_strcat_safe( INOUT_Z_ARRAY char (&pDest)[cchDest], const char *pSrc, int nMaxCharsToCopy=COPY_ALL_CHARACTERS ) { return V_strncat( pDest, pSrc, (int)cchDest, nMaxCharsToCopy ); } wchar_t *V_wcsncat( INOUT_Z_CAP(cchDest) wchar_t *pDest, const wchar_t *pSrc, size_t cchDest, int nMaxCharsToCopy=COPY_ALL_CHARACTERS ); template wchar_t *V_wcscat_safe( INOUT_Z_ARRAY wchar_t (&pDest)[cchDest], const wchar_t *pSrc, int nMaxCharsToCopy=COPY_ALL_CHARACTERS ) { return V_wcsncat( pDest, pSrc, (int)cchDest, nMaxCharsToCopy ); } char *V_strnlwr( INOUT_Z_CAP(cchBuf) char *pBuf, size_t cchBuf); template char *V_strlwr_safe( INOUT_Z_ARRAY char (&pBuf)[cchDest] ) { return _V_strnlwr( pBuf, (int)cchDest ); } // Unicode string conversion policies - what to do if an illegal sequence is encountered enum EStringConvertErrorPolicy { _STRINGCONVERTFLAG_SKIP = 1, _STRINGCONVERTFLAG_FAIL = 2, _STRINGCONVERTFLAG_ASSERT = 4, STRINGCONVERT_REPLACE = 0, STRINGCONVERT_SKIP = _STRINGCONVERTFLAG_SKIP, STRINGCONVERT_FAIL = _STRINGCONVERTFLAG_FAIL, STRINGCONVERT_ASSERT_REPLACE = _STRINGCONVERTFLAG_ASSERT + STRINGCONVERT_REPLACE, STRINGCONVERT_ASSERT_SKIP = _STRINGCONVERTFLAG_ASSERT + STRINGCONVERT_SKIP, STRINGCONVERT_ASSERT_FAIL = _STRINGCONVERTFLAG_ASSERT + STRINGCONVERT_FAIL, }; // Unicode (UTF-8, UTF-16, UTF-32) fundamental conversion functions. bool Q_IsValidUChar32( uchar32 uValue ); int Q_UChar32ToUTF8Len( uchar32 uValue ); int Q_UChar32ToUTF8( uchar32 uValue, char *pOut ); int Q_UChar32ToUTF16Len( uchar32 uValue ); int Q_UChar32ToUTF16( uchar32 uValue, uchar16 *pOut ); // Validate that a Unicode string is well-formed and contains only valid code points bool Q_UnicodeValidate( const char *pUTF8 ); bool Q_UnicodeValidate( const uchar16 *pUTF16 ); bool Q_UnicodeValidate( const uchar32 *pUTF32 ); // Returns length of string in Unicode code points (printed glyphs or non-printing characters) int Q_UnicodeLength( const char *pUTF8 ); int Q_UnicodeLength( const uchar16 *pUTF16 ); int Q_UnicodeLength( const uchar32 *pUTF32 ); // Returns length of string in elements, not characters! These are analogous to Q_strlen and Q_wcslen inline int Q_strlen16( const uchar16 *puc16 ) { int nElems = 0; while ( puc16[nElems] ) ++nElems; return nElems; } inline int Q_strlen32( const uchar32 *puc32 ) { int nElems = 0; while ( puc32[nElems] ) ++nElems; return nElems; } // Repair invalid Unicode strings by dropping truncated characters and fixing improperly-double-encoded UTF-16 sequences. // Unlike conversion functions which replace with '?' by default, a repair operation assumes that you know that something // is wrong with the string (eg, mid-sequence truncation) and you just want to do the best possible job of cleaning it up. // You can pass a REPLACE or FAIL policy if you would prefer to replace characters with '?' or clear the entire string. // Returns nonzero on success, or 0 if the policy is FAIL and an invalid sequence was found. int Q_UnicodeRepair( char *pUTF8, EStringConvertErrorPolicy ePolicy = STRINGCONVERT_SKIP ); int Q_UnicodeRepair( uchar16 *pUTF16, EStringConvertErrorPolicy ePolicy = STRINGCONVERT_SKIP ); int Q_UnicodeRepair( uchar32 *pUTF32, EStringConvertErrorPolicy ePolicy = STRINGCONVERT_SKIP ); // Advance pointer forward by N Unicode code points (printed glyphs or non-printing characters), stopping at terminating null if encountered. char *Q_UnicodeAdvance( char *pUTF8, int nCharacters ); uchar16 *Q_UnicodeAdvance( uchar16 *pUTF16, int nCharactersnCharacters ); uchar32 *Q_UnicodeAdvance( uchar32 *pUTF32, int nChars ); inline const char *Q_UnicodeAdvance( const char *pUTF8, int nCharacters ) { return Q_UnicodeAdvance( (char*) pUTF8, nCharacters ); } inline const uchar16 *Q_UnicodeAdvance( const uchar16 *pUTF16, int nCharacters ) { return Q_UnicodeAdvance( (uchar16*) pUTF16, nCharacters ); } inline const uchar32 *Q_UnicodeAdvance( const uchar32 *pUTF32, int nCharacters ) { return Q_UnicodeAdvance( (uchar32*) pUTF32, nCharacters ); } // Truncate to maximum of N Unicode code points (printed glyphs or non-printing characters) inline void Q_UnicodeTruncate( char *pUTF8, int nCharacters ) { *Q_UnicodeAdvance( pUTF8, nCharacters ) = 0; } inline void Q_UnicodeTruncate( uchar16 *pUTF16, int nCharacters ) { *Q_UnicodeAdvance( pUTF16, nCharacters ) = 0; } inline void Q_UnicodeTruncate( uchar32 *pUTF32, int nCharacters ) { *Q_UnicodeAdvance( pUTF32, nCharacters ) = 0; } // Conversion between Unicode string types (UTF-8, UTF-16, UTF-32). Deals with bytes, not element counts, // to minimize harm from the programmer mistakes which continue to plague our wide-character string code. // Returns the number of bytes written to the output, or if output is NULL, the number of bytes required. int Q_UTF8ToUTF16( const char *pUTF8, OUT_Z_BYTECAP(cubDestSizeInBytes) uchar16 *pUTF16, int cubDestSizeInBytes, EStringConvertErrorPolicy ePolicy = STRINGCONVERT_ASSERT_REPLACE ); int Q_UTF8ToUTF32( const char *pUTF8, OUT_Z_BYTECAP(cubDestSizeInBytes) uchar32 *pUTF32, int cubDestSizeInBytes, EStringConvertErrorPolicy ePolicy = STRINGCONVERT_ASSERT_REPLACE ); int Q_UTF16ToUTF8( const uchar16 *pUTF16, OUT_Z_BYTECAP(cubDestSizeInBytes) char *pUTF8, int cubDestSizeInBytes, EStringConvertErrorPolicy ePolicy = STRINGCONVERT_ASSERT_REPLACE ); int Q_UTF16ToUTF32( const uchar16 *pUTF16, OUT_Z_BYTECAP(cubDestSizeInBytes) uchar32 *pUTF32, int cubDestSizeInBytes, EStringConvertErrorPolicy ePolicy = STRINGCONVERT_ASSERT_REPLACE ); int Q_UTF32ToUTF8( const uchar32 *pUTF32, OUT_Z_BYTECAP(cubDestSizeInBytes) char *pUTF8, int cubDestSizeInBytes, EStringConvertErrorPolicy ePolicy = STRINGCONVERT_ASSERT_REPLACE ); int Q_UTF32ToUTF16( const uchar32 *pUTF32, OUT_Z_BYTECAP(cubDestSizeInBytes) uchar16 *pUTF16, int cubDestSizeInBytes, EStringConvertErrorPolicy ePolicy = STRINGCONVERT_ASSERT_REPLACE ); // This is disgusting and exist only easily to facilitate having 16-bit and 32-bit wchar_t's on different platforms int Q_UTF32ToUTF32( const uchar32 *pUTF32Source, OUT_Z_BYTECAP(cubDestSizeInBytes) uchar32 *pUTF32Dest, int cubDestSizeInBytes, EStringConvertErrorPolicy ePolicy = STRINGCONVERT_ASSERT_REPLACE ); // Conversion between count-limited UTF-n character arrays, including any potential NULL characters. // Output has a terminating NULL for safety; strip the last character if you want an unterminated string. // Returns the number of bytes written to the output, or if output is NULL, the number of bytes required. int Q_UTF8CharsToUTF16( const char *pUTF8, int nElements, OUT_Z_BYTECAP(cubDestSizeInBytes) uchar16 *pUTF16, int cubDestSizeInBytes, EStringConvertErrorPolicy ePolicy = STRINGCONVERT_ASSERT_REPLACE ); int Q_UTF8CharsToUTF32( const char *pUTF8, int nElements, OUT_Z_BYTECAP(cubDestSizeInBytes) uchar32 *pUTF32, int cubDestSizeInBytes, EStringConvertErrorPolicy ePolicy = STRINGCONVERT_ASSERT_REPLACE ); int Q_UTF16CharsToUTF8( const uchar16 *pUTF16, int nElements, OUT_Z_BYTECAP(cubDestSizeInBytes) char *pUTF8, int cubDestSizeInBytes, EStringConvertErrorPolicy ePolicy = STRINGCONVERT_ASSERT_REPLACE ); int Q_UTF16CharsToUTF32( const uchar16 *pUTF16, int nElements, OUT_Z_BYTECAP(cubDestSizeInBytes) uchar32 *pUTF32, int cubDestSizeInBytes, EStringConvertErrorPolicy ePolicy = STRINGCONVERT_ASSERT_REPLACE ); int Q_UTF32CharsToUTF8( const uchar32 *pUTF32, int nElements, OUT_Z_BYTECAP(cubDestSizeInBytes) char *pUTF8, int cubDestSizeInBytes, EStringConvertErrorPolicy ePolicy = STRINGCONVERT_ASSERT_REPLACE ); int Q_UTF32CharsToUTF16( const uchar32 *pUTF32, int nElements, OUT_Z_BYTECAP(cubDestSizeInBytes) uchar16 *pUTF16, int cubDestSizeInBytes, EStringConvertErrorPolicy ePolicy = STRINGCONVERT_ASSERT_REPLACE ); // Decode a single UTF-8 character to a uchar32, returns number of UTF-8 bytes parsed int Q_UTF8ToUChar32( const char *pUTF8_, uchar32 &uValueOut, bool &bErrorOut ); // Decode a single UTF-16 character to a uchar32, returns number of UTF-16 characters (NOT BYTES) consumed int Q_UTF16ToUChar32( const uchar16 *pUTF16, uchar32 &uValueOut, bool &bErrorOut ); // NOTE: WString means either UTF32 or UTF16 depending on the platform and compiler settings. #if defined( _MSC_VER ) || defined( _WIN32 ) #define Q_UTF8ToWString Q_UTF8ToUTF16 #define Q_UTF8CharsToWString Q_UTF8CharsToUTF16 #define Q_UTF32ToWString Q_UTF32ToUTF16 #define Q_WStringToUTF8 Q_UTF16ToUTF8 #define Q_WStringCharsToUTF8 Q_UTF16CharsToUTF8 #define Q_WStringToUTF32 Q_UTF16ToUTF32 #else #define Q_UTF8ToWString Q_UTF8ToUTF32 #define Q_UTF8CharsToWString Q_UTF8CharsToUTF32 #define Q_UTF32ToWString Q_UTF32ToUTF32 #define Q_WStringToUTF8 Q_UTF32ToUTF8 #define Q_WStringCharsToUTF8 Q_UTF32CharsToUTF8 #define Q_WStringToUTF32 Q_UTF32ToUTF32 #endif // These are legacy names which don't make a lot of sense but are used everywhere. Prefer the WString convention wherever possible #define V_UTF8ToUnicode Q_UTF8ToWString #define V_UnicodeToUTF8 Q_WStringToUTF8 #ifdef WIN32 // This function is ill-defined as it relies on the current ANSI code page. Currently Win32 only for tools. int Q_LocaleSpecificANSIToUTF8( const char *pANSI, int cubSrcInBytes, OUT_Z_BYTECAP(cubDestSizeInBytes) char *pUTF8, int cubDestSizeInBytes ); #endif // Windows-1252 is mostly the same as ISO Latin-1, and probably what you want if you are // saddled with an 8-bit ANSI string that originated on a Windows system. int Q_Windows1252CharsToUTF8( const char *pchSrc, int cchSrc, OUT_Z_BYTECAP(cchDestUTF8) char *pchDestUTF8, int cchDestUTF8 ); // CP 437 is used for VGA console text and some old-school file formats such as ZIP. It // is also known as the "IBM PC OEM code page" and various related names. You probably // don't want to use this function unless you know for a fact that you're dealing with // old-school OEM code pages. Otherwise try the Windows-1252 function above. int Q_CP437CharsToUTF8( const char *pchSrc, int cchSrc, OUT_Z_BYTECAP(cchDestUTF8) char *pchDestUTF8, int cchDestUTF8 ); // replaces characters in a UTF8 string with their identical-looking equivalent (non-roundtrippable) // // older version of API uses a small homoglyph table; newer version uses a larger one // // strings using old version are baked into the database, so we won't toss it quite yet, // but don't use it for new features. int Q_NormalizeUTF8Old( const char *pchSrc, OUT_Z_CAP(cchDest) char *pchDest, int cchDest ); int Q_NormalizeUTF8( const char *pchSrc, OUT_Z_CAP(cchDest) char *pchDest, int cchDest ); //----------------------------------------------------------------------------- // Purpose: replaces characters in a UTF8 string with similar-looking equivalents. // Only replaces with ASCII characters.. non-recognized characters will be replaced with ? // This operation is destructive (i.e. you can't roundtrip through the normalized // form). //----------------------------------------------------------------------------- template int Q_NormalizeUTF8ToASCII( OUT_Z_ARRAY char (&pchDest)[maxLenInChars], const char *pchSrc ) { int nResult = Q_NormalizeUTF8( pchSrc, pchDest, maxLenInChars ); // replace non ASCII characters with ? for ( int i = 0; i < nResult; i++ ) { if ( pchDest[i] > 127 || pchDest[i] < 0 ) { pchDest[i] = '?'; } } return nResult; } // UNDONE: Find a non-compiler-specific way to do this #ifdef _WIN32 #ifndef _VA_LIST_DEFINED #ifdef _M_ALPHA struct va_list { char *a0; /* pointer to first homed integer argument */ int offset; /* byte offset of next parameter */ }; #else // !_M_ALPHA typedef char * va_list; #endif // !_M_ALPHA #define _VA_LIST_DEFINED #endif // _VA_LIST_DEFINED #elif POSIX #include #endif #ifdef _WIN32 #define CORRECT_PATH_SEPARATOR '\\' #define CORRECT_PATH_SEPARATOR_S "\\" #define INCORRECT_PATH_SEPARATOR '/' #define INCORRECT_PATH_SEPARATOR_S "/" #elif POSIX #define CORRECT_PATH_SEPARATOR '/' #define CORRECT_PATH_SEPARATOR_S "/" #define INCORRECT_PATH_SEPARATOR '\\' #define INCORRECT_PATH_SEPARATOR_S "\\" #endif int V_vsnprintf( OUT_Z_CAP(maxLenInCharacters) char *pDest, int maxLenInCharacters, PRINTF_FORMAT_STRING const char *pFormat, va_list params ); template int V_vsprintf_safe( OUT_Z_ARRAY char (&pDest)[maxLenInCharacters], PRINTF_FORMAT_STRING const char *pFormat, va_list params ) { return V_vsnprintf( pDest, maxLenInCharacters, pFormat, params ); } int V_snprintf( OUT_Z_CAP(maxLenInChars) char *pDest, int maxLenInChars, PRINTF_FORMAT_STRING const char *pFormat, ... ) FMTFUNCTION( 3, 4 ); // gcc insists on only having format annotations on declarations, not definitions, which is why I have both. template int V_sprintf_safe( OUT_Z_ARRAY char (&pDest)[maxLenInChars], PRINTF_FORMAT_STRING const char *pFormat, ... ) FMTFUNCTION( 2, 3 ); template int V_sprintf_safe( OUT_Z_ARRAY char (&pDest)[maxLenInChars], PRINTF_FORMAT_STRING const char *pFormat, ... ) { va_list params; va_start( params, pFormat ); int result = V_vsnprintf( pDest, maxLenInChars, pFormat, params ); va_end( params ); return result; } // gcc insists on only having format annotations on declarations, not definitions, which is why I have both. // Append formatted text to an array in a safe manner -- always null-terminated, truncation rather than buffer overrun. template int V_sprintfcat_safe( INOUT_Z_ARRAY char (&pDest)[maxLenInChars], PRINTF_FORMAT_STRING const char *pFormat, ... ) FMTFUNCTION( 2, 3 ); template int V_sprintfcat_safe( INOUT_Z_ARRAY char (&pDest)[maxLenInChars], PRINTF_FORMAT_STRING const char *pFormat, ... ) { va_list params; va_start( params, pFormat ); size_t usedLength = V_strlen(pDest); // This code is here to check against buffer overruns when uninitialized arrays are passed in. // It should never be executed. Unfortunately we can't assert in this header file. if ( usedLength >= maxLenInChars ) usedLength = 0; int result = V_vsnprintf( pDest + usedLength, maxLenInChars - usedLength, pFormat, params ); va_end( params ); return result; } int V_vsnwprintf( OUT_Z_CAP(maxLenInCharacters) wchar_t *pDest, int maxLenInCharacters, PRINTF_FORMAT_STRING const wchar_t *pFormat, va_list params ); template int V_vswprintf_safe( OUT_Z_ARRAY wchar_t (&pDest)[maxLenInCharacters], PRINTF_FORMAT_STRING const wchar_t *pFormat, va_list params ) { return V_vsnwprintf( pDest, maxLenInCharacters, pFormat, params ); } int V_vsnprintfRet( OUT_Z_CAP(maxLenInCharacters) char *pDest, int maxLenInCharacters, PRINTF_FORMAT_STRING const char *pFormat, va_list params, bool *pbTruncated ); template int V_vsprintfRet_safe( OUT_Z_ARRAY char (&pDest)[maxLenInCharacters], PRINTF_FORMAT_STRING const char *pFormat, va_list params, bool *pbTruncated ) { return V_vsnprintfRet( pDest, maxLenInCharacters, pFormat, params, pbTruncated ); } // FMTFUNCTION can only be used on ASCII functions, not wide-char functions. int V_snwprintf( OUT_Z_CAP(maxLenInCharacters) wchar_t *pDest, int maxLenInCharacters, PRINTF_FORMAT_STRING const wchar_t *pFormat, ... ); template int V_swprintf_safe( OUT_Z_ARRAY wchar_t (&pDest)[maxLenInChars], PRINTF_FORMAT_STRING const wchar_t *pFormat, ... ) { va_list params; va_start( params, pFormat ); int result = V_vsnwprintf( pDest, maxLenInChars, pFormat, params ); va_end( params ); return result; } // Prints out a pretified memory counter string value ( e.g., 7,233.27 Mb, 1,298.003 Kb, 127 bytes ) char *V_pretifymem( float value, int digitsafterdecimal = 2, bool usebinaryonek = false ); // Prints out a pretified integer with comma separators (eg, 7,233,270,000) char *V_pretifynum( int64 value ); int _V_UCS2ToUnicode( const ucs2 *pUCS2, OUT_Z_BYTECAP(cubDestSizeInBytes) wchar_t *pUnicode, int cubDestSizeInBytes ); template< typename T > inline int V_UCS2ToUnicode( const ucs2 *pUCS2, OUT_Z_BYTECAP(cubDestSizeInBytes) wchar_t *pUnicode, T cubDestSizeInBytes ) { return _V_UCS2ToUnicode( pUCS2, pUnicode, static_cast(cubDestSizeInBytes) ); } int _V_UCS2ToUTF8( const ucs2 *pUCS2, OUT_Z_BYTECAP(cubDestSizeInBytes) char *pUTF8, int cubDestSizeInBytes ); template< typename T > inline int V_UCS2ToUTF8( const ucs2 *pUCS2, OUT_Z_BYTECAP(cubDestSizeInBytes) char *pUTF8, T cubDestSizeInBytes ) { return _V_UCS2ToUTF8( pUCS2, pUTF8, static_cast(cubDestSizeInBytes) ); } int _V_UnicodeToUCS2( const wchar_t *pUnicode, int cubSrcInBytes, OUT_Z_BYTECAP(cubDestSizeInBytes) char *pUCS2, int cubDestSizeInBytes ); template< typename T, typename U > inline int V_UnicodeToUCS2( const wchar_t *pUnicode, T cubSrcInBytes, OUT_Z_BYTECAP(cubDestSizeInBytes) char *pUCS2, U cubDestSizeInBytes ) { return _V_UnicodeToUCS2( pUnicode, static_cast(cubSrcInBytes), pUCS2, static_cast(cubDestSizeInBytes) ); } int _V_UTF8ToUCS2( const char *pUTF8, int cubSrcInBytes, OUT_Z_BYTECAP(cubDestSizeInBytes) ucs2 *pUCS2, int cubDestSizeInBytes ); template< typename T, typename U > inline int V_UTF8ToUCS2( const char *pUTF8, T cubSrcInBytes, OUT_Z_BYTECAP(cubDestSizeInBytes) ucs2 *pUCS2, U cubDestSizeInBytes ) { return _V_UTF8ToUCS2( pUTF8, static_cast(cubSrcInBytes), pUCS2, static_cast(cubDestSizeInBytes) ); } // strips leading and trailing whitespace; returns true if any characters were removed. UTF-8 and UTF-16 versions. bool Q_StripPrecedingAndTrailingWhitespace( char *pch ); bool Q_StripPrecedingAndTrailingWhitespaceW( wchar_t *pwch ); // strips leading and trailing whitespace, also taking "aggressive" characters // like punctuation spaces, non-breaking spaces, composing characters, and so on bool Q_AggressiveStripPrecedingAndTrailingWhitespace( char *pch ); bool Q_AggressiveStripPrecedingAndTrailingWhitespaceW( wchar_t *pwch ); bool Q_RemoveAllEvilCharacters( char *pch ); // Functions for converting hexidecimal character strings back into binary data etc. // // e.g., // int output; // V_hextobinary( "ffffffff", 8, &output, sizeof( output ) ); // would make output == 0xfffffff or -1 // Similarly, // char buffer[ 9 ]; // V_binarytohex( &output, sizeof( output ), buffer, sizeof( buffer ) ); // would put "ffffffff" into buffer (note null terminator!!!) unsigned char V_nibble( char c ); void V_hextobinary( char const *in, int numchars, byte *out, int maxoutputbytes ); void V_binarytohex( const byte *in, int inputbytes, char *out, int outsize ); // Tools for working with filenames // Extracts the base name of a file (no path, no extension, assumes '/' or '\' as path separator) void V_FileBase( const char *in, char *out,int maxlen ); // Remove the final characters of ppath if it's '\' or '/'. void V_StripTrailingSlash( char *ppath ); // Remove the final characters of ppline if they are whitespace (uses V_isspace) void V_StripTrailingWhitespace( char *ppline ); // Remove the initial characters of ppline if they are whitespace (uses V_isspace) void V_StripLeadingWhitespace( char *ppline ); // Remove the initial/final characters of ppline if they are " quotes void V_StripSurroundingQuotes( char *ppline ); // Remove any extension from in and return resulting string in out void V_StripExtension( const char *in, char *out, int outLen ); // Make path end with extension if it doesn't already have an extension void V_DefaultExtension( char *path, const char *extension, int pathStringLength ); // Strips any current extension from path and ensures that extension is the new extension void V_SetExtension( char *path, const char *extension, int pathStringLength ); // Removes any filename from path ( strips back to previous / or \ character ) void V_StripFilename( char *path ); // Remove the final directory from the path bool V_StripLastDir( char *dirName, int maxlen ); // Returns a pointer to the unqualified file name (no path) of a file name const char * V_UnqualifiedFileName( const char * in ); // Given a path and a filename, composes "path\filename", inserting the (OS correct) separator if necessary void V_ComposeFileName( const char *path, const char *filename, char *dest, int destSize ); // Copy out the path except for the stuff after the final pathseparator bool V_ExtractFilePath( const char *path, char *dest, int destSize ); // Copy out the file extension into dest void V_ExtractFileExtension( const char *path, char *dest, int destSize ); const char *V_GetFileExtension( const char * path ); // returns a pointer to just the filename part of the path // (everything after the last path seperator) const char *V_GetFileName( const char * path ); // This removes "./" and "../" from the pathname. pFilename should be a full pathname. // Also incorporates the behavior of V_FixSlashes and optionally V_FixDoubleSlashes. // Returns false if it tries to ".." past the root directory in the drive (in which case // it is an invalid path). bool V_RemoveDotSlashes( char *pFilename, char separator = CORRECT_PATH_SEPARATOR, bool bRemoveDoubleSlashes = true ); // If pPath is a relative path, this function makes it into an absolute path // using the current working directory as the base, or pStartingDir if it's non-NULL. // Returns false if it runs out of room in the string, or if pPath tries to ".." past the root directory. void V_MakeAbsolutePath( char *pOut, int outLen, const char *pPath, const char *pStartingDir = NULL ); inline void V_MakeAbsolutePath( char *pOut, int outLen, const char *pPath, const char *pStartingDir, bool bLowercaseName ) { V_MakeAbsolutePath( pOut, outLen, pPath, pStartingDir ); if ( bLowercaseName ) { V_strlower( pOut ); } } // Creates a relative path given two full paths // The first is the full path of the file to make a relative path for. // The second is the full path of the directory to make the first file relative to // Returns false if they can't be made relative (on separate drives, for example) bool V_MakeRelativePath( const char *pFullPath, const char *pDirectory, char *pRelativePath, int nBufLen ); // Fixes up a file name, removing dot slashes, fixing slashes, converting to lowercase, etc. void V_FixupPathName( OUT_Z_CAP(nOutLen) char *pOut, size_t nOutLen, const char *pPath ); // Adds a path separator to the end of the string if there isn't one already. Returns false if it would run out of space. void V_AppendSlash( INOUT_Z_CAP(strSize) char *pStr, int strSize ); // Returns true if the path is an absolute path. bool V_IsAbsolutePath( IN_Z const char *pPath ); // Scans pIn and replaces all occurences of pMatch with pReplaceWith. // Writes the result to pOut. // Returns true if it completed successfully. // If it would overflow pOut, it fills as much as it can and returns false. bool V_StrSubst( IN_Z const char *pIn, IN_Z const char *pMatch, const char *pReplaceWith, OUT_Z_CAP(outLen) char *pOut, int outLen, bool bCaseSensitive=false ); // Split the specified string on the specified separator. // Returns a list of strings separated by pSeparator. // You are responsible for freeing the contents of outStrings (call outStrings.PurgeAndDeleteElements). void V_SplitString( IN_Z const char *pString, IN_Z const char *pSeparator, CUtlVector > &outStrings ); void V_SplitString( const char *pString, const char *pSeparator, CUtlVector< CUtlString, CUtlMemory > &outStrings, bool bIncludeEmptyStrings = false ); // Just like V_SplitString, but it can use multiple possible separators. void V_SplitString2( IN_Z const char *pString, const char **pSeparators, int nSeparators, CUtlVector > &outStrings ); // Returns false if the buffer is not large enough to hold the working directory name. bool V_GetCurrentDirectory( OUT_Z_CAP(maxLen) char *pOut, int maxLen ); // Set the working directory thus. bool V_SetCurrentDirectory( const char *pDirName ); // This function takes a slice out of pStr and stores it in pOut. // It follows the Python slice convention: // Negative numbers wrap around the string (-1 references the last character). // Large numbers are clamped to the end of the string. void V_StrSlice( const char *pStr, int firstChar, int lastCharNonInclusive, OUT_Z_CAP(outSize) char *pOut, int outSize ); // Chop off the left nChars of a string. void V_StrLeft( const char *pStr, int nChars, OUT_Z_CAP(outSize) char *pOut, int outSize ); // Chop off the right nChars of a string. void V_StrRight( const char *pStr, int nChars, OUT_Z_CAP(outSize) char *pOut, int outSize ); // change "special" characters to have their c-style backslash sequence. like \n, \r, \t, ", etc. // returns a pointer to a newly allocated string, which you must delete[] when finished with. char *V_AddBackSlashesToSpecialChars( char const *pSrc ); // Force slashes of either type to be = separator character void V_FixSlashes( char *pname, char separator = CORRECT_PATH_SEPARATOR ); // This function fixes cases of filenames like materials\\blah.vmt or somepath\otherpath\\ and removes the extra double slash. void V_FixDoubleSlashes( char *pStr ); // Convert multibyte to wchar + back // Specify -1 for nInSize for null-terminated string void V_strtowcs( const char *pString, int nInSize, OUT_Z_BYTECAP(nOutSizeInBytes) wchar_t *pWString, int nOutSizeInBytes ); void V_wcstostr( const wchar_t *pWString, int nInSize, OUT_Z_CAP(nOutSizeInBytes) char *pString, int nOutSizeInBytes ); // buffer-safe strcat inline void V_strcat( INOUT_Z_CAP(cchDest) char *dest, const char *src, int cchDest ) { V_strncat( dest, src, cchDest, COPY_ALL_CHARACTERS ); } // Buffer safe wcscat inline void V_wcscat( INOUT_Z_CAP(cchDest) wchar_t *dest, const wchar_t *src, int cchDest ) { V_wcsncat( dest, src, cchDest, COPY_ALL_CHARACTERS ); } // Encode a string for display as HTML -- this only encodes ' " & < >, which are the important ones to encode for // security and ensuring HTML display doesn't break. Other special chars like the ? sign and so forth will not // be encoded // // Returns false if there was not enough room in pDest to encode the entire source string, otherwise true bool V_BasicHtmlEntityEncode( OUT_Z_CAP( nDestSize ) char *pDest, const int nDestSize, char const *pIn, const int nInSize, bool bPreserveWhitespace = false ); // Decode a string with htmlentities HTML -- this should handle all special chars, not just the ones Q_BasicHtmlEntityEncode uses. // // Returns false if there was not enough room in pDest to decode the entire source string, otherwise true bool V_HtmlEntityDecodeToUTF8( OUT_Z_CAP( nDestSize ) char *pDest, const int nDestSize, char const *pIn, const int nInSize ); // strips HTML from a string. Should call Q_HTMLEntityDecodeToUTF8 afterward. void V_StripAndPreserveHTML( CUtlBuffer *pbuffer, const char *pchHTML, const char **rgszPreserveTags, uint cPreserveTags, uint cMaxResultSize ); void V_StripAndPreserveHTMLCore( CUtlBuffer *pbuffer, const char *pchHTML, const char **rgszPreserveTags, uint cPreserveTags, const char **rgszNoCloseTags, uint cNoCloseTags, uint cMaxResultSize ); // Extracts the domain from a URL bool V_ExtractDomainFromURL( const char *pchURL, OUT_Z_CAP( cchDomain ) char *pchDomain, int cchDomain ); // returns true if the url passed in is on the specified domain bool V_URLContainsDomain( const char *pchURL, const char *pchDomain ); //----------------------------------------------------------------------------- // returns true if the character is allowed in a URL, false otherwise //----------------------------------------------------------------------------- bool V_IsValidURLCharacter( const char *pch, int *pAdvanceBytes ); //----------------------------------------------------------------------------- // returns true if the character is allowed in a DNS doman name, false otherwise //----------------------------------------------------------------------------- bool V_IsValidDomainNameCharacter( const char *pch, int *pAdvanceBytes ); // Converts BBCode tags to HTML tags bool V_BBCodeToHTML( OUT_Z_CAP( nDestSize ) char *pDest, const int nDestSize, char const *pIn, const int nInSize ); // helper to identify "mean" spaces, which we don't like in visible identifiers // such as player Name bool V_IsMeanSpaceW( wchar_t wch ); // helper to identify characters which are deprecated in Unicode, // and we simply don't accept bool V_IsDeprecatedW( wchar_t wch ); //----------------------------------------------------------------------------- // generic unique name helper functions //----------------------------------------------------------------------------- // returns startindex if none found, 2 if "prefix" found, and n+1 if "prefixn" found template < class NameArray > int V_GenerateUniqueNameIndex( const char *prefix, const NameArray &nameArray, int startindex = 0 ) { if ( prefix == NULL ) return 0; int freeindex = startindex; int nNames = nameArray.Count(); for ( int i = 0; i < nNames; ++i ) { const char *pName = nameArray[ i ]; if ( !pName ) continue; const char *pIndexStr = StringAfterPrefix( pName, prefix ); if ( pIndexStr ) { int index = *pIndexStr ? atoi( pIndexStr ) : 1; if ( index >= freeindex ) { // TODO - check that there isn't more junk after the index in pElementName freeindex = index + 1; } } } return freeindex; } template < class NameArray > bool V_GenerateUniqueName( OUT_Z_CAP(memsize) char *name, int memsize, const char *prefix, const NameArray &nameArray ) { if ( name == NULL || memsize == 0 ) return false; if ( prefix == NULL ) { name[ 0 ] = '\0'; return false; } int prefixLength = V_strlen( prefix ); if ( prefixLength + 1 > memsize ) { name[ 0 ] = '\0'; return false; } int i = V_GenerateUniqueNameIndex( prefix, nameArray ); if ( i <= 0 ) { V_strncpy( name, prefix, memsize ); return true; } int newlen = prefixLength + ( int )log10( ( float )i ) + 1; if ( newlen + 1 > memsize ) { V_strncpy( name, prefix, memsize ); return false; } V_snprintf( name, memsize, "%s%d", prefix, i ); return true; } // // This utility class is for performing UTF-8 <-> UTF-16 conversion. // It is intended for use with function/method parameters. // // For example, you can call // FunctionTakingUTF16( CStrAutoEncode( utf8_string ).ToWString() ) // or // FunctionTakingUTF8( CStrAutoEncode( utf16_string ).ToString() ) // // The converted string is allocated off the heap, and destroyed when // the object goes out of scope. // // if the string cannot be converted, NULL is returned. // // This class doesn't have any conversion operators; the intention is // to encourage the developer to get used to having to think about which // encoding is desired. // class CStrAutoEncode { public: // ctor explicit CStrAutoEncode( const char *pch ) { m_pch = pch; m_pwch = NULL; #if !defined( WIN32 ) && !defined(_WIN32) m_pucs2 = NULL; m_bCreatedUCS2 = false; #endif m_bCreatedUTF16 = false; } // ctor explicit CStrAutoEncode( const wchar_t *pwch ) { m_pch = NULL; m_pwch = pwch; #if !defined( WIN32 ) && !defined(_WIN32) m_pucs2 = NULL; m_bCreatedUCS2 = false; #endif m_bCreatedUTF16 = true; } #if !defined(WIN32) && !defined(_WINDOWS) && !defined(_WIN32) explicit CStrAutoEncode( const ucs2 *pwch ) { m_pch = NULL; m_pwch = NULL; m_pucs2 = pwch; m_bCreatedUCS2 = true; m_bCreatedUTF16 = false; } #endif // returns the UTF-8 string, converting on the fly. const char* ToString() { PopulateUTF8(); return m_pch; } // returns the UTF-8 string - a writable pointer. // only use this if you don't want to call const_cast // yourself. We need this for cases like CreateProcess. char* ToStringWritable() { PopulateUTF8(); return const_cast< char* >( m_pch ); } // returns the UTF-16 string, converting on the fly. const wchar_t* ToWString() { PopulateUTF16(); return m_pwch; } #if !defined( WIN32 ) && !defined(_WIN32) // returns the UTF-16 string, converting on the fly. const ucs2* ToUCS2String() { PopulateUCS2(); return m_pucs2; } #endif // returns the UTF-16 string - a writable pointer. // only use this if you don't want to call const_cast // yourself. We need this for cases like CreateProcess. wchar_t* ToWStringWritable() { PopulateUTF16(); return const_cast< wchar_t* >( m_pwch ); } // dtor ~CStrAutoEncode() { // if we're "native unicode" then the UTF-8 string is something we allocated, // and vice versa. if ( m_bCreatedUTF16 ) { delete [] m_pch; } else { delete [] m_pwch; } #if !defined( WIN32 ) && !defined(_WIN32) if ( !m_bCreatedUCS2 && m_pucs2 ) delete [] m_pucs2; #endif } private: // ensure we have done any conversion work required to farm out a // UTF-8 encoded string. // // We perform two heap allocs here; the first one is the worst-case // (four bytes per Unicode code point). This is usually quite pessimistic, // so we perform a second allocation that's just the size we need. void PopulateUTF8() { if ( !m_bCreatedUTF16 ) return; // no work to do if ( m_pwch == NULL ) return; // don't have a UTF-16 string to convert if ( m_pch != NULL ) return; // already been converted to UTF-8; no work to do // each Unicode code point can expand to as many as four bytes in UTF-8; we // also need to leave room for the terminating NUL. uint32 cbMax = 4 * static_cast( V_wcslen( m_pwch ) ) + 1; char *pchTemp = new char[ cbMax ]; if ( V_UnicodeToUTF8( m_pwch, pchTemp, cbMax ) ) { uint32 cchAlloc = static_cast( V_strlen( pchTemp ) ) + 1; char *pchHeap = new char[ cchAlloc ]; V_strncpy( pchHeap, pchTemp, cchAlloc ); delete [] pchTemp; m_pch = pchHeap; } else { // do nothing, and leave the UTF-8 string NULL delete [] pchTemp; } } // ensure we have done any conversion work required to farm out a // UTF-16 encoded string. // // We perform two heap allocs here; the first one is the worst-case // (one code point per UTF-8 byte). This is sometimes pessimistic, // so we perform a second allocation that's just the size we need. void PopulateUTF16() { if ( m_bCreatedUTF16 ) return; // no work to do if ( m_pch == NULL ) return; // no UTF-8 string to convert if ( m_pwch != NULL ) return; // already been converted to UTF-16; no work to do uint32 cchMax = static_cast( V_strlen( m_pch ) ) + 1; wchar_t *pwchTemp = new wchar_t[ cchMax ]; if ( V_UTF8ToUnicode( m_pch, pwchTemp, cchMax * sizeof( wchar_t ) ) ) { uint32 cchAlloc = static_cast( V_wcslen( pwchTemp ) ) + 1; wchar_t *pwchHeap = new wchar_t[ cchAlloc ]; V_wcsncpy( pwchHeap, pwchTemp, cchAlloc * sizeof( wchar_t ) ); delete [] pwchTemp; m_pwch = pwchHeap; } else { // do nothing, and leave the UTF-16 string NULL delete [] pwchTemp; } } #if !defined( WIN32 ) && !defined(_WIN32) // ensure we have done any conversion work required to farm out a // UTF-16 encoded string. // // We perform two heap allocs here; the first one is the worst-case // (one code point per UTF-8 byte). This is sometimes pessimistic, // so we perform a second allocation that's just the size we need. void PopulateUCS2() { if ( m_bCreatedUCS2 ) return; if ( m_pch == NULL ) return; // no UTF-8 string to convert if ( m_pucs2 != NULL ) return; // already been converted to UTF-16; no work to do uint32 cchMax = static_cast( V_strlen( m_pch ) ) + 1; ucs2 *pwchTemp = new ucs2[ cchMax ]; if ( V_UTF8ToUCS2( m_pch, cchMax, pwchTemp, cchMax * sizeof( ucs2 ) ) ) { uint32 cchAlloc = cchMax; ucs2 *pwchHeap = new ucs2[ cchAlloc ]; memcpy( pwchHeap, pwchTemp, cchAlloc * sizeof( ucs2 ) ); delete [] pwchTemp; m_pucs2 = pwchHeap; } else { // do nothing, and leave the UTF-16 string NULL delete [] pwchTemp; } } #endif // one of these pointers is an owned pointer; whichever // one is the encoding OTHER than the one we were initialized // with is the pointer we've allocated and must free. const char *m_pch; const wchar_t *m_pwch; #if !defined( WIN32 ) && !defined(_WIN32) const ucs2 *m_pucs2; bool m_bCreatedUCS2; #endif // "created as UTF-16", means our owned string is the UTF-8 string not the UTF-16 one. bool m_bCreatedUTF16; }; // Encodes a string (or binary data) in URL encoding format, see rfc1738 section 2.2. // Dest buffer should be 3 times the size of source buffer to guarantee it has room to encode. void Q_URLEncodeRaw( OUT_Z_CAP(nDestLen) char *pchDest, int nDestLen, const char *pchSource, int nSourceLen ); // Decodes a string (or binary data) from URL encoding format, see rfc1738 section 2.2. // Dest buffer should be at least as large as source buffer to gurantee room for decode. // Dest buffer being the same as the source buffer (decode in-place) is explicitly allowed. // // Returns the amount of space actually used in the output buffer. size_t Q_URLDecodeRaw( OUT_CAP(nDecodeDestLen) char *pchDecodeDest, int nDecodeDestLen, const char *pchEncodedSource, int nEncodedSourceLen ); // trim right whitespace inline char* TrimRight( char *pString ) { char *pEnd = pString + V_strlen( pString ); // trim while ( pString < ( pEnd-- ) ) { if ( uint( *pEnd ) <= uint( ' ' ) ) { *pEnd = '\0'; } else break; } return pString; } inline const char * SkipBlanks( const char *pString ) { const char *p = pString; while ( *p && uint( *p ) <= uint( ' ' ) ) { p++; } return p; } inline int V_strcspn( const char *s1, const char *search ) { return (int)( strcspn( s1, search ) ); } // Encodes a string (or binary data) in URL encoding format, this isn't the strict rfc1738 format, but instead uses + for spaces. // This is for historical reasons and HTML spec foolishness that lead to + becoming a de facto standard for spaces when encoding form data. // Dest buffer should be 3 times the size of source buffer to guarantee it has room to encode. void Q_URLEncode( OUT_Z_CAP(nDestLen) char *pchDest, int nDestLen, const char *pchSource, int nSourceLen ); // Decodes a string (or binary data) in URL encoding format, this isn't the strict rfc1738 format, but instead uses + for spaces. // This is for historical reasons and HTML spec foolishness that lead to + becoming a de facto standard for spaces when encoding form data. // Dest buffer should be at least as large as source buffer to gurantee room for decode. // Dest buffer being the same as the source buffer (decode in-place) is explicitly allowed. // // Returns the amount of space actually used in the output buffer. size_t Q_URLDecode( OUT_CAP(nDecodeDestLen) char *pchDecodeDest, int nDecodeDestLen, const char *pchEncodedSource, int nEncodedSourceLen ); // NOTE: This is for backward compatability! // We need to DLL-export the Q methods in vstdlib but not link to them in other projects #if !defined( VSTDLIB_BACKWARD_COMPAT ) #define Q_memset V_memset #define Q_memcpy V_memcpy #define Q_memmove V_memmove #define Q_memcmp V_memcmp #define Q_strlen V_strlen #define Q_strcpy V_strcpy #define Q_strrchr V_strrchr #define Q_strcmp V_strcmp #define Q_wcscmp V_wcscmp #define Q_stricmp V_stricmp #define Q_strstr V_strstr #define Q_strupr V_strupr #define Q_strlower V_strlower #define Q_wcslen V_wcslen #define Q_strncmp V_strncmp #define Q_strcasecmp V_strcasecmp #define Q_strncasecmp V_strncasecmp #define Q_strnicmp V_strnicmp #define Q_atoi V_atoi #define Q_atoi64 V_atoi64 #define Q_atoui64 V_atoui64 #define Q_atof V_atof #define Q_stristr V_stristr #define Q_strnistr V_strnistr #define Q_strnchr V_strnchr #define Q_normalizeFloatString V_normalizeFloatString #define Q_strncpy V_strncpy #define Q_snprintf V_snprintf #define Q_wcsncpy V_wcsncpy #define Q_strncat V_strncat #define Q_strnlwr V_strnlwr #define Q_vsnprintf V_vsnprintf #define Q_vsnprintfRet V_vsnprintfRet #define Q_pretifymem V_pretifymem #define Q_pretifynum V_pretifynum #define Q_UTF8ToUnicode V_UTF8ToUnicode #define Q_UnicodeToUTF8 V_UnicodeToUTF8 #define Q_hextobinary V_hextobinary #define Q_binarytohex V_binarytohex #define Q_FileBase V_FileBase #define Q_StripTrailingSlash V_StripTrailingSlash #define Q_StripExtension V_StripExtension #define Q_DefaultExtension V_DefaultExtension #define Q_SetExtension V_SetExtension #define Q_StripFilename V_StripFilename #define Q_StripLastDir V_StripLastDir #define Q_UnqualifiedFileName V_UnqualifiedFileName #define Q_ComposeFileName V_ComposeFileName #define Q_ExtractFilePath V_ExtractFilePath #define Q_ExtractFileExtension V_ExtractFileExtension #define Q_GetFileExtension V_GetFileExtension #define Q_RemoveDotSlashes V_RemoveDotSlashes #define Q_MakeAbsolutePath V_MakeAbsolutePath #define Q_AppendSlash V_AppendSlash #define Q_IsAbsolutePath V_IsAbsolutePath #define Q_StrSubst V_StrSubst #define Q_SplitString V_SplitString #define Q_SplitString2 V_SplitString2 #define Q_StrSlice V_StrSlice #define Q_StrLeft V_StrLeft #define Q_StrRight V_StrRight #define Q_FixSlashes V_FixSlashes #define Q_strtowcs V_strtowcs #define Q_wcstostr V_wcstostr #define Q_strcat V_strcat #define Q_GenerateUniqueNameIndex V_GenerateUniqueNameIndex #define Q_GenerateUniqueName V_GenerateUniqueName #define Q_MakeRelativePath V_MakeRelativePath #define Q_qsort_s V_qsort_s #endif // !defined( VSTDLIB_DLL_EXPORT ) #ifdef POSIX #define FMT_WS L"%ls" #else #define FMT_WS L"%s" #endif // Strip white space at the beginning and end of a string int V_StrTrim( char *pStr ); #endif // TIER1_STRTOOLS_H