hl2_src-leak-2017/src/particles/builtin_particle_ops.cpp

4585 lines
158 KiB
C++

//========= Copyright Valve Corporation, All rights reserved. ============//
//
// Purpose: particle system code
//
//===========================================================================//
#include "tier0/platform.h"
#include "particles/particles.h"
#include "filesystem.h"
#include "tier2/tier2.h"
#include "tier2/fileutils.h"
#include "tier2/renderutils.h"
#include "tier1/UtlStringMap.h"
#include "tier1/strtools.h"
#include "studio.h"
#include "bspflags.h"
#include "tier0/vprof.h"
// memdbgon must be the last include file in a .cpp file!!!
#include "tier0/memdbgon.h"
#if MEASURE_PARTICLE_PERF
#if VPROF_LEVEL > 0
#define START_OP float flOpStartTime = Plat_FloatTime(); VPROF_ENTER_SCOPE(pOp->GetDefinition()->GetName())
#else
#define START_OP float flOpStartTime = Plat_FloatTime();
#endif
#if VPROF_LEVEL > 0
#define END_OP if ( 1 ) { \
float flETime = Plat_FloatTime() - flOpStartTime; \
IParticleOperatorDefinition *pDef = (IParticleOperatorDefinition *) pOp->GetDefinition(); \
pDef->RecordExecutionTime( flETime ); \
} \
VPROF_EXIT_SCOPE()
#else
#define END_OP if ( 1 ) { \
float flETime = Plat_FloatTime() - flOpStartTime; \
IParticleOperatorDefinition *pDef = (IParticleOperatorDefinition *) pOp->GetDefinition(); \
pDef->RecordExecutionTime( flETime ); \
}
#endif
#else
#define START_OP
#define END_OP
#endif
//-----------------------------------------------------------------------------
// Standard movement operator
//-----------------------------------------------------------------------------
class C_OP_BasicMovement : public CParticleOperatorInstance
{
DECLARE_PARTICLE_OPERATOR( C_OP_BasicMovement );
uint32 GetWrittenAttributes( void ) const
{
return PARTICLE_ATTRIBUTE_PREV_XYZ_MASK | PARTICLE_ATTRIBUTE_XYZ_MASK;
}
uint32 GetReadAttributes( void ) const
{
return 0;
}
virtual void Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const;
Vector m_Gravity;
float m_fDrag;
int m_nMaxConstraintPasses;
};
DEFINE_PARTICLE_OPERATOR( C_OP_BasicMovement, "Movement Basic", OPERATOR_GENERIC );
BEGIN_PARTICLE_OPERATOR_UNPACK( C_OP_BasicMovement )
DMXELEMENT_UNPACK_FIELD( "gravity", "0 0 0", Vector, m_Gravity )
DMXELEMENT_UNPACK_FIELD( "drag", "0", float, m_fDrag )
DMXELEMENT_UNPACK_FIELD( "max constraint passes", "3", int, m_nMaxConstraintPasses )
END_PARTICLE_OPERATOR_UNPACK( C_OP_BasicMovement )
#define MAXIMUM_NUMBER_OF_CONSTRAINTS 100
//#define CHECKALL 1
#ifdef NDEBUG
#define CHECKSYSTEM( p ) 0
#else
#ifdef CHECKALL
static void CHECKSYSTEM( CParticleCollection *pParticles )
{
// Assert( pParticles->m_nActiveParticles <= pParticles->m_pDef->m_nMaxParticles );
for ( int i = 0; i < pParticles->m_nActiveParticles; ++i )
{
const float *xyz = pParticles->GetFloatAttributePtr( PARTICLE_ATTRIBUTE_XYZ, i );
const float *xyz_prev = pParticles->GetFloatAttributePtr( PARTICLE_ATTRIBUTE_PREV_XYZ, i );
Assert( IsFinite( xyz[0] ) );
Assert( IsFinite( xyz[4] ) );
Assert( IsFinite( xyz[8] ) );
Assert( IsFinite( xyz_prev[0] ) );
Assert( IsFinite( xyz_prev[4] ) );
Assert( IsFinite( xyz_prev[8] ) );
}
}
#else
#define CHECKSYSTEM( p ) 0
#endif
#endif
void C_OP_BasicMovement::Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const
{
C4VAttributeWriteIterator prev_xyz( PARTICLE_ATTRIBUTE_PREV_XYZ, pParticles );
C4VAttributeWriteIterator xyz( PARTICLE_ATTRIBUTE_XYZ, pParticles );
// fltx4 adj_dt = ReplicateX4( (1.0-m_fDrag) * ( pParticles->m_flDt / pParticles->m_flPreviousDt ) );
fltx4 adj_dt = ReplicateX4( ( pParticles->m_flDt / pParticles->m_flPreviousDt ) * ExponentialDecay( (1.0f-max(0.f,m_fDrag)), (1.0f/30.0f), pParticles->m_flDt ) );
size_t nForceStride=0;
Vector acc = m_Gravity;
fltx4 accFactorX = ReplicateX4( acc.x );
fltx4 accFactorY = ReplicateX4( acc.y );
fltx4 accFactorZ = ReplicateX4( acc.z );
int nAccumulators = pParticles->m_pDef->m_ForceGenerators.Count();
FourVectors PerParticleForceAccumulator[MAX_PARTICLES_IN_A_SYSTEM / 4]; // xbox fixme - memory
FourVectors *pAccOut = PerParticleForceAccumulator;
if (nAccumulators)
{
// we do have per particle force accumulators
nForceStride = 1;
int nblocks = pParticles->m_nPaddedActiveParticles;
for(int i=0;i<nblocks;i++)
{
pAccOut->x = accFactorX;
pAccOut->y = accFactorY;
pAccOut->z = accFactorZ;
pAccOut++;
}
// now, call all force accumulators
for(int i=0;i < nAccumulators ; i++ )
{
float flStrengthOp;
CParticleOperatorInstance *pOp = pParticles->m_pDef->m_ForceGenerators[i];
if ( pParticles->CheckIfOperatorShouldRun( pOp, &flStrengthOp ))
{
START_OP;
pParticles->m_pDef->m_ForceGenerators[i]->AddForces(
PerParticleForceAccumulator,
pParticles,
nblocks,
flStrengthOp,
pParticles->m_pOperatorContextData +
pParticles->m_pDef->m_nForceGeneratorsCtxOffsets[i] );
END_OP;
}
}
}
else
{
pAccOut->x = accFactorX;
pAccOut->y = accFactorY;
pAccOut->z = accFactorZ;
// we just have gravity
}
CHECKSYSTEM( pParticles );
fltx4 DtSquared = ReplicateX4( pParticles->m_flDt * pParticles->m_flDt );
int ctr = pParticles->m_nPaddedActiveParticles;
FourVectors *pAccIn = PerParticleForceAccumulator;
do
{
accFactorX = MulSIMD( pAccIn->x, DtSquared );
accFactorY = MulSIMD( pAccIn->y, DtSquared );
accFactorZ = MulSIMD( pAccIn->z, DtSquared );
// we will write prev xyz, and swap prev and cur at the end
prev_xyz->x = AddSIMD( xyz->x,
AddSIMD( accFactorX, MulSIMD( adj_dt, SubSIMD( xyz->x, prev_xyz->x ) ) ) );
prev_xyz->y = AddSIMD( xyz->y,
AddSIMD( accFactorY, MulSIMD( adj_dt, SubSIMD( xyz->y, prev_xyz->y ) ) ) );
prev_xyz->z = AddSIMD( xyz->z,
AddSIMD( accFactorZ, MulSIMD( adj_dt, SubSIMD( xyz->z, prev_xyz->z ) ) ) );
CHECKSYSTEM( pParticles );
++prev_xyz;
++xyz;
pAccIn += nForceStride;
} while (--ctr);
CHECKSYSTEM( pParticles );
pParticles->SwapPosAndPrevPos();
// now, enforce constraints
int nConstraints = pParticles->m_pDef->m_Constraints.Count();
if ( nConstraints && pParticles->m_nPaddedActiveParticles )
{
bool bConstraintSatisfied[ MAXIMUM_NUMBER_OF_CONSTRAINTS ];
bool bFinalConstraint[ MAXIMUM_NUMBER_OF_CONSTRAINTS ];
for(int i=0;i<nConstraints; i++)
{
bFinalConstraint[i] = pParticles->m_pDef->m_Constraints[i]->IsFinalConstraint();
bConstraintSatisfied[i] = false;
pParticles->m_pDef->m_Constraints[i]->SetupConstraintPerFrameData(
pParticles, pParticles->m_pOperatorContextData +
pParticles->m_pDef->m_nConstraintsCtxOffsets[i] );
}
// constraints get to see their own per psystem per op random #s
for(int p=0; p < m_nMaxConstraintPasses ; p++ )
{
// int nSaveOffset=pParticles->m_nOperatorRandomSampleOffset;
for(int i=0;i<nConstraints; i++)
{
// pParticles->m_nOperatorRandomSampleOffset += 23;
if ( ! bConstraintSatisfied[i] )
{
CParticleOperatorInstance *pOp = pParticles->m_pDef->m_Constraints[i];
bConstraintSatisfied[i] = true;
if ( ( !bFinalConstraint[i] ) && ( pParticles->CheckIfOperatorShouldRun( pOp ) ) )
{
START_OP;
bool bDidSomething = pOp->EnforceConstraint(
0, pParticles->m_nPaddedActiveParticles, pParticles,
pParticles->m_pOperatorContextData +
pParticles->m_pDef->m_nConstraintsCtxOffsets[i],
pParticles->m_nActiveParticles );
END_OP;
CHECKSYSTEM( pParticles );
if ( bDidSomething )
{
// other constraints now not satisfied, maybe
for( int j=0; j<nConstraints; j++)
{
if ( i != j )
{
bConstraintSatisfied[ j ] = false;
}
}
}
}
}
}
// pParticles->m_nOperatorRandomSampleOffset = nSaveOffset;
}
// now, run final constraints
for(int i=0;i<nConstraints; i++)
{
CParticleOperatorInstance *pOp = pParticles->m_pDef->m_Constraints[i];
if ( ( bFinalConstraint[i] ) &&
( pParticles->CheckIfOperatorShouldRun(
pOp ) ) )
{
START_OP;
pOp->EnforceConstraint(
0, pParticles->m_nPaddedActiveParticles, pParticles,
pParticles->m_pOperatorContextData +
pParticles->m_pDef->m_nConstraintsCtxOffsets[i],
pParticles->m_nActiveParticles );
END_OP;
CHECKSYSTEM( pParticles );
}
}
}
CHECKSYSTEM( pParticles );
}
//-----------------------------------------------------------------------------
// Fade and kill operator
//-----------------------------------------------------------------------------
class C_OP_FadeAndKill : public CParticleOperatorInstance
{
DECLARE_PARTICLE_OPERATOR( C_OP_FadeAndKill );
uint32 GetWrittenAttributes( void ) const
{
return PARTICLE_ATTRIBUTE_ALPHA_MASK;
}
uint32 GetReadAttributes( void ) const
{
return PARTICLE_ATTRIBUTE_CREATION_TIME_MASK | PARTICLE_ATTRIBUTE_LIFE_DURATION_MASK;
}
uint32 GetReadInitialAttributes( void ) const
{
return PARTICLE_ATTRIBUTE_ALPHA_MASK;
}
virtual void InitParams( CParticleSystemDefinition *pDef, CDmxElement *pElement );
virtual void Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const;
float m_flStartFadeInTime;
float m_flEndFadeInTime;
float m_flStartFadeOutTime;
float m_flEndFadeOutTime;
float m_flStartAlpha;
float m_flEndAlpha;
};
DEFINE_PARTICLE_OPERATOR( C_OP_FadeAndKill, "Alpha Fade and Decay", OPERATOR_GENERIC );
BEGIN_PARTICLE_OPERATOR_UNPACK( C_OP_FadeAndKill )
DMXELEMENT_UNPACK_FIELD( "start_alpha","1", float, m_flStartAlpha )
DMXELEMENT_UNPACK_FIELD( "end_alpha","0", float, m_flEndAlpha )
DMXELEMENT_UNPACK_FIELD( "start_fade_in_time","0", float, m_flStartFadeInTime )
DMXELEMENT_UNPACK_FIELD( "end_fade_in_time","0.5", float, m_flEndFadeInTime )
DMXELEMENT_UNPACK_FIELD( "start_fade_out_time","0.5", float, m_flStartFadeOutTime )
DMXELEMENT_UNPACK_FIELD( "end_fade_out_time","1", float, m_flEndFadeOutTime )
END_PARTICLE_OPERATOR_UNPACK( C_OP_FadeAndKill )
void C_OP_FadeAndKill::InitParams( CParticleSystemDefinition *pDef, CDmxElement *pElement )
{
// Cache off and validate values
if ( m_flEndFadeInTime < m_flStartFadeInTime )
{
m_flEndFadeInTime = m_flStartFadeInTime;
}
if ( m_flEndFadeOutTime < m_flStartFadeOutTime )
{
m_flEndFadeOutTime = m_flStartFadeOutTime;
}
if ( m_flStartFadeOutTime < m_flStartFadeInTime )
{
V_swap( m_flStartFadeInTime, m_flStartFadeOutTime );
}
if ( m_flEndFadeOutTime < m_flEndFadeInTime )
{
V_swap( m_flEndFadeInTime, m_flEndFadeOutTime );
}
}
void C_OP_FadeAndKill::Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const
{
CM128AttributeIterator pCreationTime( PARTICLE_ATTRIBUTE_CREATION_TIME, pParticles );
CM128AttributeIterator pLifeDuration( PARTICLE_ATTRIBUTE_LIFE_DURATION, pParticles );
CM128InitialAttributeIterator pInitialAlpha( PARTICLE_ATTRIBUTE_ALPHA, pParticles );
CM128AttributeWriteIterator pAlpha( PARTICLE_ATTRIBUTE_ALPHA, pParticles );
fltx4 fl4StartFadeInTime = ReplicateX4( m_flStartFadeInTime );
fltx4 fl4StartFadeOutTime = ReplicateX4( m_flStartFadeOutTime );
fltx4 fl4EndFadeInTime = ReplicateX4( m_flEndFadeInTime );
fltx4 fl4EndFadeOutTime = ReplicateX4( m_flEndFadeOutTime );
fltx4 fl4EndAlpha = ReplicateX4( m_flEndAlpha );
fltx4 fl4StartAlpha = ReplicateX4( m_flStartAlpha );
fltx4 fl4CurTime = pParticles->m_fl4CurTime;
int nLimit = pParticles->m_nPaddedActiveParticles << 2;
fltx4 fl4FadeInDuration = ReplicateX4( m_flEndFadeInTime - m_flStartFadeInTime );
fltx4 fl4OOFadeInDuration = ReciprocalEstSIMD( fl4FadeInDuration );
fltx4 fl4FadeOutDuration = ReplicateX4( m_flEndFadeOutTime - m_flStartFadeOutTime );
fltx4 fl4OOFadeOutDuration = ReciprocalEstSIMD( fl4FadeOutDuration );
for ( int i = 0; i < nLimit; i+= 4 )
{
fltx4 fl4Age = SubSIMD( fl4CurTime, *pCreationTime );
fltx4 fl4ParticleLifeTime = *pLifeDuration;
fltx4 fl4KillMask = CmpGeSIMD( fl4Age, *pLifeDuration ); // takes care of lifeduration = 0 div 0
fl4Age = MulSIMD( fl4Age, ReciprocalEstSIMD( fl4ParticleLifeTime ) ); // age 0..1
fltx4 fl4FadingInMask = AndNotSIMD( fl4KillMask,
AndSIMD(
CmpLeSIMD( fl4StartFadeInTime, fl4Age ), CmpGtSIMD(fl4EndFadeInTime, fl4Age ) ) );
fltx4 fl4FadingOutMask = AndNotSIMD( fl4KillMask,
AndSIMD(
CmpLeSIMD( fl4StartFadeOutTime, fl4Age ), CmpGtSIMD(fl4EndFadeOutTime, fl4Age ) ) );
if ( IsAnyNegative( fl4FadingInMask ) )
{
fltx4 fl4Goal = MulSIMD( *pInitialAlpha, fl4StartAlpha );
fltx4 fl4NewAlpha = SimpleSplineRemapValWithDeltasClamped( fl4Age, fl4StartFadeInTime, fl4FadeInDuration, fl4OOFadeInDuration,
fl4Goal, SubSIMD( *pInitialAlpha, fl4Goal ) );
*pAlpha = MaskedAssign( fl4FadingInMask, fl4NewAlpha, *pAlpha );
}
if ( IsAnyNegative( fl4FadingOutMask ) )
{
fltx4 fl4Goal = MulSIMD( *pInitialAlpha, fl4EndAlpha );
fltx4 fl4NewAlpha = SimpleSplineRemapValWithDeltasClamped( fl4Age, fl4StartFadeOutTime, fl4FadeOutDuration, fl4OOFadeOutDuration,
*pInitialAlpha, SubSIMD( fl4Goal, *pInitialAlpha ) );
*pAlpha = MaskedAssign( fl4FadingOutMask, fl4NewAlpha, *pAlpha );
}
if ( IsAnyNegative( fl4KillMask ) )
{
int nMask = TestSignSIMD( fl4KillMask );
if ( nMask & 1 )
pParticles->KillParticle( i );
if ( nMask & 2 )
pParticles->KillParticle( i + 1 );
if ( nMask & 4 )
pParticles->KillParticle( i + 2 );
if ( nMask & 8 )
pParticles->KillParticle( i + 3 );
}
++pCreationTime;
++pLifeDuration;
++pInitialAlpha;
++pAlpha;
}
}
//-----------------------------------------------------------------------------
// Fade In Operator
//-----------------------------------------------------------------------------
class C_OP_FadeIn : public CParticleOperatorInstance
{
DECLARE_PARTICLE_OPERATOR( C_OP_FadeIn );
uint32 GetWrittenAttributes( void ) const
{
return PARTICLE_ATTRIBUTE_ALPHA_MASK;
}
uint32 GetReadAttributes( void ) const
{
return PARTICLE_ATTRIBUTE_CREATION_TIME_MASK | PARTICLE_ATTRIBUTE_LIFE_DURATION_MASK | PARTICLE_ATTRIBUTE_PARTICLE_ID_MASK;
}
uint32 GetReadInitialAttributes( void ) const
{
return PARTICLE_ATTRIBUTE_ALPHA_MASK;
}
virtual void Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const;
float m_flFadeInTimeMin;
float m_flFadeInTimeMax;
float m_flFadeInTimeExp;
bool m_bProportional;
};
DEFINE_PARTICLE_OPERATOR( C_OP_FadeIn, "Alpha Fade In Random", OPERATOR_GENERIC );
BEGIN_PARTICLE_OPERATOR_UNPACK( C_OP_FadeIn )
DMXELEMENT_UNPACK_FIELD( "fade in time min",".25", float, m_flFadeInTimeMin )
DMXELEMENT_UNPACK_FIELD( "fade in time max",".25", float, m_flFadeInTimeMax )
DMXELEMENT_UNPACK_FIELD( "fade in time exponent","1", float, m_flFadeInTimeExp )
DMXELEMENT_UNPACK_FIELD( "proportional 0/1","1", bool, m_bProportional )
END_PARTICLE_OPERATOR_UNPACK( C_OP_FadeIn )
void C_OP_FadeIn::Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const
{
CM128AttributeIterator pCreationTime( PARTICLE_ATTRIBUTE_CREATION_TIME, pParticles );
CM128AttributeIterator pLifeDuration( PARTICLE_ATTRIBUTE_LIFE_DURATION, pParticles );
CM128InitialAttributeIterator pInitialAlpha( PARTICLE_ATTRIBUTE_ALPHA, pParticles );
CM128AttributeWriteIterator pAlpha( PARTICLE_ATTRIBUTE_ALPHA, pParticles );
C4IAttributeIterator pParticleID( PARTICLE_ATTRIBUTE_PARTICLE_ID, pParticles );
int nRandomOffset = pParticles->OperatorRandomSampleOffset();
fltx4 CurTime = pParticles->m_fl4CurTime;
int nCtr = pParticles->m_nPaddedActiveParticles;
int nSSEFixedExponent = m_flFadeInTimeExp*4.0;
fltx4 FadeTimeMin = ReplicateX4( m_flFadeInTimeMin );
fltx4 FadeTimeWidth = ReplicateX4( m_flFadeInTimeMax - m_flFadeInTimeMin );
do
{
fltx4 FadeInTime= Pow_FixedPoint_Exponent_SIMD(
pParticles->RandomFloat( *pParticleID, nRandomOffset ),
nSSEFixedExponent);
FadeInTime = AddSIMD( FadeTimeMin, MulSIMD( FadeTimeWidth, FadeInTime ) );
// Find our life percentage
fltx4 flLifeTime = SubSIMD( CurTime, *pCreationTime );
if ( m_bProportional )
{
flLifeTime =
MaxSIMD( Four_Zeros,
MinSIMD( Four_Ones,
MulSIMD( flLifeTime, ReciprocalEstSIMD( *pLifeDuration ) ) ) );
}
fltx4 ApplyMask = CmpGtSIMD( FadeInTime, flLifeTime );
if ( IsAnyNegative( ApplyMask ) )
{
// Fading in
fltx4 NewAlpha =
SimpleSplineRemapValWithDeltasClamped(
flLifeTime, Four_Zeros,
FadeInTime, ReciprocalEstSIMD( FadeInTime ),
Four_Zeros, *pInitialAlpha );
*( pAlpha ) = MaskedAssign( ApplyMask, NewAlpha, *( pAlpha ) );
}
++pCreationTime;
++pLifeDuration;
++pInitialAlpha;
++pAlpha;
++pParticleID;
} while( --nCtr );
}
//-----------------------------------------------------------------------------
// Fade Out Operator
//-----------------------------------------------------------------------------
class C_OP_FadeOut : public CParticleOperatorInstance
{
DECLARE_PARTICLE_OPERATOR( C_OP_FadeOut );
uint32 GetWrittenAttributes( void ) const
{
return PARTICLE_ATTRIBUTE_ALPHA_MASK;
}
uint32 GetReadAttributes( void ) const
{
return PARTICLE_ATTRIBUTE_CREATION_TIME_MASK | PARTICLE_ATTRIBUTE_LIFE_DURATION_MASK | PARTICLE_ATTRIBUTE_PARTICLE_ID_MASK;
}
uint32 GetReadInitialAttributes( void ) const
{
return PARTICLE_ATTRIBUTE_ALPHA_MASK;
}
virtual void Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const;
void InitParams( CParticleSystemDefinition *pDef, CDmxElement *pElement )
{
float flBias = ( m_flFadeBias != 0.0f ) ? m_flFadeBias : 0.5f;
m_fl4BiasParam = PreCalcBiasParameter( ReplicateX4( flBias ) );
if ( m_flFadeOutTimeMin == 0.0f && m_flFadeOutTimeMax == 0.0f )
{
m_flFadeOutTimeMin = m_flFadeOutTimeMax = FLT_EPSILON;
}
}
float m_flFadeOutTimeMin;
float m_flFadeOutTimeMax;
float m_flFadeOutTimeExp;
float m_flFadeBias;
fltx4 m_fl4BiasParam;
bool m_bProportional;
bool m_bEaseInAndOut;
};
DEFINE_PARTICLE_OPERATOR( C_OP_FadeOut, "Alpha Fade Out Random", OPERATOR_GENERIC );
BEGIN_PARTICLE_OPERATOR_UNPACK( C_OP_FadeOut )
DMXELEMENT_UNPACK_FIELD( "fade out time min",".25", float, m_flFadeOutTimeMin )
DMXELEMENT_UNPACK_FIELD( "fade out time max",".25", float, m_flFadeOutTimeMax )
DMXELEMENT_UNPACK_FIELD( "fade out time exponent","1", float, m_flFadeOutTimeExp )
DMXELEMENT_UNPACK_FIELD( "proportional 0/1","1", bool, m_bProportional )
DMXELEMENT_UNPACK_FIELD( "ease in and out","1", bool, m_bEaseInAndOut )
DMXELEMENT_UNPACK_FIELD( "fade bias", "0.5", float, m_flFadeBias )
END_PARTICLE_OPERATOR_UNPACK( C_OP_FadeOut )
void C_OP_FadeOut::Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const
{
CM128AttributeIterator pCreationTime( PARTICLE_ATTRIBUTE_CREATION_TIME, pParticles );
CM128AttributeIterator pLifeDuration( PARTICLE_ATTRIBUTE_LIFE_DURATION, pParticles );
CM128InitialAttributeIterator pInitialAlpha( PARTICLE_ATTRIBUTE_ALPHA, pParticles );
CM128AttributeWriteIterator pAlpha( PARTICLE_ATTRIBUTE_ALPHA, pParticles );
C4IAttributeIterator pParticleID( PARTICLE_ATTRIBUTE_PARTICLE_ID, pParticles );
int nRandomOffset = pParticles->OperatorRandomSampleOffset();
fltx4 fl4CurTime = pParticles->m_fl4CurTime;
int nCtr = pParticles->m_nPaddedActiveParticles;
int nSSEFixedExponent = m_flFadeOutTimeExp*4.0;
fltx4 FadeTimeMin = ReplicateX4( m_flFadeOutTimeMin );
fltx4 FadeTimeWidth = ReplicateX4( m_flFadeOutTimeMax - m_flFadeOutTimeMin );
do
{
fltx4 fl4FadeOutTime = Pow_FixedPoint_Exponent_SIMD(
pParticles->RandomFloat( *pParticleID, nRandomOffset ),
nSSEFixedExponent );
fl4FadeOutTime = AddSIMD( FadeTimeMin, MulSIMD( FadeTimeWidth, fl4FadeOutTime ) );
fltx4 fl4Lifespan;
// Find our life percentage
fltx4 fl4LifeTime = SubSIMD( fl4CurTime, *pCreationTime );
fltx4 fl4LifeDuration = *pLifeDuration;
if ( m_bProportional )
{
fl4LifeTime = MulSIMD( fl4LifeTime, ReciprocalEstSIMD( fl4LifeDuration ) );
fl4FadeOutTime = SubSIMD( Four_Ones, fl4FadeOutTime );
fl4Lifespan = SubSIMD ( Four_Ones, fl4FadeOutTime );
}
else
{
fl4FadeOutTime = SubSIMD( *pLifeDuration, fl4FadeOutTime );
fl4Lifespan = SubSIMD( *pLifeDuration, fl4FadeOutTime ) ;
}
fltx4 ApplyMask = CmpLtSIMD( fl4FadeOutTime, fl4LifeTime );
if ( IsAnyNegative( ApplyMask ) )
{
// Fading out
fltx4 NewAlpha;
if ( m_bEaseInAndOut )
{
NewAlpha = SimpleSplineRemapValWithDeltasClamped(
fl4LifeTime, fl4FadeOutTime,
fl4Lifespan, ReciprocalEstSIMD( fl4Lifespan ),
*pInitialAlpha, SubSIMD ( Four_Zeros, *pInitialAlpha ) );
NewAlpha = MaxSIMD( Four_Zeros, NewAlpha );
}
else
{
fltx4 fl4Frac = MulSIMD( SubSIMD( fl4LifeTime, fl4FadeOutTime ), ReciprocalEstSIMD( fl4Lifespan ) );
fl4Frac = MinSIMD( Four_Ones, MaxSIMD( Four_Zeros, fl4Frac ) );
fl4Frac = BiasSIMD( fl4Frac, m_fl4BiasParam );
fl4Frac = SubSIMD( Four_Ones, fl4Frac );
NewAlpha = MulSIMD( *pInitialAlpha, fl4Frac );
}
*( pAlpha ) = MaskedAssign( ApplyMask, NewAlpha, *( pAlpha ) );
}
++pCreationTime;
++pLifeDuration;
++pInitialAlpha;
++pAlpha;
++pParticleID;
} while( --nCtr );
}
//-----------------------------------------------------------------------------
// Oscillating Scalar operator
// performs an oscillation operation on any scalar (fade, radius, etc.)
//-----------------------------------------------------------------------------
class C_OP_OscillateScalar : public CParticleOperatorInstance
{
DECLARE_PARTICLE_OPERATOR( C_OP_OscillateScalar );
uint32 GetWrittenAttributes( void ) const
{
return 1 << m_nField;
}
uint32 GetReadAttributes( void ) const
{
return PARTICLE_ATTRIBUTE_CREATION_TIME_MASK | PARTICLE_ATTRIBUTE_LIFE_DURATION_MASK |
PARTICLE_ATTRIBUTE_PARTICLE_ID_MASK;
}
virtual void Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const;
float m_RateMin;
float m_RateMax;
float m_FrequencyMin;
float m_FrequencyMax;
int m_nField;
bool m_bProportional, m_bProportionalOp;
float m_flStartTime_min;
float m_flStartTime_max;
float m_flEndTime_min;
float m_flEndTime_max;
float m_flOscMult;
float m_flOscAdd;
};
DEFINE_PARTICLE_OPERATOR( C_OP_OscillateScalar, "Oscillate Scalar", OPERATOR_GENERIC );
BEGIN_PARTICLE_OPERATOR_UNPACK( C_OP_OscillateScalar )
DMXELEMENT_UNPACK_FIELD_USERDATA( "oscillation field", "7", int, m_nField, "intchoice particlefield_scalar" )
DMXELEMENT_UNPACK_FIELD( "oscillation rate min", "0", float, m_RateMin )
DMXELEMENT_UNPACK_FIELD( "oscillation rate max", "0", float, m_RateMax )
DMXELEMENT_UNPACK_FIELD( "oscillation frequency min", "1", float, m_FrequencyMin )
DMXELEMENT_UNPACK_FIELD( "oscillation frequency max", "1", float, m_FrequencyMax )
DMXELEMENT_UNPACK_FIELD( "proportional 0/1", "1", bool, m_bProportional )
DMXELEMENT_UNPACK_FIELD( "start time min", "0", float, m_flStartTime_min )
DMXELEMENT_UNPACK_FIELD( "start time max", "0", float, m_flStartTime_max )
DMXELEMENT_UNPACK_FIELD( "end time min", "1", float, m_flEndTime_min )
DMXELEMENT_UNPACK_FIELD( "end time max", "1", float, m_flEndTime_max )
DMXELEMENT_UNPACK_FIELD( "start/end proportional", "1", bool, m_bProportionalOp )
DMXELEMENT_UNPACK_FIELD( "oscillation multiplier", "2", float, m_flOscMult )
DMXELEMENT_UNPACK_FIELD( "oscillation start phase", ".5", float, m_flOscAdd )
END_PARTICLE_OPERATOR_UNPACK( C_OP_OscillateScalar )
void C_OP_OscillateScalar::Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const
{
CM128AttributeIterator pCreationTime( PARTICLE_ATTRIBUTE_CREATION_TIME, pParticles );
CM128AttributeIterator pLifeDuration( PARTICLE_ATTRIBUTE_LIFE_DURATION, pParticles );
C4IAttributeIterator pParticleId ( PARTICLE_ATTRIBUTE_PARTICLE_ID, pParticles );
CM128AttributeWriteIterator pOscField ( m_nField, pParticles) ;
fltx4 fl4CurTime = pParticles->m_fl4CurTime;
int nRandomOffset = pParticles->OperatorRandomSampleOffset();
fltx4 fl4OscVal;
fltx4 fl4ScaleFactor = ReplicateX4( flStrength * pParticles->m_flDt );
fltx4 fl4CosFactorMultiplier = ReplicateX4( m_flOscMult );
fltx4 fl4CosFactorAdd = ReplicateX4( m_flOscAdd );
fltx4 fl4CosFactor = AddSIMD( MulSIMD( fl4CosFactorMultiplier, fl4CurTime ), fl4CosFactorAdd );
fltx4 fl4CosFactorProp = fl4CosFactorMultiplier;
fltx4 fl4StartTimeMin = ReplicateX4( m_flStartTime_min );
fltx4 fl4StartTimeWidth = ReplicateX4( m_flStartTime_max - m_flStartTime_min );
fltx4 fl4EndTimeMin = ReplicateX4( m_flEndTime_min );
fltx4 fl4EndTimeWidth = ReplicateX4( m_flEndTime_max - m_flEndTime_min );
fltx4 fl4FrequencyMin = ReplicateX4( m_FrequencyMin );
fltx4 fl4FrequencyWidth = ReplicateX4( m_FrequencyMax - m_FrequencyMin );
fltx4 fl4RateMin = ReplicateX4( m_RateMin );
fltx4 fl4RateWidth = ReplicateX4( m_RateMax - m_RateMin );
int nCtr = pParticles->m_nPaddedActiveParticles;
do
{
fltx4 fl4LifeDuration = *pLifeDuration;
fltx4 fl4GoodMask = CmpGtSIMD( fl4LifeDuration, Four_Zeros );
fltx4 fl4LifeTime;
if ( m_bProportionalOp )
{
fl4LifeTime = MulSIMD( SubSIMD( fl4CurTime, *pCreationTime ), ReciprocalEstSIMD( fl4LifeDuration ) ); // maybe need accurate div here?
}
else
{
fl4LifeTime = SubSIMD( fl4CurTime, *pCreationTime );
}
fltx4 fl4StartTime= pParticles->RandomFloat( *pParticleId, nRandomOffset + 11);
fl4StartTime = AddSIMD( fl4StartTimeMin, MulSIMD( fl4StartTimeWidth, fl4StartTime ) );
fltx4 fl4EndTime= pParticles->RandomFloat( *pParticleId, nRandomOffset + 12);
fl4EndTime = AddSIMD( fl4EndTimeMin, MulSIMD( fl4EndTimeWidth, fl4EndTime ) );
fl4GoodMask = AndSIMD( fl4GoodMask, CmpGeSIMD( fl4LifeTime, fl4StartTime ) );
fl4GoodMask = AndSIMD( fl4GoodMask, CmpLtSIMD( fl4LifeTime, fl4EndTime ) );
if ( IsAnyNegative( fl4GoodMask ) )
{
fltx4 fl4Frequency = pParticles->RandomFloat( *pParticleId, nRandomOffset );
fl4Frequency = AddSIMD( fl4FrequencyMin, MulSIMD( fl4FrequencyWidth, fl4Frequency ) );
fltx4 fl4Rate= pParticles->RandomFloat( *pParticleId, nRandomOffset + 1);
fl4Rate = AddSIMD( fl4RateMin, MulSIMD( fl4RateWidth, fl4Rate ) );
fltx4 fl4Cos;
if ( m_bProportional )
{
fl4LifeTime = MulSIMD( SubSIMD( fl4CurTime, *pCreationTime ), ReciprocalEstSIMD( fl4LifeDuration ) );
fl4Cos = AddSIMD( MulSIMD( fl4CosFactorProp, MulSIMD( fl4LifeTime, fl4Frequency )), fl4CosFactorAdd );
}
else
{
fl4Cos = MulSIMD( fl4CosFactor, fl4Frequency );
}
fltx4 fl4OscMultiplier = MulSIMD( fl4Rate, fl4ScaleFactor);
fl4OscVal = AddSIMD ( *pOscField, MulSIMD ( fl4OscMultiplier, SinEst01SIMD( fl4Cos ) ) );
if ( m_nField == 7)
{
*pOscField = MaskedAssign( fl4GoodMask,
MaxSIMD( MinSIMD( fl4OscVal, Four_Ones), Four_Zeros ), *pOscField );
}
else
{
*pOscField = MaskedAssign( fl4GoodMask, fl4OscVal, *pOscField );
}
}
++pCreationTime;
++pLifeDuration;
++pOscField;
++pParticleId;
} while (--nCtr );
};
//-----------------------------------------------------------------------------
// Oscillating Vector operator
// performs an oscillation operation on any vector (location, tint)
//-----------------------------------------------------------------------------
class C_OP_OscillateVector : public CParticleOperatorInstance
{
DECLARE_PARTICLE_OPERATOR( C_OP_OscillateVector );
uint32 GetWrittenAttributes( void ) const
{
return 1 << m_nField;
}
uint32 GetReadAttributes( void ) const
{
return PARTICLE_ATTRIBUTE_CREATION_TIME_MASK | PARTICLE_ATTRIBUTE_LIFE_DURATION_MASK |
PARTICLE_ATTRIBUTE_PARTICLE_ID_MASK;
}
virtual void Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const;
Vector m_RateMin;
Vector m_RateMax;
Vector m_FrequencyMin;
Vector m_FrequencyMax;
int m_nField;
bool m_bProportional, m_bProportionalOp;
bool m_bAccelerator;
float m_flStartTime_min;
float m_flStartTime_max;
float m_flEndTime_min;
float m_flEndTime_max;
float m_flOscMult;
float m_flOscAdd;
};
DEFINE_PARTICLE_OPERATOR( C_OP_OscillateVector, "Oscillate Vector", OPERATOR_GENERIC );
BEGIN_PARTICLE_OPERATOR_UNPACK( C_OP_OscillateVector )
DMXELEMENT_UNPACK_FIELD_USERDATA( "oscillation field", "0", int, m_nField, "intchoice particlefield_vector" )
DMXELEMENT_UNPACK_FIELD( "oscillation rate min", "0 0 0", Vector, m_RateMin )
DMXELEMENT_UNPACK_FIELD( "oscillation rate max", "0 0 0", Vector, m_RateMax )
DMXELEMENT_UNPACK_FIELD( "oscillation frequency min", "1 1 1", Vector, m_FrequencyMin )
DMXELEMENT_UNPACK_FIELD( "oscillation frequency max", "1 1 1", Vector, m_FrequencyMax )
DMXELEMENT_UNPACK_FIELD( "proportional 0/1", "1", bool, m_bProportional )
DMXELEMENT_UNPACK_FIELD( "start time min", "0", float, m_flStartTime_min )
DMXELEMENT_UNPACK_FIELD( "start time max", "0", float, m_flStartTime_max )
DMXELEMENT_UNPACK_FIELD( "end time min", "1", float, m_flEndTime_min )
DMXELEMENT_UNPACK_FIELD( "end time max", "1", float, m_flEndTime_max )
DMXELEMENT_UNPACK_FIELD( "start/end proportional", "1", bool, m_bProportionalOp )
DMXELEMENT_UNPACK_FIELD( "oscillation multiplier", "2", float, m_flOscMult )
DMXELEMENT_UNPACK_FIELD( "oscillation start phase", ".5", float, m_flOscAdd )
END_PARTICLE_OPERATOR_UNPACK( C_OP_OscillateVector )
void C_OP_OscillateVector::Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const
{
CM128AttributeIterator pCreationTime( PARTICLE_ATTRIBUTE_CREATION_TIME, pParticles );
CM128AttributeIterator pLifeDuration( PARTICLE_ATTRIBUTE_LIFE_DURATION, pParticles );
C4IAttributeIterator pParticleId ( PARTICLE_ATTRIBUTE_PARTICLE_ID, pParticles );
C4VAttributeWriteIterator pOscField ( m_nField, pParticles) ;
fltx4 fl4CurTime = pParticles->m_fl4CurTime;
int nRandomOffset = pParticles->OperatorRandomSampleOffset();
FourVectors fvOscVal;
fltx4 fl4ScaleFactor = ReplicateX4( flStrength * pParticles->m_flDt );
fltx4 fl4CosFactorMultiplier = ReplicateX4( m_flOscMult );
fltx4 fl4CosFactorAdd = ReplicateX4( m_flOscAdd );
fltx4 fl4CosFactor = AddSIMD( MulSIMD( fl4CosFactorMultiplier, fl4CurTime ), fl4CosFactorAdd );
fltx4 fl4CosFactorProp = fl4CosFactorMultiplier;
fltx4 fl4StartTimeMin = ReplicateX4( m_flStartTime_min );
fltx4 fl4StartTimeWidth = ReplicateX4( m_flStartTime_max - m_flStartTime_min );
fltx4 fl4EndTimeMin = ReplicateX4( m_flEndTime_min );
fltx4 fl4EndTimeWidth = ReplicateX4( m_flEndTime_max - m_flEndTime_min );
FourVectors fvFrequencyMin;
fvFrequencyMin.DuplicateVector( m_FrequencyMin );
FourVectors fvFrequencyWidth;
fvFrequencyWidth.DuplicateVector( m_FrequencyMax - m_FrequencyMin );
FourVectors fvRateMin;
fvRateMin.DuplicateVector( m_RateMin );
FourVectors fvRateWidth;
fvRateWidth.DuplicateVector( m_RateMax - m_RateMin );
int nCtr = pParticles->m_nPaddedActiveParticles;
do
{
fltx4 fl4LifeDuration = *pLifeDuration;
fltx4 fl4GoodMask = CmpGtSIMD( fl4LifeDuration, Four_Zeros );
fltx4 fl4LifeTime;
if ( m_bProportionalOp )
{
fl4LifeTime = MulSIMD( SubSIMD( fl4CurTime, *pCreationTime ), ReciprocalEstSIMD( fl4LifeDuration ) ); // maybe need accurate div here?
}
else
{
fl4LifeTime = SubSIMD( fl4CurTime, *pCreationTime );
}
fltx4 fl4StartTime= pParticles->RandomFloat( *pParticleId, nRandomOffset + 11);
fl4StartTime = AddSIMD( fl4StartTimeMin, MulSIMD( fl4StartTimeWidth, fl4StartTime ) );
fltx4 fl4EndTime= pParticles->RandomFloat( *pParticleId, nRandomOffset + 12);
fl4EndTime = AddSIMD( fl4EndTimeMin, MulSIMD( fl4EndTimeWidth, fl4EndTime ) );
fl4GoodMask = AndSIMD( fl4GoodMask, CmpGeSIMD( fl4LifeTime, fl4StartTime ) );
fl4GoodMask = AndSIMD( fl4GoodMask, CmpLtSIMD( fl4LifeTime, fl4EndTime ) );
if ( IsAnyNegative( fl4GoodMask ) )
{
FourVectors fvFrequency;
fvFrequency.x = pParticles->RandomFloat( *pParticleId, nRandomOffset + 8 );
fvFrequency.y = pParticles->RandomFloat( *pParticleId, nRandomOffset + 12 );
fvFrequency.z = pParticles->RandomFloat( *pParticleId, nRandomOffset + 15 );
fvFrequency.VProduct( fvFrequencyWidth );
fvFrequency += fvFrequencyMin;
FourVectors fvRate;
fvRate.x = pParticles->RandomFloat( *pParticleId, nRandomOffset + 3);
fvRate.y = pParticles->RandomFloat( *pParticleId, nRandomOffset + 7);
fvRate.z = pParticles->RandomFloat( *pParticleId, nRandomOffset + 9);
//fvRate = AddSIMD( fvRateMin, MulSIMD( fvRateWidth, fvRate ) );
fvRate.VProduct( fvRateWidth );
fvRate += fvRateMin;
FourVectors fvCos;
if ( m_bProportional )
{
fl4LifeTime = MulSIMD( SubSIMD( fl4CurTime, *pCreationTime ), ReciprocalEstSIMD( fl4LifeDuration ) );
fvCos.x = AddSIMD( MulSIMD( fl4CosFactorProp, MulSIMD( fvFrequency.x, fl4LifeTime )), fl4CosFactorAdd );
fvCos.y = AddSIMD( MulSIMD( fl4CosFactorProp, MulSIMD( fvFrequency.y, fl4LifeTime )), fl4CosFactorAdd );
fvCos.z = AddSIMD( MulSIMD( fl4CosFactorProp, MulSIMD( fvFrequency.z, fl4LifeTime )), fl4CosFactorAdd );
}
else
{
//fvCos = MulSIMD( fl4CosFactor, fvFrequency );
fvCos.x = MulSIMD( fvFrequency.x, fl4CosFactor );
fvCos.y = MulSIMD( fvFrequency.y, fl4CosFactor );
fvCos.z = MulSIMD( fvFrequency.z, fl4CosFactor );
}
FourVectors fvOscMultiplier;
fvOscMultiplier.x = MulSIMD( fvRate.x, fl4ScaleFactor);
fvOscMultiplier.y = MulSIMD( fvRate.y, fl4ScaleFactor);
fvOscMultiplier.z = MulSIMD( fvRate.z, fl4ScaleFactor);
FourVectors fvOutput = *pOscField;
fvOscVal.x = AddSIMD ( fvOutput.x, MulSIMD ( fvOscMultiplier.x, SinEst01SIMD( fvCos.x ) ) );
fvOscVal.y = AddSIMD ( fvOutput.y, MulSIMD ( fvOscMultiplier.y, SinEst01SIMD( fvCos.y ) ) );
fvOscVal.z = AddSIMD ( fvOutput.z, MulSIMD ( fvOscMultiplier.z, SinEst01SIMD( fvCos.z ) ) );
if ( m_nField == 6)
{
pOscField->x = MaskedAssign( fl4GoodMask,
MaxSIMD( MinSIMD( fvOscVal.x, Four_Ones), Four_Zeros ), fvOutput.x );
pOscField->y = MaskedAssign( fl4GoodMask,
MaxSIMD( MinSIMD( fvOscVal.y, Four_Ones), Four_Zeros ), fvOutput.y );
pOscField->z = MaskedAssign( fl4GoodMask,
MaxSIMD( MinSIMD( fvOscVal.z, Four_Ones), Four_Zeros ), fvOutput.z );
}
else
{
pOscField->x = MaskedAssign( fl4GoodMask, fvOscVal.x, fvOutput.x );
pOscField->y = MaskedAssign( fl4GoodMask, fvOscVal.y, fvOutput.y );
pOscField->z = MaskedAssign( fl4GoodMask, fvOscVal.z, fvOutput.z );
}
}
++pCreationTime;
++pLifeDuration;
++pOscField;
++pParticleId;
} while (--nCtr );
};
//-----------------------------------------------------------------------------
// Remap Scalar Operator
//-----------------------------------------------------------------------------
class C_OP_RemapScalar : public CParticleOperatorInstance
{
DECLARE_PARTICLE_OPERATOR( C_OP_RemapScalar );
uint32 GetWrittenAttributes( void ) const
{
return 1 << m_nFieldOutput;
}
uint32 GetReadAttributes( void ) const
{
return 1 << m_nFieldInput;
}
virtual void Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const;
int m_nFieldInput;
int m_nFieldOutput;
float m_flInputMin;
float m_flInputMax;
float m_flOutputMin;
float m_flOutputMax;
};
DEFINE_PARTICLE_OPERATOR( C_OP_RemapScalar, "Remap Scalar", OPERATOR_GENERIC );
BEGIN_PARTICLE_OPERATOR_UNPACK( C_OP_RemapScalar )
DMXELEMENT_UNPACK_FIELD_USERDATA( "input field", "7", int, m_nFieldInput, "intchoice particlefield_scalar" )
DMXELEMENT_UNPACK_FIELD( "input minimum","0", float, m_flInputMin )
DMXELEMENT_UNPACK_FIELD( "input maximum","1", float, m_flInputMax )
DMXELEMENT_UNPACK_FIELD_USERDATA( "output field", "3", int, m_nFieldOutput, "intchoice particlefield_scalar" )
DMXELEMENT_UNPACK_FIELD( "output minimum","0", float, m_flOutputMin )
DMXELEMENT_UNPACK_FIELD( "output maximum","1", float, m_flOutputMax )
END_PARTICLE_OPERATOR_UNPACK( C_OP_RemapScalar )
void C_OP_RemapScalar::Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const
{
// clamp the result to 0 and 1 if it's alpha
float flMin=m_flOutputMin;
float flMax=m_flOutputMax;
if ( ATTRIBUTES_WHICH_ARE_0_TO_1 & ( 1 << m_nFieldOutput ) )
{
flMin = clamp(m_flOutputMin, 0.0f, 1.0f );
flMax = clamp(m_flOutputMax, 0.0f, 1.0f );
}
// FIXME: SSE-ize
for ( int i = 0; i < pParticles->m_nActiveParticles; ++i )
{
const float *pInput = pParticles->GetFloatAttributePtr( m_nFieldInput, i );
float *pOutput = pParticles->GetFloatAttributePtrForWrite( m_nFieldOutput, i );
float flOutput = RemapValClamped( *pInput, m_flInputMin, m_flInputMax, flMin, flMax );
*pOutput = Lerp (flStrength, *pOutput, flOutput);
}
}
//-----------------------------------------------------------------------------
// noise Operator
//-----------------------------------------------------------------------------
class C_OP_Noise : public CParticleOperatorInstance
{
DECLARE_PARTICLE_OPERATOR( C_OP_Noise );
uint32 GetWrittenAttributes( void ) const
{
return 1 << m_nFieldOutput;
}
uint32 GetReadAttributes( void ) const
{
return PARTICLE_ATTRIBUTE_XYZ_MASK;
}
virtual void Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const;
int m_nFieldOutput;
float m_flOutputMin;
float m_flOutputMax;
fltx4 m_fl4NoiseScale;
};
DEFINE_PARTICLE_OPERATOR( C_OP_Noise, "Noise Scalar", OPERATOR_GENERIC );
BEGIN_PARTICLE_OPERATOR_UNPACK( C_OP_Noise )
DMXELEMENT_UNPACK_FLTX4( "noise coordinate scale", "0.1", m_fl4NoiseScale)
DMXELEMENT_UNPACK_FIELD_USERDATA( "output field", "3", int, m_nFieldOutput, "intchoice particlefield_scalar" )
DMXELEMENT_UNPACK_FIELD( "output minimum","0", float, m_flOutputMin )
DMXELEMENT_UNPACK_FIELD( "output maximum","1", float, m_flOutputMax )
END_PARTICLE_OPERATOR_UNPACK( C_OP_Noise );
void C_OP_Noise::Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const
{
CM128AttributeWriteIterator pAttr( m_nFieldOutput, pParticles );
C4VAttributeIterator pXYZ( PARTICLE_ATTRIBUTE_XYZ, pParticles );
fltx4 CoordScale=m_fl4NoiseScale;
float fMin = m_flOutputMin;
float fMax = m_flOutputMax;
if ( ATTRIBUTES_WHICH_ARE_ANGLES & (1 << m_nFieldOutput ) )
{
fMin *= ( M_PI / 180.0f );
fMax *= ( M_PI / 180.0f );
}
// calculate coefficients. noise retuns -1..1
fltx4 ValueScale=ReplicateX4( 0.5*(fMax-fMin ) );
fltx4 ValueBase=ReplicateX4( fMin + 0.5*( fMax - fMin ) );
int nActive = pParticles->m_nPaddedActiveParticles;
do
{
FourVectors Coord = *pXYZ;
Coord *= CoordScale;
*( pAttr )=AddSIMD( ValueBase, MulSIMD( ValueScale, NoiseSIMD( Coord ) ) );
++pAttr;
++pXYZ;
} while( --nActive );
}
//-----------------------------------------------------------------------------
// vector noise Operator
//-----------------------------------------------------------------------------
class C_OP_VectorNoise : public CParticleOperatorInstance
{
DECLARE_PARTICLE_OPERATOR( C_OP_VectorNoise );
uint32 GetWrittenAttributes( void ) const
{
return 1 << m_nFieldOutput;
}
uint32 GetReadAttributes( void ) const
{
return PARTICLE_ATTRIBUTE_XYZ_MASK;
}
virtual void Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const;
int m_nFieldOutput;
Vector m_vecOutputMin;
Vector m_vecOutputMax;
fltx4 m_fl4NoiseScale;
};
DEFINE_PARTICLE_OPERATOR( C_OP_VectorNoise, "Noise Vector", OPERATOR_GENERIC );
BEGIN_PARTICLE_OPERATOR_UNPACK( C_OP_VectorNoise )
DMXELEMENT_UNPACK_FLTX4( "noise coordinate scale", "0.1", m_fl4NoiseScale)
DMXELEMENT_UNPACK_FIELD_USERDATA( "output field", "6", int, m_nFieldOutput, "intchoice particlefield_vector" )
DMXELEMENT_UNPACK_FIELD( "output minimum","0 0 0", Vector, m_vecOutputMin )
DMXELEMENT_UNPACK_FIELD( "output maximum","1 1 1", Vector, m_vecOutputMax )
END_PARTICLE_OPERATOR_UNPACK( C_OP_VectorNoise );
void C_OP_VectorNoise::Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const
{
C4VAttributeWriteIterator pAttr( m_nFieldOutput, pParticles );
C4VAttributeIterator pXYZ( PARTICLE_ATTRIBUTE_XYZ, pParticles );
fltx4 CoordScale = m_fl4NoiseScale;
// calculate coefficients. noise retuns -1..1
fltx4 ValueScaleX = ReplicateX4( 0.5*(m_vecOutputMax.x-m_vecOutputMin.x ) );
fltx4 ValueBaseX = ReplicateX4(m_vecOutputMin.x+0.5*( m_vecOutputMax.x-m_vecOutputMin.x ) );
fltx4 ValueScaleY = ReplicateX4( 0.5*(m_vecOutputMax.y-m_vecOutputMin.y ) );
fltx4 ValueBaseY = ReplicateX4(m_vecOutputMin.y+0.5*( m_vecOutputMax.y-m_vecOutputMin.y ) );
fltx4 ValueScaleZ = ReplicateX4( 0.5*(m_vecOutputMax.z-m_vecOutputMin.z ) );
fltx4 ValueBaseZ = ReplicateX4(m_vecOutputMin.z+0.5*( m_vecOutputMax.z-m_vecOutputMin.z ) );
FourVectors ofs_y;
ofs_y.DuplicateVector( Vector( 100000.5, 300000.25, 9000000.75 ) );
FourVectors ofs_z;
ofs_z.DuplicateVector( Vector( 110000.25, 310000.75, 9100000.5 ) );
int nActive = pParticles->m_nActiveParticles;
for( int i=0; i < nActive; i+=4 )
{
FourVectors Coord = *pXYZ;
Coord *= CoordScale;
pAttr->x=AddSIMD( ValueBaseX, MulSIMD( ValueScaleX, NoiseSIMD( Coord ) ) );
Coord += ofs_y;
pAttr->y=AddSIMD( ValueBaseY, MulSIMD( ValueScaleY, NoiseSIMD( Coord ) ) );
Coord += ofs_z;
pAttr->z=AddSIMD( ValueBaseZ, MulSIMD( ValueScaleZ, NoiseSIMD( Coord ) ) );
++pAttr;
++pXYZ;
}
}
//-----------------------------------------------------------------------------
// Decay Operator (Lifespan limiter - kills dead particles)
//-----------------------------------------------------------------------------
class C_OP_Decay : public CParticleOperatorInstance
{
DECLARE_PARTICLE_OPERATOR( C_OP_Decay );
uint32 GetWrittenAttributes( void ) const
{
return 0;
}
uint32 GetReadAttributes( void ) const
{
return PARTICLE_ATTRIBUTE_CREATION_TIME_MASK | PARTICLE_ATTRIBUTE_LIFE_DURATION_MASK;
}
virtual void Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const;
};
DEFINE_PARTICLE_OPERATOR( C_OP_Decay, "Lifespan Decay", OPERATOR_GENERIC );
BEGIN_PARTICLE_OPERATOR_UNPACK( C_OP_Decay )
END_PARTICLE_OPERATOR_UNPACK( C_OP_Decay )
void C_OP_Decay::Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const
{
fltx4 fl4CurTime = pParticles->m_fl4CurTime;
CM128AttributeIterator pCreationTime( PARTICLE_ATTRIBUTE_CREATION_TIME, pParticles );
CM128AttributeIterator pLifeDuration( PARTICLE_ATTRIBUTE_LIFE_DURATION, pParticles );
int nLimit = pParticles->m_nPaddedActiveParticles << 2;
for ( int i = 0; i < nLimit; i+= 4 )
{
fltx4 fl4LifeDuration = *pLifeDuration;
fltx4 fl4KillMask = CmpLeSIMD( fl4LifeDuration, Four_Zeros );
fltx4 fl4Age = SubSIMD( fl4CurTime, *pCreationTime );
fl4KillMask = OrSIMD( fl4KillMask, CmpGeSIMD( fl4Age, fl4LifeDuration ) );
if ( IsAnyNegative( fl4KillMask ) )
{
// not especially pretty - we need to kill some particles.
int nMask = TestSignSIMD( fl4KillMask );
if ( nMask & 1 )
pParticles->KillParticle( i );
if ( nMask & 2 )
pParticles->KillParticle( i + 1 );
if ( nMask & 4 )
pParticles->KillParticle( i + 2 );
if ( nMask & 8 )
pParticles->KillParticle( i + 3 );
}
++pCreationTime;
++pLifeDuration;
}
}
//-----------------------------------------------------------------------------
// Lifespan Minimum Velocity Decay Operator (kills particles if they cease moving)
//-----------------------------------------------------------------------------
class C_OP_VelocityDecay : public CParticleOperatorInstance
{
DECLARE_PARTICLE_OPERATOR( C_OP_VelocityDecay );
uint32 GetWrittenAttributes( void ) const
{
return 0;
}
uint32 GetReadAttributes( void ) const
{
return PARTICLE_ATTRIBUTE_XYZ_MASK | PARTICLE_ATTRIBUTE_PREV_XYZ_MASK;
}
virtual void Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const;
float m_flMinVelocity;
};
DEFINE_PARTICLE_OPERATOR( C_OP_VelocityDecay, "Lifespan Minimum Velocity Decay", OPERATOR_GENERIC );
BEGIN_PARTICLE_OPERATOR_UNPACK( C_OP_VelocityDecay )
DMXELEMENT_UNPACK_FIELD( "minimum velocity","1", float, m_flMinVelocity )
END_PARTICLE_OPERATOR_UNPACK( C_OP_VelocityDecay )
void C_OP_VelocityDecay::Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const
{
fltx4 fl4MinVelocity = ReplicateX4( m_flMinVelocity );
fltx4 fl4Dt = ReplicateX4( pParticles->m_flDt );
CM128AttributeIterator pXYZ( PARTICLE_ATTRIBUTE_XYZ, pParticles );
CM128AttributeIterator pPrevXYZ( PARTICLE_ATTRIBUTE_PREV_XYZ, pParticles );
int nLimit = pParticles->m_nPaddedActiveParticles << 2;
for ( int i = 0; i < nLimit; i+= 4 )
{
fltx4 fl4KillMask = CmpLeSIMD( DivSIMD ( SubSIMD( *pXYZ, *pPrevXYZ ), fl4Dt ), fl4MinVelocity );
if ( IsAnyNegative( fl4KillMask ) )
{
// not especially pretty - we need to kill some particles.
int nMask = TestSignSIMD( fl4KillMask );
if ( nMask & 1 )
pParticles->KillParticle( i );
if ( nMask & 2 )
pParticles->KillParticle( i + 1 );
if ( nMask & 4 )
pParticles->KillParticle( i + 2 );
if ( nMask & 8 )
pParticles->KillParticle( i + 3 );
}
++pXYZ;
++pPrevXYZ;
}
}
//-----------------------------------------------------------------------------
// Random Cull Operator - Randomly culls particles before their lifespan
//-----------------------------------------------------------------------------
class C_OP_Cull : public CParticleOperatorInstance
{
float m_flCullPerc;
float m_flCullStart;
float m_flCullEnd;
float m_flCullExp;
DECLARE_PARTICLE_OPERATOR( C_OP_Cull );
uint32 GetWrittenAttributes( void ) const
{
return 0;
}
uint32 GetReadAttributes( void ) const
{
return PARTICLE_ATTRIBUTE_CREATION_TIME_MASK | PARTICLE_ATTRIBUTE_LIFE_DURATION_MASK | PARTICLE_ATTRIBUTE_PARTICLE_ID_MASK;
}
virtual void Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const;
};
DEFINE_PARTICLE_OPERATOR( C_OP_Cull, "Cull Random", OPERATOR_GENERIC );
BEGIN_PARTICLE_OPERATOR_UNPACK( C_OP_Cull )
DMXELEMENT_UNPACK_FIELD( "Cull Start Time", "0", float, m_flCullStart )
DMXELEMENT_UNPACK_FIELD( "Cull End Time", "1", float, m_flCullEnd )
DMXELEMENT_UNPACK_FIELD( "Cull Time Exponent", "1", float, m_flCullExp )
DMXELEMENT_UNPACK_FIELD( "Cull Percentage", "0.5", float, m_flCullPerc )
END_PARTICLE_OPERATOR_UNPACK( C_OP_Cull )
void C_OP_Cull::Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const
{
const float *pCreationTime;
const float *pLifeDuration;
float flLifeTime;
int nRandomOffset = pParticles->OperatorRandomSampleOffset();
// FIXME: SSE-ize
for ( int i = 0; i < pParticles->m_nActiveParticles; ++i )
{
pCreationTime = pParticles->GetFloatAttributePtr( PARTICLE_ATTRIBUTE_CREATION_TIME, i );
pLifeDuration = pParticles->GetFloatAttributePtr( PARTICLE_ATTRIBUTE_LIFE_DURATION, i );
int nParticleId = *pParticles->GetIntAttributePtr( PARTICLE_ATTRIBUTE_PARTICLE_ID, i );
float flCullRank = pParticles->RandomFloat( nParticleId + nRandomOffset + 15, 0.0f, 1.0f);
float flCullTime = pParticles->RandomFloatExp( nParticleId + nRandomOffset + 12, m_flCullStart, m_flCullEnd, m_flCullExp );
if ( flCullRank > ( m_flCullPerc * flStrength ) )
{
continue;
}
// Find our life percentage
flLifeTime = clamp( ( pParticles->m_flCurTime - *pCreationTime ) / ( *pLifeDuration ), 0.0f, 1.0f );
if ( flLifeTime >= m_flCullStart && flLifeTime <= m_flCullEnd && flLifeTime >= flCullTime )
{
pParticles->KillParticle( i );
}
}
}
//-----------------------------------------------------------------------------
// generic spin operator
//-----------------------------------------------------------------------------
class CGeneralSpin : public CParticleOperatorInstance
{
protected:
virtual int GetAttributeToSpin( void ) const =0;
uint32 GetWrittenAttributes( void ) const
{
if ( m_nSpinRateDegrees != 0.0 )
return (1 << GetAttributeToSpin() );
return 0;
}
uint32 GetReadAttributes( void ) const
{
return PARTICLE_ATTRIBUTE_CREATION_TIME_MASK | PARTICLE_ATTRIBUTE_LIFE_DURATION_MASK;
}
virtual void InitParams( CParticleSystemDefinition *pDef, CDmxElement *pElement )
{
m_fSpinRateRadians = (float) m_nSpinRateDegrees * ( M_PI / 180.0f );
m_fSpinRateMinRadians = (float) m_nSpinRateMinDegrees * ( M_PI / 180.0f );
}
virtual void Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const;
int m_nSpinRateDegrees;
int m_nSpinRateMinDegrees;
float m_fSpinRateRadians;
float m_fSpinRateStopTime;
float m_fSpinRateMinRadians;
};
void CGeneralSpin::Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const
{
float fCurSpinRate = m_fSpinRateRadians * flStrength;
if ( fCurSpinRate == 0.0 )
return;
float dt = pParticles->m_flDt;
float drot = dt * fabs( fCurSpinRate * 2.0f * M_PI );
if ( m_fSpinRateStopTime == 0.0f )
{
drot = fmod( drot, (float)(2.0f * M_PI) );
}
if ( fCurSpinRate < 0.0f )
{
drot = -drot;
}
fltx4 Rot_Add = ReplicateX4( drot );
fltx4 Pi_2 = ReplicateX4( 2.0*M_PI );
fltx4 nPi_2 = ReplicateX4( -2.0*M_PI );
// FIXME: This is wrong
fltx4 minSpeedRadians = ReplicateX4( dt * fabs( m_fSpinRateMinRadians * 2.0f * M_PI ) );
fltx4 now = pParticles->m_fl4CurTime;
fltx4 SpinRateStopTime = ReplicateX4( m_fSpinRateStopTime );
CM128AttributeIterator pCreationTimeStamp( PARTICLE_ATTRIBUTE_CREATION_TIME, pParticles );
CM128AttributeIterator pLifeDuration( PARTICLE_ATTRIBUTE_LIFE_DURATION, pParticles );
CM128AttributeWriteIterator pRot( GetAttributeToSpin(), pParticles );
int nActive = pParticles->m_nActiveParticles;
for( int i=0; i < nActive; i+=4 )
{
// HACK: Rather than redo this, I'm simply remapping the stop time into the percentage of lifetime, rather than seconds
fltx4 LifeSpan = *pLifeDuration;
fltx4 SpinFadePerc = Four_Zeros;
fltx4 OOSpinFadeRate = Four_Zeros;
if ( m_fSpinRateStopTime )
{
SpinFadePerc = MulSIMD( LifeSpan, SpinRateStopTime );
OOSpinFadeRate = DivSIMD( Four_Ones, SpinFadePerc );
}
fltx4 Age = SubSIMD( now, *pCreationTimeStamp );
fltx4 RScale = MaxSIMD( Four_Zeros,
SubSIMD( Four_Ones, MulSIMD( Age, OOSpinFadeRate ) ) );
// Cap the rotation at a minimum speed
fltx4 deltaRot = MulSIMD( Rot_Add, RScale );
fltx4 Tooslow = CmpLeSIMD( deltaRot, minSpeedRadians );
deltaRot = OrSIMD( AndSIMD( Tooslow, minSpeedRadians ), AndNotSIMD( Tooslow, deltaRot ) );
fltx4 NewRot = AddSIMD( *pRot, deltaRot );
// now, cap at +/- 2*pi
fltx4 Toobig =CmpGeSIMD( NewRot, Pi_2 );
fltx4 Toosmall = CmpLeSIMD( NewRot, nPi_2 );
NewRot = OrSIMD( AndSIMD( Toobig, SubSIMD( NewRot, Pi_2 ) ),
AndNotSIMD( Toobig, NewRot ) );
NewRot = OrSIMD( AndSIMD( Toosmall, AddSIMD( NewRot, Pi_2 ) ),
AndNotSIMD( Toosmall, NewRot ) );
*( pRot )= NewRot;
++pRot;
++pCreationTimeStamp;
++pLifeDuration;
}
}
//-----------------------------------------------------------------------------
// generic spin operator, version 2. Uses rotation_speed
//-----------------------------------------------------------------------------
class CSpinUpdateBase : public CParticleOperatorInstance
{
protected:
virtual int GetAttributeToSpin( void ) const =0;
virtual int GetSpinSpeedAttribute( void ) const =0;
uint32 GetWrittenAttributes( void ) const
{
return (1 << GetAttributeToSpin() );
}
uint32 GetReadAttributes( void ) const
{
return ( 1 << GetAttributeToSpin() ) | ( 1 << GetSpinSpeedAttribute() ) |
PARTICLE_ATTRIBUTE_CREATION_TIME_MASK;
}
virtual void Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const;
};
void CSpinUpdateBase::Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const
{
CM128AttributeIterator pCreationTimeStamp( PARTICLE_ATTRIBUTE_CREATION_TIME, pParticles );
CM128AttributeIterator pRotationSpeed( GetSpinSpeedAttribute(), pParticles );
CM128AttributeWriteIterator pRot( GetAttributeToSpin(), pParticles );
fltx4 fl4CurTime = pParticles->m_fl4CurTime;
fltx4 fl4Dt = ReplicateX4( pParticles->m_flDt );
fltx4 fl4ScaleFactor = ReplicateX4( flStrength );
int nActive = pParticles->m_nActiveParticles;
for( int i=0; i < nActive; i += 4 )
{
fltx4 fl4SimTime = MinSIMD( fl4Dt, SubSIMD( fl4CurTime, *pCreationTimeStamp ) );
fl4SimTime = MulSIMD( fl4SimTime, fl4ScaleFactor );
*pRot = MaddSIMD( fl4SimTime, *pRotationSpeed, *pRot );
++pRot;
++pRotationSpeed;
++pCreationTimeStamp;
}
}
class C_OP_Spin : public CGeneralSpin
{
DECLARE_PARTICLE_OPERATOR( C_OP_Spin );
int GetAttributeToSpin( void ) const
{
return PARTICLE_ATTRIBUTE_ROTATION;
}
};
DEFINE_PARTICLE_OPERATOR( C_OP_Spin, "Rotation Spin Roll", OPERATOR_GENERIC );
BEGIN_PARTICLE_OPERATOR_UNPACK( C_OP_Spin )
DMXELEMENT_UNPACK_FIELD( "spin_rate_degrees", "0", int, m_nSpinRateDegrees )
DMXELEMENT_UNPACK_FIELD( "spin_stop_time", "0", float, m_fSpinRateStopTime )
DMXELEMENT_UNPACK_FIELD( "spin_rate_min", "0", int, m_nSpinRateMinDegrees )
END_PARTICLE_OPERATOR_UNPACK( C_OP_Spin )
class C_OP_SpinUpdate : public CSpinUpdateBase
{
DECLARE_PARTICLE_OPERATOR( C_OP_SpinUpdate );
virtual int GetAttributeToSpin( void ) const
{
return PARTICLE_ATTRIBUTE_ROTATION;
}
virtual int GetSpinSpeedAttribute( void ) const
{
return PARTICLE_ATTRIBUTE_ROTATION_SPEED;
}
};
DEFINE_PARTICLE_OPERATOR( C_OP_SpinUpdate, "Rotation Basic", OPERATOR_GENERIC );
BEGIN_PARTICLE_OPERATOR_UNPACK( C_OP_SpinUpdate )
END_PARTICLE_OPERATOR_UNPACK( C_OP_SpinUpdate )
class C_OP_SpinYaw : public CGeneralSpin
{
DECLARE_PARTICLE_OPERATOR( C_OP_SpinYaw );
int GetAttributeToSpin( void ) const
{
return PARTICLE_ATTRIBUTE_YAW;
}
};
DEFINE_PARTICLE_OPERATOR( C_OP_SpinYaw, "Rotation Spin Yaw", OPERATOR_GENERIC );
BEGIN_PARTICLE_OPERATOR_UNPACK( C_OP_SpinYaw )
DMXELEMENT_UNPACK_FIELD( "yaw_rate_degrees", "0", int, m_nSpinRateDegrees )
DMXELEMENT_UNPACK_FIELD( "yaw_stop_time", "0", float, m_fSpinRateStopTime )
DMXELEMENT_UNPACK_FIELD( "yaw_rate_min", "0", int, m_nSpinRateMinDegrees )
END_PARTICLE_OPERATOR_UNPACK( C_OP_SpinYaw )
//-----------------------------------------------------------------------------
// Size changing operator
//-----------------------------------------------------------------------------
class C_OP_InterpolateRadius : public CParticleOperatorInstance
{
DECLARE_PARTICLE_OPERATOR( C_OP_InterpolateRadius );
uint32 GetReadInitialAttributes( void ) const
{
return PARTICLE_ATTRIBUTE_RADIUS_MASK;
}
uint32 GetWrittenAttributes( void ) const
{
return PARTICLE_ATTRIBUTE_RADIUS_MASK;
}
uint32 GetReadAttributes( void ) const
{
return PARTICLE_ATTRIBUTE_CREATION_TIME_MASK | PARTICLE_ATTRIBUTE_LIFE_DURATION_MASK;
}
virtual void Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const;
void InitParams( CParticleSystemDefinition *pDef, CDmxElement *pElement )
{
m_flBias = ( m_flBias != 0.0f ) ? m_flBias : 0.5f;
m_fl4BiasParam = PreCalcBiasParameter( ReplicateX4( m_flBias ) );
}
float m_flStartTime;
float m_flEndTime;
float m_flStartScale;
float m_flEndScale;
bool m_bEaseInAndOut;
float m_flBias;
fltx4 m_fl4BiasParam;
};
DEFINE_PARTICLE_OPERATOR( C_OP_InterpolateRadius, "Radius Scale", OPERATOR_GENERIC );
BEGIN_PARTICLE_OPERATOR_UNPACK( C_OP_InterpolateRadius )
DMXELEMENT_UNPACK_FIELD( "start_time", "0", float, m_flStartTime )
DMXELEMENT_UNPACK_FIELD( "end_time", "1", float, m_flEndTime )
DMXELEMENT_UNPACK_FIELD( "radius_start_scale", "1", float, m_flStartScale )
DMXELEMENT_UNPACK_FIELD( "radius_end_scale", "1", float, m_flEndScale )
DMXELEMENT_UNPACK_FIELD( "ease_in_and_out", "0", bool, m_bEaseInAndOut )
DMXELEMENT_UNPACK_FIELD( "scale_bias", "0.5", float, m_flBias )
END_PARTICLE_OPERATOR_UNPACK( C_OP_InterpolateRadius )
void C_OP_InterpolateRadius::Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const
{
if ( m_flEndTime <= m_flStartTime )
return;
CM128AttributeIterator pCreationTime( PARTICLE_ATTRIBUTE_CREATION_TIME, pParticles );
CM128AttributeIterator pLifeDuration( PARTICLE_ATTRIBUTE_LIFE_DURATION, pParticles );
CM128AttributeWriteIterator pRadius( PARTICLE_ATTRIBUTE_RADIUS, pParticles );
CM128InitialAttributeIterator pInitialRadius( PARTICLE_ATTRIBUTE_RADIUS, pParticles );
fltx4 fl4StartTime = ReplicateX4( m_flStartTime );
fltx4 fl4EndTime = ReplicateX4( m_flEndTime );
fltx4 fl4OOTimeWidth = ReciprocalSIMD( SubSIMD( fl4EndTime, fl4StartTime ) );
fltx4 fl4ScaleWidth = ReplicateX4( m_flEndScale - m_flStartScale );
fltx4 fl4StartScale = ReplicateX4( m_flStartScale );
fltx4 fl4CurTime = pParticles->m_fl4CurTime;
int nCtr = pParticles->m_nPaddedActiveParticles;
if ( m_bEaseInAndOut )
{
do
{
fltx4 fl4LifeDuration = *pLifeDuration;
fltx4 fl4GoodMask = CmpGtSIMD( fl4LifeDuration, Four_Zeros );
fltx4 fl4LifeTime = MulSIMD( SubSIMD( fl4CurTime, *pCreationTime ), ReciprocalEstSIMD( fl4LifeDuration ) ); // maybe need accurate div here?
fl4GoodMask = AndSIMD( fl4GoodMask, CmpGeSIMD( fl4LifeTime, fl4StartTime ) );
fl4GoodMask = AndSIMD( fl4GoodMask, CmpLtSIMD( fl4LifeTime, fl4EndTime ) );
if ( IsAnyNegative( fl4GoodMask ) )
{
fltx4 fl4FadeWindow = MulSIMD( SubSIMD( fl4LifeTime, fl4StartTime ), fl4OOTimeWidth );
fl4FadeWindow = AddSIMD( fl4StartScale, MulSIMD( SimpleSpline( fl4FadeWindow ), fl4ScaleWidth ) );
// !!speed!! - can anyone really tell the diff between spline and lerp here?
*pRadius = MaskedAssign(
fl4GoodMask, MulSIMD( *pInitialRadius, fl4FadeWindow ), *pRadius );
}
++pCreationTime;
++pLifeDuration;
++pRadius;
++pInitialRadius;
} while (--nCtr );
}
else
{
if ( m_flBias == 0.5f ) // no bias case
{
do
{
fltx4 fl4LifeDuration = *pLifeDuration;
fltx4 fl4GoodMask = CmpGtSIMD( fl4LifeDuration, Four_Zeros );
fltx4 fl4LifeTime = MulSIMD( SubSIMD( fl4CurTime, *pCreationTime ), ReciprocalEstSIMD( fl4LifeDuration ) ); // maybe need accurate div here?
fl4GoodMask = AndSIMD( fl4GoodMask, CmpGeSIMD( fl4LifeTime, fl4StartTime ) );
fl4GoodMask = AndSIMD( fl4GoodMask, CmpLtSIMD( fl4LifeTime, fl4EndTime ) );
if ( IsAnyNegative( fl4GoodMask ) )
{
fltx4 fl4FadeWindow = MulSIMD( SubSIMD( fl4LifeTime, fl4StartTime ), fl4OOTimeWidth );
fl4FadeWindow = AddSIMD( fl4StartScale, MulSIMD( fl4FadeWindow, fl4ScaleWidth ) );
*pRadius = MaskedAssign( fl4GoodMask, MulSIMD( *pInitialRadius, fl4FadeWindow ), *pRadius );
}
++pCreationTime;
++pLifeDuration;
++pRadius;
++pInitialRadius;
} while (--nCtr );
}
else
{
// use rational approximation to bias
do
{
fltx4 fl4LifeDuration = *pLifeDuration;
fltx4 fl4GoodMask = CmpGtSIMD( fl4LifeDuration, Four_Zeros );
fltx4 fl4LifeTime = MulSIMD( SubSIMD( fl4CurTime, *pCreationTime ), ReciprocalEstSIMD( fl4LifeDuration ) ); // maybe need accurate div here?
fl4GoodMask = AndSIMD( fl4GoodMask, CmpGeSIMD( fl4LifeTime, fl4StartTime ) );
fl4GoodMask = AndSIMD( fl4GoodMask, CmpLtSIMD( fl4LifeTime, fl4EndTime ) );
if ( IsAnyNegative( fl4GoodMask ) )
{
fltx4 fl4FadeWindow = MulSIMD( SubSIMD( fl4LifeTime, fl4StartTime ), fl4OOTimeWidth );
#ifdef FP_EXCEPTIONS_ENABLED
// Wherever fl4GoodMask is zero we need to ensure that fl4FadeWindow is not zero
// to avoid 0/0 divides in BiasSIMD. Setting those elements to fl4EndTime
// should do the trick...
fl4FadeWindow = OrSIMD( AndSIMD( fl4GoodMask, fl4EndTime ), AndNotSIMD( fl4GoodMask, fl4EndTime ) );
#endif
fl4FadeWindow = AddSIMD( fl4StartScale, MulSIMD( BiasSIMD( fl4FadeWindow, m_fl4BiasParam ), fl4ScaleWidth ) );
*pRadius = MaskedAssign(
fl4GoodMask,
MulSIMD( *pInitialRadius, fl4FadeWindow ), *pRadius );
}
++pCreationTime;
++pLifeDuration;
++pRadius;
++pInitialRadius;
} while (--nCtr );
}
}
}
//-----------------------------------------------------------------------------
// Color Fade
//-----------------------------------------------------------------------------
class C_OP_ColorInterpolate : public CParticleOperatorInstance
{
DECLARE_PARTICLE_OPERATOR( C_OP_ColorInterpolate );
uint32 GetReadInitialAttributes( void ) const
{
return PARTICLE_ATTRIBUTE_TINT_RGB_MASK;
}
uint32 GetWrittenAttributes( void ) const
{
return PARTICLE_ATTRIBUTE_TINT_RGB_MASK;
}
uint32 GetReadAttributes( void ) const
{
return PARTICLE_ATTRIBUTE_CREATION_TIME_MASK | PARTICLE_ATTRIBUTE_LIFE_DURATION_MASK;
}
virtual void InitParams( CParticleSystemDefinition *pDef, CDmxElement *pElement )
{
m_flColorFade[0] = m_ColorFade[0] / 255.0f;
m_flColorFade[1] = m_ColorFade[1] / 255.0f;
m_flColorFade[2] = m_ColorFade[2] / 255.0f;
}
virtual void Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const;
Color m_ColorFade;
float m_flColorFade[3];
float m_flFadeStartTime;
float m_flFadeEndTime;
bool m_bEaseInOut;
};
void C_OP_ColorInterpolate::Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const
{
C4VAttributeWriteIterator pColor( PARTICLE_ATTRIBUTE_TINT_RGB, pParticles );
CM128AttributeIterator pCreationTime( PARTICLE_ATTRIBUTE_CREATION_TIME, pParticles );
CM128AttributeIterator pLifeDuration( PARTICLE_ATTRIBUTE_LIFE_DURATION, pParticles );
C4VInitialAttributeIterator pInitialColor( PARTICLE_ATTRIBUTE_TINT_RGB, pParticles );
if ( m_flFadeEndTime == m_flFadeStartTime )
return;
fltx4 ooInRange = ReplicateX4( 1.0 / ( m_flFadeEndTime - m_flFadeStartTime ) );
fltx4 curTime = pParticles->m_fl4CurTime;
fltx4 lowRange = ReplicateX4( m_flFadeStartTime );
fltx4 targetR = ReplicateX4( m_flColorFade[0] );
fltx4 targetG = ReplicateX4( m_flColorFade[1] );
fltx4 targetB = ReplicateX4( m_flColorFade[2] );
int nCtr = pParticles->m_nPaddedActiveParticles;
if ( m_bEaseInOut )
{
do
{
fltx4 goodMask = CmpGtSIMD( *pLifeDuration, Four_Zeros );
if ( IsAnyNegative( goodMask ) )
{
fltx4 flLifeTime = DivSIMD( SubSIMD( curTime, *pCreationTime ), *pLifeDuration );
fltx4 T = MulSIMD( SubSIMD( flLifeTime, lowRange ), ooInRange );
T = MinSIMD( Four_Ones, MaxSIMD( Four_Zeros, T ) );
T = SimpleSpline( T );
pColor->x = MaskedAssign( goodMask, AddSIMD( pInitialColor->x, MulSIMD( T, SubSIMD( targetR, pInitialColor->x ) ) ), pColor->x );
pColor->y = MaskedAssign( goodMask, AddSIMD( pInitialColor->y, MulSIMD( T, SubSIMD( targetG, pInitialColor->y ) ) ), pColor->y );
pColor->z = MaskedAssign( goodMask, AddSIMD( pInitialColor->z, MulSIMD( T, SubSIMD( targetB, pInitialColor->z ) ) ), pColor->z );
}
++pColor;
++pCreationTime;
++pLifeDuration;
++pInitialColor;
} while( --nCtr );
}
else
{
do
{
fltx4 goodMask = CmpGtSIMD( *pLifeDuration, Four_Zeros );
if ( IsAnyNegative( goodMask ) )
{
fltx4 flLifeTime = DivSIMD( SubSIMD( curTime, *pCreationTime ), *pLifeDuration );
fltx4 T = MulSIMD( SubSIMD( flLifeTime, lowRange ), ooInRange );
T = MinSIMD( Four_Ones, MaxSIMD( Four_Zeros, T ) );
pColor->x = MaskedAssign( goodMask, AddSIMD( pInitialColor->x, MulSIMD( T, SubSIMD( targetR, pInitialColor->x ) ) ), pColor->x );
pColor->y = MaskedAssign( goodMask, AddSIMD( pInitialColor->y, MulSIMD( T, SubSIMD( targetG, pInitialColor->y ) ) ), pColor->y );
pColor->z = MaskedAssign( goodMask, AddSIMD( pInitialColor->z, MulSIMD( T, SubSIMD( targetB, pInitialColor->z ) ) ), pColor->z );
}
++pColor;
++pCreationTime;
++pLifeDuration;
++pInitialColor;
} while( --nCtr );
}
}
DEFINE_PARTICLE_OPERATOR( C_OP_ColorInterpolate, "Color Fade", OPERATOR_GENERIC );
BEGIN_PARTICLE_OPERATOR_UNPACK( C_OP_ColorInterpolate )
DMXELEMENT_UNPACK_FIELD( "color_fade", "255 255 255 255", Color, m_ColorFade )
DMXELEMENT_UNPACK_FIELD( "fade_start_time", "0", float, m_flFadeStartTime )
DMXELEMENT_UNPACK_FIELD( "fade_end_time", "1", float, m_flFadeEndTime )
DMXELEMENT_UNPACK_FIELD( "ease_in_and_out", "1", bool, m_bEaseInOut )
END_PARTICLE_OPERATOR_UNPACK( C_OP_ColorInterpolate )
//-----------------------------------------------------------------------------
// Position Lock to Control Point
// Locks all particles to the specified control point
// Useful for making particles move with their emitter and so forth
//-----------------------------------------------------------------------------
class C_OP_PositionLock : public CParticleOperatorInstance
{
DECLARE_PARTICLE_OPERATOR( C_OP_PositionLock );
struct C_OP_PositionLockContext_t
{
Vector m_vPrevPosition;
matrix3x4_t m_matPrevTransform;
};
int m_nControlPointNumber;
Vector m_vPrevPosition;
float m_flStartTime_min;
float m_flStartTime_max;
float m_flStartTime_exp;
float m_flEndTime_min;
float m_flEndTime_max;
float m_flEndTime_exp;
float m_flRange;
bool m_bLockRot;
uint32 GetWrittenAttributes( void ) const
{
return PARTICLE_ATTRIBUTE_PREV_XYZ_MASK | PARTICLE_ATTRIBUTE_XYZ_MASK;
}
uint32 GetReadAttributes( void ) const
{
return PARTICLE_ATTRIBUTE_CREATION_TIME_MASK | PARTICLE_ATTRIBUTE_LIFE_DURATION_MASK |
PARTICLE_ATTRIBUTE_PARTICLE_ID_MASK;
}
virtual uint64 GetReadControlPointMask() const
{
return 1ULL << m_nControlPointNumber;
}
void InitParams( CParticleSystemDefinition *pDef, CDmxElement *pElement )
{
m_nControlPointNumber = max( 0, min( MAX_PARTICLE_CONTROL_POINTS-1, m_nControlPointNumber ) );
}
size_t GetRequiredContextBytes( void ) const
{
return sizeof( C_OP_PositionLockContext_t );
}
virtual void InitializeContextData( CParticleCollection *pParticles, void *pContext ) const
{
C_OP_PositionLockContext_t *pCtx=reinterpret_cast<C_OP_PositionLockContext_t *>( pContext );
pCtx->m_vPrevPosition = vec3_origin;
pParticles->GetControlPointTransformAtTime( m_nControlPointNumber, pParticles->m_flCurTime, &pCtx->m_matPrevTransform );
}
virtual void Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const;
};
DEFINE_PARTICLE_OPERATOR( C_OP_PositionLock , "Movement Lock to Control Point", OPERATOR_GENERIC );
BEGIN_PARTICLE_OPERATOR_UNPACK( C_OP_PositionLock )
DMXELEMENT_UNPACK_FIELD( "control_point_number", "0", int, m_nControlPointNumber )
DMXELEMENT_UNPACK_FIELD( "start_fadeout_min", "1", float, m_flStartTime_min )
DMXELEMENT_UNPACK_FIELD( "start_fadeout_max", "1", float, m_flStartTime_max )
DMXELEMENT_UNPACK_FIELD( "start_fadeout_exponent", "1", float, m_flStartTime_exp )
DMXELEMENT_UNPACK_FIELD( "end_fadeout_min", "1", float, m_flEndTime_min )
DMXELEMENT_UNPACK_FIELD( "end_fadeout_max", "1", float, m_flEndTime_max )
DMXELEMENT_UNPACK_FIELD( "end_fadeout_exponent", "1", float, m_flEndTime_exp )
DMXELEMENT_UNPACK_FIELD( "distance fade range", "0", float, m_flRange )
DMXELEMENT_UNPACK_FIELD( "lock rotation", "0", bool, m_bLockRot )
END_PARTICLE_OPERATOR_UNPACK( C_OP_PositionLock )
#ifdef OLD_NON_SSE_POSLOCK_FOR_TESTING
void C_OP_PositionLock::Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const
{
Vector vecControlPoint = pParticles->GetControlPointAtCurrentTime( m_nControlPointNumber );
// At initialization, set prevposition to the control point to prevent random placements/velocities
C_OP_PositionLockContext_t *pCtx=reinterpret_cast<C_OP_PositionLockContext_t *>( pContext );
if ( pCtx->m_vPrevPosition == Vector (0, 0, 0) )
{
pCtx->m_vPrevPosition = vecControlPoint;
}
// Control point movement delta
int nRandomOffset = pParticles->OperatorRandomSampleOffset();
// FIXME: SSE-ize
for ( int i = 0; i < pParticles->m_nActiveParticles; ++i )
{
Vector vecPrevCPPos = pCtx->m_vPrevPosition;
const float *pCreationTime;
const float *pLifeDuration;
pCreationTime = pParticles->GetFloatAttributePtr( PARTICLE_ATTRIBUTE_CREATION_TIME, i );
pLifeDuration = pParticles->GetFloatAttributePtr( PARTICLE_ATTRIBUTE_LIFE_DURATION, i );
float flLifeTime = *pLifeDuration != 0.0f ? clamp( ( pParticles->m_flCurTime - *pCreationTime ) / ( *pLifeDuration ), 0.0f, 1.0f ) : 0.0f;
if ( *pCreationTime >= ( pParticles->m_flCurTime - pParticles->m_flDt ) )
{
pParticles->GetControlPointAtTime( m_nControlPointNumber, *pCreationTime, &vecPrevCPPos );
}
Vector vDelta = vecControlPoint - vecPrevCPPos;
vDelta *= flStrength;
// clamp activity to start/end time
int nParticleId = *pParticles->GetIntAttributePtr( PARTICLE_ATTRIBUTE_PARTICLE_ID, i );
float flStartTime = pParticles->RandomFloatExp( nParticleId + nRandomOffset + 9, m_flStartTime_min, m_flStartTime_max, m_flStartTime_exp );
float flEndTime = pParticles->RandomFloatExp( nParticleId + nRandomOffset + 10, m_flEndTime_min, m_flEndTime_max, m_flEndTime_exp );
// bias attachedness by fadeout
float flLockScale = SimpleSplineRemapValClamped( flLifeTime, flStartTime, flEndTime, 1.0f, 0.0f );
float *xyz = pParticles->GetFloatAttributePtrForWrite( PARTICLE_ATTRIBUTE_XYZ, i );
float *xyz_prev = pParticles->GetFloatAttributePtrForWrite( PARTICLE_ATTRIBUTE_PREV_XYZ, i );
Vector vecParticlePosition, vecParticlePosition_prev ;
SetVectorFromAttribute( vecParticlePosition, xyz );
SetVectorFromAttribute( vecParticlePosition_prev, xyz_prev );
float flDampenAmount = 1;
if ( m_flRange != 0 )
{
Vector ofs;
ofs = (vecParticlePosition + ( vDelta * flLockScale ) ) - vecControlPoint;
float flDistance = ofs.Length();
flDampenAmount = SimpleSplineRemapValClamped( flDistance, 0, m_flRange, 1.0f, 0.0f );
flDampenAmount = Bias( flDampenAmount, .2 );
}
Vector vParticleDelta = vDelta * flLockScale * flDampenAmount;
vecParticlePosition += vParticleDelta;
vecParticlePosition_prev += vParticleDelta;
SetVectorAttribute( xyz, vecParticlePosition );
SetVectorAttribute( xyz_prev, vecParticlePosition_prev );
}
// Store off the control point position for the next delta computation
pCtx->m_vPrevPosition = vecControlPoint;
};
#else
void C_OP_PositionLock::Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const
{
Vector vecControlPoint = pParticles->GetControlPointAtCurrentTime( m_nControlPointNumber );
// At initialization, set prevposition to the control point to prevent random placements/velocities
C_OP_PositionLockContext_t *pCtx=reinterpret_cast<C_OP_PositionLockContext_t *>( pContext );
if ( pCtx->m_vPrevPosition == Vector (0, 0, 0) )
{
pCtx->m_vPrevPosition = vecControlPoint;
pParticles->GetControlPointTransformAtTime( m_nControlPointNumber, pParticles->m_flCurTime, &pCtx->m_matPrevTransform );
}
Vector vDelta;
matrix3x4_t matCurrentTransform;
matrix3x4_t matTransformLock;
if ( m_bLockRot )
{
pParticles->GetControlPointTransformAtTime( m_nControlPointNumber, pParticles->m_flCurTime, &matCurrentTransform );
matrix3x4_t matPrev;
//if ( MatricesAreEqual ( matCurrentTransform, pCtx->m_matPrevTransform ) )
// return;
MatrixInvert( pCtx->m_matPrevTransform, matPrev );
MatrixMultiply( matCurrentTransform, matPrev, matTransformLock);
}
int nContext = GetSIMDRandContext();
// Control point movement delta - not full transform
vDelta = vecControlPoint - pCtx->m_vPrevPosition;
//if ( vDelta == vec3_origin && !m_bLockRot )
// return;
vDelta *= flStrength;
FourVectors v4Delta;
v4Delta.DuplicateVector( vDelta );
FourVectors v4ControlPoint;
v4ControlPoint.DuplicateVector( vecControlPoint );
C4VAttributeWriteIterator pXYZ( PARTICLE_ATTRIBUTE_XYZ, pParticles );
C4VAttributeWriteIterator pPrevXYZ( PARTICLE_ATTRIBUTE_PREV_XYZ, pParticles );
fltx4 fl4_Dt = ReplicateX4( pParticles->m_flDt );
int nCtr = pParticles->m_nPaddedActiveParticles;
bool bUseRange = ( m_flRange != 0.0 );
fltx4 fl4OORange;
if ( bUseRange )
fl4OORange = ReplicateX4( 1.0 / m_flRange );
fltx4 fl4BiasParm = PreCalcBiasParameter( ReplicateX4( 0.2 ) );
if ( m_flStartTime_min >= 1.0 ) // always locked on
{
CM128AttributeIterator pCreationTime( PARTICLE_ATTRIBUTE_CREATION_TIME, pParticles );
do
{
fltx4 fl4ParticleAge = SubSIMD( pParticles->m_fl4CurTime, *pCreationTime);
fltx4 fl4CreationFrameBias = MinSIMD( fl4ParticleAge, fl4_Dt );
fl4CreationFrameBias = MulSIMD( DivSIMD( Four_Ones, fl4_Dt ), fl4CreationFrameBias );
FourVectors v4ScaledDelta = v4Delta;
v4ScaledDelta *= fl4CreationFrameBias;
fltx4 fl4LockStrength = ReplicateX4( flStrength );
// ok, some of these particles should be moved
if ( bUseRange )
{
FourVectors ofs = *pXYZ;
ofs += v4ScaledDelta;
ofs -= v4ControlPoint;
fltx4 fl4Dist = ofs.length();
fl4Dist = BiasSIMD( MinSIMD( Four_Ones, MulSIMD( fl4Dist, fl4OORange ) ), fl4BiasParm );
v4ScaledDelta *= SubSIMD( Four_Ones, fl4Dist );
fl4LockStrength = SubSIMD( Four_Ones, MulSIMD ( fl4Dist, fl4LockStrength ) );
}
if ( m_bLockRot )
{
fl4LockStrength = MulSIMD( fl4LockStrength, fl4CreationFrameBias );
FourVectors fvCurPos = *pXYZ;
FourVectors fvPrevPos = *pPrevXYZ;
fvCurPos.TransformBy( matTransformLock );
fvPrevPos.TransformBy( matTransformLock );
fvCurPos -= *pXYZ;
fvCurPos *= fl4LockStrength;
fvPrevPos -= *pPrevXYZ;
fvPrevPos *= fl4LockStrength;
*(pXYZ) += fvCurPos;
*(pPrevXYZ) += fvPrevPos;
}
else
{
*(pXYZ) += v4ScaledDelta;
*(pPrevXYZ) += v4ScaledDelta;
}
++pCreationTime;
++pXYZ;
++pPrevXYZ;
} while ( --nCtr );
}
else
{
CM128AttributeIterator pCreationTime( PARTICLE_ATTRIBUTE_CREATION_TIME, pParticles );
CM128AttributeIterator pLifeDuration( PARTICLE_ATTRIBUTE_LIFE_DURATION, pParticles );
fltx4 fl4CurTime = pParticles->m_fl4CurTime;
fltx4 fl4StartRange = ReplicateX4( m_flStartTime_max - m_flStartTime_min );
fltx4 fl4StartBias = ReplicateX4( m_flStartTime_min );
fltx4 fl4EndRange = ReplicateX4( m_flEndTime_max - m_flEndTime_min );
fltx4 fl4EndBias = ReplicateX4( m_flEndTime_min );
int nSSEStartExponent = m_flStartTime_exp * 4.0;
int nSSEEndExponent = m_flEndTime_exp * 4.0;
do
{
fltx4 fl4LifeTime = SubSIMD( fl4CurTime, *pCreationTime );
fltx4 fl4CreationFrameBias = MinSIMD( fl4LifeTime, fl4_Dt );
fl4CreationFrameBias = MulSIMD( DivSIMD( Four_Ones, fl4_Dt ), fl4CreationFrameBias );
FourVectors v4ScaledDelta = v4Delta;
v4ScaledDelta *= fl4CreationFrameBias;
fl4LifeTime = MaxSIMD( Four_Zeros, MinSIMD( Four_Ones,
MulSIMD( fl4LifeTime, ReciprocalEstSIMD( *pLifeDuration ) ) ) );
fltx4 fl4StartTime = Pow_FixedPoint_Exponent_SIMD( RandSIMD( nContext ), nSSEStartExponent );
fl4StartTime = AddSIMD( fl4StartBias, MulSIMD( fl4StartTime, fl4StartRange ) );
fltx4 fl4EndTime = Pow_FixedPoint_Exponent_SIMD( RandSIMD( nContext ), nSSEEndExponent );
fl4EndTime = AddSIMD( fl4EndBias, MulSIMD( fl4EndTime, fl4EndRange ) );
// now, determine "lockedness"
fltx4 fl4LockScale = DivSIMD( SubSIMD( fl4LifeTime, fl4StartTime ), SubSIMD( fl4EndTime, fl4StartTime ) );
fl4LockScale = SubSIMD( Four_Ones, MaxSIMD( Four_Zeros, MinSIMD( Four_Ones, fl4LockScale ) ) );
if ( IsAnyNegative( CmpGtSIMD( fl4LockScale, Four_Zeros ) ) )
{
//fl4LockScale = MulSIMD( fl4LockScale, fl4CreationFrameBias );
v4ScaledDelta *= fl4LockScale;
fltx4 fl4LockStrength = fl4LockScale ;
// ok, some of these particles should be moved
if ( bUseRange )
{
FourVectors ofs = *pXYZ;
ofs += v4ScaledDelta;
ofs -= v4ControlPoint;
fltx4 fl4Dist = ofs.length();
fl4Dist = BiasSIMD( MinSIMD( Four_Ones, MulSIMD( fl4Dist, fl4OORange ) ), fl4BiasParm );
v4ScaledDelta *= SubSIMD( Four_Ones, fl4Dist );
fl4LockStrength = SubSIMD( Four_Ones, MulSIMD ( fl4Dist, fl4LockStrength ) );
}
if ( m_bLockRot )
{
fl4LockStrength = MulSIMD( fl4LockStrength, fl4CreationFrameBias );
FourVectors fvCurPos = *pXYZ;
FourVectors fvPrevPos = *pPrevXYZ;
fvCurPos.TransformBy( matTransformLock );
fvPrevPos.TransformBy( matTransformLock );
fvCurPos -= *pXYZ;
fvCurPos *= fl4LockStrength;
fvPrevPos -= *pPrevXYZ;
fvPrevPos *= fl4LockStrength;
*(pXYZ) += fvCurPos;
*(pPrevXYZ) += fvPrevPos;
}
else
{
*(pXYZ) += v4ScaledDelta;
*(pPrevXYZ) += v4ScaledDelta;
}
}
++pCreationTime;
++pLifeDuration;
++pXYZ;
++pPrevXYZ;
} while ( --nCtr );
}
// Store off the control point position for the next delta computation
pCtx->m_vPrevPosition = vecControlPoint;
pCtx->m_matPrevTransform = matCurrentTransform;
ReleaseSIMDRandContext( nContext );
};
#endif
//-----------------------------------------------------------------------------
// Controlpoint Light
// Determines particle color/fakes lighting using the influence of control
// points
//-----------------------------------------------------------------------------
class C_OP_ControlpointLight : public CParticleOperatorInstance
{
float m_flScale;
LightDesc_t m_LightNode1, m_LightNode2, m_LightNode3, m_LightNode4;
int m_nControlPoint1, m_nControlPoint2, m_nControlPoint3, m_nControlPoint4;
Vector m_vecCPOffset1, m_vecCPOffset2, m_vecCPOffset3, m_vecCPOffset4;
float m_LightFiftyDist1, m_LightZeroDist1, m_LightFiftyDist2, m_LightZeroDist2,
m_LightFiftyDist3, m_LightZeroDist3, m_LightFiftyDist4, m_LightZeroDist4;
Color m_LightColor1, m_LightColor2, m_LightColor3, m_LightColor4;
bool m_bLightType1, m_bLightType2, m_bLightType3, m_bLightType4, m_bLightDynamic1,
m_bLightDynamic2, m_bLightDynamic3, m_bLightDynamic4, m_bUseNormal, m_bUseHLambert,
m_bLightActive1, m_bLightActive2, m_bLightActive3, m_bLightActive4,
m_bClampLowerRange, m_bClampUpperRange;
DECLARE_PARTICLE_OPERATOR( C_OP_ControlpointLight );
uint32 GetReadInitialAttributes( void ) const
{
return PARTICLE_ATTRIBUTE_TINT_RGB_MASK;
}
uint32 GetWrittenAttributes( void ) const
{
return PARTICLE_ATTRIBUTE_TINT_RGB_MASK;
}
uint32 GetReadAttributes( void ) const
{
return PARTICLE_ATTRIBUTE_XYZ_MASK;
}
virtual uint64 GetReadControlPointMask() const
{
return ( 1ULL << m_nControlPoint1 ) | ( 1ULL << m_nControlPoint2 ) |
( 1ULL << m_nControlPoint3 ) | ( 1ULL << m_nControlPoint4 );
}
virtual void InitParams( CParticleSystemDefinition *pDef, CDmxElement *pElement )
{
m_LightNode1.m_Color[0] = m_LightColor1[0] / 255.0f;
m_LightNode1.m_Color[1] = m_LightColor1[1] / 255.0f;
m_LightNode1.m_Color[2] = m_LightColor1[2] / 255.0f;
m_LightNode2.m_Color[0] = m_LightColor2[0] / 255.0f;
m_LightNode2.m_Color[1] = m_LightColor2[1] / 255.0f;
m_LightNode2.m_Color[2] = m_LightColor2[2] / 255.0f;
m_LightNode3.m_Color[0] = m_LightColor3[0] / 255.0f;
m_LightNode3.m_Color[1] = m_LightColor3[1] / 255.0f;
m_LightNode3.m_Color[2] = m_LightColor3[2] / 255.0f;
m_LightNode4.m_Color[0] = m_LightColor4[0] / 255.0f;
m_LightNode4.m_Color[1] = m_LightColor4[1] / 255.0f;
m_LightNode4.m_Color[2] = m_LightColor4[2] / 255.0f;
m_LightNode1.m_Range = 0;
m_LightNode2.m_Range = 0;
m_LightNode3.m_Range = 0;
m_LightNode4.m_Range = 0;
m_LightNode1.m_Falloff=5.0;
m_LightNode2.m_Falloff=5.0;
m_LightNode3.m_Falloff=5.0;
m_LightNode4.m_Falloff=5.0;
m_LightNode1.m_Attenuation0 = 0;
m_LightNode1.m_Attenuation1 = 0;
m_LightNode1.m_Attenuation2 = 1;
m_LightNode2.m_Attenuation0 = 0;
m_LightNode2.m_Attenuation1 = 0;
m_LightNode2.m_Attenuation2 = 1;
m_LightNode3.m_Attenuation0 = 0;
m_LightNode3.m_Attenuation1 = 0;
m_LightNode3.m_Attenuation2 = 1;
m_LightNode4.m_Attenuation0 = 0;
m_LightNode4.m_Attenuation1 = 0;
m_LightNode4.m_Attenuation2 = 1;
if ( !m_bLightType1 )
{
m_LightNode1.m_Type = MATERIAL_LIGHT_POINT;
}
else
{
m_LightNode1.m_Type = MATERIAL_LIGHT_SPOT;
}
if ( !m_bLightType2 )
{
m_LightNode2.m_Type = MATERIAL_LIGHT_POINT;
}
else
{
m_LightNode2.m_Type = MATERIAL_LIGHT_SPOT;
}
if ( !m_bLightType3 )
{
m_LightNode3.m_Type = MATERIAL_LIGHT_POINT;
}
else
{
m_LightNode3.m_Type = MATERIAL_LIGHT_SPOT;
}
if ( !m_bLightType4 )
{
m_LightNode4.m_Type = MATERIAL_LIGHT_POINT;
}
else
{
m_LightNode4.m_Type = MATERIAL_LIGHT_SPOT;
}
if ( !m_bLightDynamic1 && ( m_LightColor1 != Color( 0, 0, 0, 255 ) ) )
{
m_bLightActive1 = true;
}
else
{
m_bLightActive1 = false;
}
if ( !m_bLightDynamic2 && ( m_LightColor2 != Color( 0, 0, 0, 255 ) ) )
{
m_bLightActive2 = true;
}
else
{
m_bLightActive2 = false;
}
if ( !m_bLightDynamic3 && ( m_LightColor3 != Color( 0, 0, 0, 255 ) ) )
{
m_bLightActive3 = true;
}
else
{
m_bLightActive3 = false;
}
if ( !m_bLightDynamic4 && ( m_LightColor4 != Color( 0, 0, 0, 255 ) ) )
{
m_bLightActive4 = true;
}
else
{
m_bLightActive4 = false;
}
m_LightNode1.SetupNewStyleAttenuation ( m_LightFiftyDist1, m_LightZeroDist1 );
m_LightNode2.SetupNewStyleAttenuation ( m_LightFiftyDist2, m_LightZeroDist2 );
m_LightNode3.SetupNewStyleAttenuation ( m_LightFiftyDist3, m_LightZeroDist3 );
m_LightNode4.SetupNewStyleAttenuation ( m_LightFiftyDist4, m_LightZeroDist4 );
}
void Render( CParticleCollection *pParticles ) const;
virtual void Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const;
};
DEFINE_PARTICLE_OPERATOR( C_OP_ControlpointLight, "Color Light from Control Point", OPERATOR_GENERIC );
BEGIN_PARTICLE_OPERATOR_UNPACK( C_OP_ControlpointLight )
DMXELEMENT_UNPACK_FIELD( "Light 1 Control Point", "0", int, m_nControlPoint1 )
DMXELEMENT_UNPACK_FIELD( "Light 1 Control Point Offset", "0 0 0", Vector, m_vecCPOffset1 )
DMXELEMENT_UNPACK_FIELD( "Light 1 Type 0=Point 1=Spot", "0", bool, m_bLightType1 )
DMXELEMENT_UNPACK_FIELD( "Light 1 Color", "0 0 0 255", Color, m_LightColor1 )
DMXELEMENT_UNPACK_FIELD( "Light 1 Dynamic Light", "0", bool, m_bLightDynamic1 )
DMXELEMENT_UNPACK_FIELD( "Light 1 Direction", "0 0 0", Vector, m_LightNode1.m_Direction )
DMXELEMENT_UNPACK_FIELD( "Light 1 50% Distance", "100", float, m_LightFiftyDist1 )
DMXELEMENT_UNPACK_FIELD( "Light 1 0% Distance", "200", float, m_LightZeroDist1 )
DMXELEMENT_UNPACK_FIELD( "Light 1 Spot Inner Cone", "30.0", float, m_LightNode1.m_Theta )
DMXELEMENT_UNPACK_FIELD( "Light 1 Spot Outer Cone", "45.0", float, m_LightNode1.m_Phi )
DMXELEMENT_UNPACK_FIELD( "Light 2 Control Point", "0", int, m_nControlPoint2 )
DMXELEMENT_UNPACK_FIELD( "Light 2 Control Point Offset", "0 0 0", Vector, m_vecCPOffset2 )
DMXELEMENT_UNPACK_FIELD( "Light 2 Type 0=Point 1=Spot", "0", bool, m_bLightType2 )
DMXELEMENT_UNPACK_FIELD( "Light 2 Color", "0 0 0 255", Color, m_LightColor2 )
DMXELEMENT_UNPACK_FIELD( "Light 2 Dynamic Light", "0", bool, m_bLightDynamic2 )
DMXELEMENT_UNPACK_FIELD( "Light 2 Direction", "0 0 0", Vector, m_LightNode2.m_Direction )
DMXELEMENT_UNPACK_FIELD( "Light 2 50% Distance", "100", float, m_LightFiftyDist2 )
DMXELEMENT_UNPACK_FIELD( "Light 2 0% Distance", "200", float, m_LightZeroDist2 )
DMXELEMENT_UNPACK_FIELD( "Light 2 Spot Inner Cone", "30.0", float, m_LightNode2.m_Theta )
DMXELEMENT_UNPACK_FIELD( "Light 2 Spot Outer Cone", "45.0", float, m_LightNode2.m_Phi )
DMXELEMENT_UNPACK_FIELD( "Light 3 Control Point", "0", int, m_nControlPoint3 )
DMXELEMENT_UNPACK_FIELD( "Light 3 Control Point Offset", "0 0 0", Vector, m_vecCPOffset3 )
DMXELEMENT_UNPACK_FIELD( "Light 3 Type 0=Point 1=Spot", "0", bool, m_bLightType3 )
DMXELEMENT_UNPACK_FIELD( "Light 3 Color", "0 0 0 255", Color, m_LightColor3 )
DMXELEMENT_UNPACK_FIELD( "Light 3 Dynamic Light", "0", bool, m_bLightDynamic3 )
DMXELEMENT_UNPACK_FIELD( "Light 3 Direction", "0 0 0", Vector, m_LightNode3.m_Direction )
DMXELEMENT_UNPACK_FIELD( "Light 3 50% Distance", "100", float, m_LightFiftyDist3 )
DMXELEMENT_UNPACK_FIELD( "Light 3 0% Distance", "200", float, m_LightZeroDist3 )
DMXELEMENT_UNPACK_FIELD( "Light 3 Spot Inner Cone", "30.0", float, m_LightNode3.m_Theta )
DMXELEMENT_UNPACK_FIELD( "Light 3 Spot Outer Cone", "45.0", float, m_LightNode3.m_Phi )
DMXELEMENT_UNPACK_FIELD( "Light 4 Control Point", "0", int, m_nControlPoint4 )
DMXELEMENT_UNPACK_FIELD( "Light 4 Control Point Offset", "0 0 0", Vector, m_vecCPOffset4 )
DMXELEMENT_UNPACK_FIELD( "Light 4 Type 0=Point 1=Spot", "0", bool, m_bLightType4 )
DMXELEMENT_UNPACK_FIELD( "Light 4 Color", "0 0 0 255", Color, m_LightColor4 )
DMXELEMENT_UNPACK_FIELD( "Light 4 Dynamic Light", "0", bool, m_bLightDynamic4 )
DMXELEMENT_UNPACK_FIELD( "Light 4 Direction", "0 0 0", Vector, m_LightNode4.m_Direction )
DMXELEMENT_UNPACK_FIELD( "Light 4 50% Distance", "100", float, m_LightFiftyDist4 )
DMXELEMENT_UNPACK_FIELD( "Light 4 0% Distance", "200", float, m_LightZeroDist4 )
DMXELEMENT_UNPACK_FIELD( "Light 4 Spot Inner Cone", "30.0", float, m_LightNode4.m_Theta )
DMXELEMENT_UNPACK_FIELD( "Light 4 Spot Outer Cone", "45.0", float, m_LightNode4.m_Phi )
DMXELEMENT_UNPACK_FIELD( "Initial Color Bias", "0.0", float, m_flScale )
DMXELEMENT_UNPACK_FIELD( "Clamp Minimum Light Value to Initial Color", "0", bool, m_bClampLowerRange )
DMXELEMENT_UNPACK_FIELD( "Clamp Maximum Light Value to Initial Color", "0", bool, m_bClampUpperRange )
DMXELEMENT_UNPACK_FIELD( "Compute Normals From Control Points", "0", bool, m_bUseNormal )
DMXELEMENT_UNPACK_FIELD( "Half-Lambert Normals", "1", bool, m_bUseHLambert )
END_PARTICLE_OPERATOR_UNPACK( C_OP_ControlpointLight )
void C_OP_ControlpointLight::Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const
{
//Set up location of each light - this needs to be done every time as the CP's can move
Vector vecLocation1, vecLocation2, vecLocation3, vecLocation4;
vecLocation1 = pParticles->GetControlPointAtCurrentTime( m_nControlPoint1 );
vecLocation2 = pParticles->GetControlPointAtCurrentTime( m_nControlPoint2 );
vecLocation3 = pParticles->GetControlPointAtCurrentTime( m_nControlPoint3 );
vecLocation4 = pParticles->GetControlPointAtCurrentTime( m_nControlPoint4 );
LightDesc_t LightNode1 = m_LightNode1;
LightDesc_t LightNode2 = m_LightNode2;
LightDesc_t LightNode3 = m_LightNode3;
LightDesc_t LightNode4 = m_LightNode3;
// Apply any offsets
LightNode1.m_Position = vecLocation1 + m_vecCPOffset1;
LightNode2.m_Position = vecLocation2 + m_vecCPOffset2;
LightNode3.m_Position = vecLocation3 + m_vecCPOffset3;
LightNode4.m_Position = vecLocation4 + m_vecCPOffset4;
C4VAttributeIterator pInitialColor( PARTICLE_ATTRIBUTE_TINT_RGB, pParticles );
C4VAttributeWriteIterator pColor( PARTICLE_ATTRIBUTE_TINT_RGB, pParticles );
C4VAttributeIterator pXYZ( PARTICLE_ATTRIBUTE_XYZ, pParticles );
// Set up lighting conditions and attenuation
if ( m_bLightDynamic1 )
{
// Get the color and luminosity at this position
Color lc;
g_pParticleSystemMgr->Query()->GetLightingAtPoint( LightNode1.m_Position, lc );
LightNode1.m_Color[0] = lc[0] / 255.0f;
LightNode1.m_Color[1] = lc[1] / 255.0f;
LightNode1.m_Color[2] = lc[2] / 255.0f;
}
if ( m_bLightDynamic2 )
{
// Get the color and luminosity at this position
Color lc;
g_pParticleSystemMgr->Query()->GetLightingAtPoint( LightNode2.m_Position, lc );
LightNode2.m_Color[0] = lc[0] / 255.0f;
LightNode2.m_Color[1] = lc[1] / 255.0f;
LightNode2.m_Color[2] = lc[2] / 255.0f;
}
if ( m_bLightDynamic3 )
{
// Get the color and luminosity at this position
Color lc;
g_pParticleSystemMgr->Query()->GetLightingAtPoint( LightNode3.m_Position, lc );
LightNode3.m_Color[0] = lc[0] / 255.0f;
LightNode3.m_Color[1] = lc[1] / 255.0f;
LightNode3.m_Color[2] = lc[2] / 255.0f;
}
if ( m_bLightDynamic4 )
{
// Get the color and luminosity at this position
Color lc;
g_pParticleSystemMgr->Query()->GetLightingAtPoint( LightNode4.m_Position, lc );
LightNode4.m_Color[0] = lc[0] / 255.0f;
LightNode4.m_Color[1] = lc[1] / 255.0f;
LightNode4.m_Color[2] = lc[2] / 255.0f;
}
LightNode1.RecalculateDerivedValues();
LightNode2.RecalculateDerivedValues();
LightNode3.RecalculateDerivedValues();
LightNode4.RecalculateDerivedValues();
FourVectors vScale;
vScale.DuplicateVector( Vector(m_flScale, m_flScale, m_flScale) );
if ( m_bUseNormal )
{
FourVectors vCPPosition1, vCPPosition2, vCPPosition3, vCPPosition4;
//vCPPosition1.DuplicateVector( LightNode1.m_Position );
vCPPosition1.DuplicateVector( vecLocation1 );
vCPPosition2.DuplicateVector( vecLocation2 );
vCPPosition3.DuplicateVector( vecLocation3 );
vCPPosition4.DuplicateVector( vecLocation4 );
int nCtr = pParticles->m_nPaddedActiveParticles;
do
{
FourVectors vLighting = vScale;
vLighting *= *pInitialColor;
FourVectors vNormal = *pXYZ;
vNormal -= vCPPosition1;
vNormal.VectorNormalizeFast();
LightNode1.ComputeLightAtPoints( *pXYZ, vNormal, vLighting, m_bUseHLambert );
vNormal = *pXYZ;
vNormal -= vCPPosition2;
vNormal.VectorNormalizeFast();
LightNode2.ComputeLightAtPoints( *pXYZ, vNormal, vLighting, m_bUseHLambert );
vNormal = *pXYZ;
vNormal -= vCPPosition3;
vNormal.VectorNormalizeFast();
LightNode3.ComputeLightAtPoints( *pXYZ, vNormal, vLighting, m_bUseHLambert );
vNormal = *pXYZ;
vNormal -= vCPPosition4;
vNormal.VectorNormalizeFast();
LightNode4.ComputeLightAtPoints( *pXYZ, vNormal, vLighting, m_bUseHLambert );
if ( m_bClampLowerRange )
{
FourVectors vInitialClamp = *pInitialColor;
vLighting.x = MaxSIMD( vLighting.x, vInitialClamp.x );
vLighting.y = MaxSIMD( vLighting.y, vInitialClamp.y );
vLighting.z = MaxSIMD( vLighting.z, vInitialClamp.z );
}
else
{
vLighting.x = MaxSIMD( vLighting.x, Four_Zeros );
vLighting.y = MaxSIMD( vLighting.y, Four_Zeros );
vLighting.z = MaxSIMD( vLighting.z, Four_Zeros );
}
if ( m_bClampUpperRange )
{
FourVectors vInitialClamp = *pInitialColor;
vLighting.x = MinSIMD( vLighting.x, vInitialClamp.x );
vLighting.y = MinSIMD( vLighting.y, vInitialClamp.y );
vLighting.z = MinSIMD( vLighting.z, vInitialClamp.z );
}
else
{
vLighting.x = MinSIMD( vLighting.x, Four_Ones );
vLighting.y = MinSIMD( vLighting.y, Four_Ones );
vLighting.z = MinSIMD( vLighting.z, Four_Ones );
}
*pColor = vLighting;
++pColor;
++pXYZ;
++pInitialColor;
} while (--nCtr);
}
else
{
int nCtr = pParticles->m_nPaddedActiveParticles;
do
{
FourVectors vLighting = vScale;
vLighting *= *pInitialColor;
LightNode1.ComputeNonincidenceLightAtPoints( *pXYZ, vLighting );
LightNode2.ComputeNonincidenceLightAtPoints( *pXYZ, vLighting );
LightNode3.ComputeNonincidenceLightAtPoints( *pXYZ, vLighting );
LightNode4.ComputeNonincidenceLightAtPoints( *pXYZ, vLighting );
if ( m_bClampLowerRange )
{
FourVectors vInitialClamp = *pInitialColor;
vLighting.x = MaxSIMD( vLighting.x, vInitialClamp.x );
vLighting.y = MaxSIMD( vLighting.y, vInitialClamp.y );
vLighting.z = MaxSIMD( vLighting.z, vInitialClamp.z );
}
else
{
vLighting.x = MaxSIMD( vLighting.x, Four_Zeros );
vLighting.y = MaxSIMD( vLighting.y, Four_Zeros );
vLighting.z = MaxSIMD( vLighting.z, Four_Zeros );
}
if ( m_bClampUpperRange )
{
FourVectors vInitialClamp = *pInitialColor;
vLighting.x = MinSIMD( vLighting.x, vInitialClamp.x );
vLighting.y = MinSIMD( vLighting.y, vInitialClamp.y );
vLighting.z = MinSIMD( vLighting.z, vInitialClamp.z );
}
else
{
vLighting.x = MinSIMD( vLighting.x, Four_Ones );
vLighting.y = MinSIMD( vLighting.y, Four_Ones );
vLighting.z = MinSIMD( vLighting.z, Four_Ones );
}
*pColor = vLighting;
++pColor;
++pXYZ;
++pInitialColor;
} while (--nCtr);
}
};
//-----------------------------------------------------------------------------
// Render visualization
//-----------------------------------------------------------------------------
void C_OP_ControlpointLight::Render( CParticleCollection *pParticles ) const
{
Vector vecOrigin1 = pParticles->GetControlPointAtCurrentTime( m_nControlPoint1 );
vecOrigin1 += m_vecCPOffset1;
Vector vecOrigin2 = pParticles->GetControlPointAtCurrentTime( m_nControlPoint2 );
vecOrigin2 += m_vecCPOffset2;
Vector vecOrigin3 = pParticles->GetControlPointAtCurrentTime( m_nControlPoint3 );
vecOrigin3 += m_vecCPOffset3;
Vector vecOrigin4 = pParticles->GetControlPointAtCurrentTime( m_nControlPoint4 );
vecOrigin4 += m_vecCPOffset4;
Color LightColor1Outer;
LightColor1Outer[0] = m_LightColor1[0] / 2.0f;
LightColor1Outer[1] = m_LightColor1[1] / 2.0f;
LightColor1Outer[2] = m_LightColor1[2] / 2.0f;
LightColor1Outer[3] = 255;
Color LightColor2Outer;
LightColor2Outer[0] = m_LightColor2[0] / 2.0f;
LightColor2Outer[1] = m_LightColor2[1] / 2.0f;
LightColor2Outer[2] = m_LightColor2[2] / 2.0f;
LightColor2Outer[3] = 255;
Color LightColor3Outer;
LightColor3Outer[0] = m_LightColor3[0] / 2.0f;
LightColor3Outer[1] = m_LightColor3[1] / 2.0f;
LightColor3Outer[2] = m_LightColor3[2] / 2.0f;
LightColor3Outer[3] = 255;
Color LightColor4Outer;
LightColor4Outer[0] = m_LightColor4[0] / 2.0f;
LightColor4Outer[1] = m_LightColor4[1] / 2.0f;
LightColor4Outer[2] = m_LightColor4[2] / 2.0f;
LightColor4Outer[3] = 255;
if ( m_bLightActive1 )
{
RenderWireframeSphere( vecOrigin1, m_LightFiftyDist1, 16, 8, m_LightColor1, false );
RenderWireframeSphere( vecOrigin1, m_LightZeroDist1, 16, 8, LightColor1Outer, false );
}
if ( m_bLightActive2 )
{
RenderWireframeSphere( vecOrigin2, m_LightFiftyDist2, 16, 8, m_LightColor2, false );
RenderWireframeSphere( vecOrigin2, m_LightZeroDist2, 16, 8, LightColor2Outer, false );
}
if ( m_bLightActive3 )
{
RenderWireframeSphere( vecOrigin3, m_LightFiftyDist3, 16, 8, m_LightColor3, false );
RenderWireframeSphere( vecOrigin3, m_LightZeroDist3, 16, 8, LightColor3Outer, false );
}
if ( m_bLightActive4 )
{
RenderWireframeSphere( vecOrigin4, m_LightFiftyDist4, 16, 8, m_LightColor4, false );
RenderWireframeSphere( vecOrigin4, m_LightZeroDist4, 16, 8, LightColor4Outer, false );
}
}
// set child controlpoints - copy the positions of our particles to the control points of a child
class C_OP_SetChildControlPoints : public CParticleOperatorInstance
{
DECLARE_PARTICLE_OPERATOR( C_OP_SetChildControlPoints );
int m_nChildGroupID;
int m_nFirstControlPoint;
int m_nNumControlPoints;
int m_nFirstSourcePoint;
uint32 GetWrittenAttributes( void ) const
{
return 0;
}
uint32 GetReadAttributes( void ) const
{
return PARTICLE_ATTRIBUTE_XYZ;
}
virtual void Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const;
};
DEFINE_PARTICLE_OPERATOR( C_OP_SetChildControlPoints, "Set child control points from particle positions", OPERATOR_GENERIC );
BEGIN_PARTICLE_OPERATOR_UNPACK( C_OP_SetChildControlPoints )
DMXELEMENT_UNPACK_FIELD( "Group ID to affect", "0", int, m_nChildGroupID )
DMXELEMENT_UNPACK_FIELD( "First control point to set", "0", int, m_nFirstControlPoint )
DMXELEMENT_UNPACK_FIELD( "# of control points to set", "1", int, m_nNumControlPoints )
DMXELEMENT_UNPACK_FIELD( "first particle to copy", "0", int, m_nFirstSourcePoint )
END_PARTICLE_OPERATOR_UNPACK( C_OP_SetChildControlPoints )
void C_OP_SetChildControlPoints::Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const
{
int nFirst=max(0, min( MAX_PARTICLE_CONTROL_POINTS-1, m_nFirstControlPoint ) );
int nToSet=min( pParticles->m_nActiveParticles-m_nFirstSourcePoint, m_nNumControlPoints );
nToSet=min( nToSet, MAX_PARTICLE_CONTROL_POINTS-nFirst );
if ( nToSet )
{
for( CParticleCollection *pChild = pParticles->m_Children.m_pHead; pChild; pChild = pChild->m_pNext )
{
if ( pChild->GetGroupID() == m_nChildGroupID )
{
for( int p=0; p < nToSet; p++ )
{
const float *pXYZ = pParticles->GetFloatAttributePtr(
PARTICLE_ATTRIBUTE_XYZ, p + m_nFirstSourcePoint );
Vector cPnt( pXYZ[0], pXYZ[4], pXYZ[8] );
pChild->SetControlPoint( p+nFirst, cPnt );
}
}
}
}
}
//-----------------------------------------------------------------------------
// Set Control Point Positions
//-----------------------------------------------------------------------------
class C_OP_SetControlPointPositions : public CParticleOperatorInstance
{
DECLARE_PARTICLE_OPERATOR( C_OP_SetControlPointPositions );
bool m_bUseWorldLocation;
int m_nCP1, m_nCP1Parent;
int m_nCP2, m_nCP2Parent;
int m_nCP3, m_nCP3Parent;
int m_nCP4, m_nCP4Parent;
Vector m_vecCP1Pos, m_vecCP2Pos, m_vecCP3Pos, m_vecCP4Pos;
int m_nHeadLocation;
uint32 GetWrittenAttributes( void ) const
{
return 0;
}
uint32 GetReadAttributes( void ) const
{
return 0;
}
bool ShouldRunBeforeEmitters( void ) const
{
return true;
}
virtual void Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const;
};
DEFINE_PARTICLE_OPERATOR( C_OP_SetControlPointPositions, "Set Control Point Positions", OPERATOR_GENERIC );
BEGIN_PARTICLE_OPERATOR_UNPACK( C_OP_SetControlPointPositions )
DMXELEMENT_UNPACK_FIELD( "First Control Point Number", "1", int, m_nCP1 )
DMXELEMENT_UNPACK_FIELD( "First Control Point Parent", "0", int, m_nCP1Parent )
DMXELEMENT_UNPACK_FIELD( "First Control Point Location", "128 0 0", Vector, m_vecCP1Pos )
DMXELEMENT_UNPACK_FIELD( "Second Control Point Number", "2", int, m_nCP2 )
DMXELEMENT_UNPACK_FIELD( "Second Control Point Parent", "0", int, m_nCP2Parent )
DMXELEMENT_UNPACK_FIELD( "Second Control Point Location", "0 128 0", Vector, m_vecCP2Pos )
DMXELEMENT_UNPACK_FIELD( "Third Control Point Number", "3", int, m_nCP3 )
DMXELEMENT_UNPACK_FIELD( "Third Control Point Parent", "0", int, m_nCP3Parent )
DMXELEMENT_UNPACK_FIELD( "Third Control Point Location", "-128 0 0", Vector, m_vecCP3Pos )
DMXELEMENT_UNPACK_FIELD( "Fourth Control Point Number", "4", int, m_nCP4 )
DMXELEMENT_UNPACK_FIELD( "Fourth Control Point Parent", "0", int, m_nCP4Parent )
DMXELEMENT_UNPACK_FIELD( "Fourth Control Point Location", "0 -128 0", Vector, m_vecCP4Pos )
DMXELEMENT_UNPACK_FIELD( "Set positions in world space", "0", bool, m_bUseWorldLocation )
DMXELEMENT_UNPACK_FIELD( "Control Point to offset positions from", "0", int, m_nHeadLocation )
END_PARTICLE_OPERATOR_UNPACK( C_OP_SetControlPointPositions )
void C_OP_SetControlPointPositions::Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const
{
if ( !m_bUseWorldLocation )
{
Vector vecControlPoint = pParticles->GetControlPointAtCurrentTime( m_nHeadLocation );
matrix3x4_t mat;
pParticles->GetControlPointTransformAtTime( m_nHeadLocation, pParticles->m_flCurTime, &mat );
Vector vecTransformLocal = vec3_origin;
VectorTransform( m_vecCP1Pos, mat, vecTransformLocal );
pParticles->SetControlPoint( m_nCP1, vecTransformLocal );
pParticles->SetControlPointParent( m_nCP1, m_nCP1Parent );
VectorTransform( m_vecCP2Pos, mat, vecTransformLocal );
pParticles->SetControlPoint( m_nCP2, vecTransformLocal );
pParticles->SetControlPointParent( m_nCP2, m_nCP2Parent );
VectorTransform( m_vecCP3Pos, mat, vecTransformLocal );
pParticles->SetControlPoint( m_nCP3, vecTransformLocal );
pParticles->SetControlPointParent( m_nCP3, m_nCP3Parent );
VectorTransform( m_vecCP4Pos, mat, vecTransformLocal );
pParticles->SetControlPoint( m_nCP4, vecTransformLocal );
pParticles->SetControlPointParent( m_nCP4, m_nCP4Parent );
}
else
{
pParticles->SetControlPoint( m_nCP1, m_vecCP1Pos );
pParticles->SetControlPointParent( m_nCP1, m_nCP1Parent );
pParticles->SetControlPoint( m_nCP2, m_vecCP2Pos );
pParticles->SetControlPointParent( m_nCP2, m_nCP2Parent );
pParticles->SetControlPoint( m_nCP3, m_vecCP3Pos );
pParticles->SetControlPointParent( m_nCP3, m_nCP3Parent );
pParticles->SetControlPoint( m_nCP4, m_vecCP4Pos );
pParticles->SetControlPointParent( m_nCP4, m_nCP4Parent );
}
}
//-----------------------------------------------------------------------------
// Dampen Movement Relative to Control Point
// The closer a particle is the the assigned control point, the less
// it can move
//-----------------------------------------------------------------------------
class C_OP_DampenToCP : public CParticleOperatorInstance
{
DECLARE_PARTICLE_OPERATOR( C_OP_DampenToCP );
int m_nControlPointNumber;
float m_flRange, m_flScale;
uint32 GetWrittenAttributes( void ) const
{
return PARTICLE_ATTRIBUTE_XYZ_MASK | PARTICLE_ATTRIBUTE_PREV_XYZ_MASK;
}
uint32 GetReadAttributes( void ) const
{
return PARTICLE_ATTRIBUTE_CREATION_TIME_MASK | PARTICLE_ATTRIBUTE_LIFE_DURATION_MASK |
PARTICLE_ATTRIBUTE_PARTICLE_ID_MASK;
}
virtual uint64 GetReadControlPointMask() const
{
return ( 1ULL << m_nControlPointNumber );
}
void InitParams( CParticleSystemDefinition *pDef, CDmxElement *pElement )
{
m_nControlPointNumber = max( 0, min( MAX_PARTICLE_CONTROL_POINTS-1, m_nControlPointNumber ) );
}
virtual void Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const;
};
DEFINE_PARTICLE_OPERATOR( C_OP_DampenToCP , "Movement Dampen Relative to Control Point", OPERATOR_GENERIC );
BEGIN_PARTICLE_OPERATOR_UNPACK( C_OP_DampenToCP )
DMXELEMENT_UNPACK_FIELD( "control_point_number", "0", int, m_nControlPointNumber )
DMXELEMENT_UNPACK_FIELD( "falloff range", "100", float, m_flRange )
DMXELEMENT_UNPACK_FIELD( "dampen scale", "1", float, m_flScale )
END_PARTICLE_OPERATOR_UNPACK( C_OP_DampenToCP )
void C_OP_DampenToCP::Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const
{
if ( m_flRange <= 0.0f )
return;
Vector vecControlPoint = pParticles->GetControlPointAtCurrentTime( m_nControlPointNumber );
// FIXME: SSE-ize
for ( int i = 0; i < pParticles->m_nActiveParticles; ++i )
{
float *xyz = pParticles->GetFloatAttributePtrForWrite( PARTICLE_ATTRIBUTE_XYZ, i );
float *xyz_prev = pParticles->GetFloatAttributePtrForWrite( PARTICLE_ATTRIBUTE_PREV_XYZ, i );
Vector vecParticlePosition, vecParticlePosition_prev, vParticleDelta ;
SetVectorFromAttribute( vecParticlePosition, xyz );
SetVectorFromAttribute( vecParticlePosition_prev, xyz_prev );
Vector ofs;
ofs = vecParticlePosition - vecControlPoint;
float flDistance = ofs.Length();
float flDampenAmount;
if ( flDistance > m_flRange )
{
continue;
}
else
{
flDampenAmount = flDistance / m_flRange;
flDampenAmount = pow( flDampenAmount, m_flScale);
}
vParticleDelta = vecParticlePosition - vecParticlePosition_prev;
Vector vParticleDampened = vParticleDelta * flDampenAmount;
vecParticlePosition = vecParticlePosition_prev + vParticleDampened;
Vector vecParticlePositionOrg;
SetVectorFromAttribute( vecParticlePositionOrg, xyz );
VectorLerp (vecParticlePositionOrg, vecParticlePosition, flStrength, vecParticlePosition );
SetVectorAttribute( xyz, vecParticlePosition );
}
};
//-----------------------------------------------------------------------------
// Distance Between CP Operator
//-----------------------------------------------------------------------------
class C_OP_DistanceBetweenCPs : public CParticleOperatorInstance
{
DECLARE_PARTICLE_OPERATOR( C_OP_DistanceBetweenCPs );
uint32 GetWrittenAttributes( void ) const
{
return 1 << m_nFieldOutput;
}
uint32 GetReadAttributes( void ) const
{
return 0;
}
uint32 GetReadInitialAttributes( void ) const
{
return 1 << m_nFieldOutput;
}
virtual uint64 GetReadControlPointMask() const
{
return ( 1ULL << m_nStartCP ) | ( 1ULL << m_nEndCP );
}
void InitParams( CParticleSystemDefinition *pDef, CDmxElement *pElement )
{
m_nCollisionGroupNumber = g_pParticleSystemMgr->Query()->GetCollisionGroupFromName( m_CollisionGroupName );
m_nStartCP = max( 0, min( MAX_PARTICLE_CONTROL_POINTS-1, m_nStartCP ) );
m_nEndCP = max( 0, min( MAX_PARTICLE_CONTROL_POINTS-1, m_nEndCP ) );
}
virtual void Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const;
int m_nFieldOutput;
float m_flInputMin;
float m_flInputMax;
float m_flOutputMin;
float m_flOutputMax;
int m_nStartCP;
int m_nEndCP;
bool m_bLOS;
char m_CollisionGroupName[128];
int m_nCollisionGroupNumber;
float m_flMaxTraceLength;
float m_flLOSScale;
bool m_bScaleInitialRange;
};
DEFINE_PARTICLE_OPERATOR( C_OP_DistanceBetweenCPs, "Remap Distance Between Two Control Points to Scalar", OPERATOR_GENERIC );
BEGIN_PARTICLE_OPERATOR_UNPACK( C_OP_DistanceBetweenCPs )
DMXELEMENT_UNPACK_FIELD( "distance minimum","0", float, m_flInputMin )
DMXELEMENT_UNPACK_FIELD( "distance maximum","128", float, m_flInputMax )
DMXELEMENT_UNPACK_FIELD_USERDATA( "output field", "3", int, m_nFieldOutput, "intchoice particlefield_scalar" )
DMXELEMENT_UNPACK_FIELD( "output minimum","0", float, m_flOutputMin )
DMXELEMENT_UNPACK_FIELD( "output maximum","1", float, m_flOutputMax )
DMXELEMENT_UNPACK_FIELD( "starting control point","0", int, m_nStartCP )
DMXELEMENT_UNPACK_FIELD( "ending control point","1", int, m_nEndCP )
DMXELEMENT_UNPACK_FIELD( "ensure line of sight","0", bool, m_bLOS )
DMXELEMENT_UNPACK_FIELD_STRING( "LOS collision group", "NONE", m_CollisionGroupName )
DMXELEMENT_UNPACK_FIELD( "Maximum Trace Length", "-1", float, m_flMaxTraceLength )
DMXELEMENT_UNPACK_FIELD( "LOS Failure Scalar", "0", float, m_flLOSScale )
DMXELEMENT_UNPACK_FIELD( "output is scalar of initial random range","0", bool, m_bScaleInitialRange )
END_PARTICLE_OPERATOR_UNPACK( C_OP_DistanceBetweenCPs )
void C_OP_DistanceBetweenCPs::Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const
{
// clamp the result to 0 and 1 if it's alpha
float flMin=m_flOutputMin;
float flMax=m_flOutputMax;
if ( ATTRIBUTES_WHICH_ARE_0_TO_1 & ( 1 << m_nFieldOutput ) )
{
flMin = clamp(m_flOutputMin, 0.0f, 1.0f );
flMax = clamp(m_flOutputMax, 0.0f, 1.0f );
}
Vector vecControlPoint1 = pParticles->GetControlPointAtCurrentTime( m_nStartCP );
Vector vecControlPoint2 = pParticles->GetControlPointAtCurrentTime( m_nEndCP );
Vector vecDelta = vecControlPoint1 - vecControlPoint2;
float flDistance = vecDelta.Length();
if ( m_bLOS )
{
Vector vecEndPoint = vecControlPoint2;
if ( m_flMaxTraceLength != -1.0f && m_flMaxTraceLength < flDistance )
{
VectorNormalize(vecEndPoint);
vecEndPoint *= m_flMaxTraceLength;
vecEndPoint += vecControlPoint1;
}
CBaseTrace tr;
g_pParticleSystemMgr->Query()->TraceLine( vecControlPoint1, vecEndPoint, MASK_OPAQUE_AND_NPCS, NULL, m_nCollisionGroupNumber, &tr );
if (tr.fraction != 1.0f)
{
flDistance *= tr.fraction * m_flLOSScale;
}
}
// FIXME: SSE-ize
for ( int i = 0; i < pParticles->m_nActiveParticles; ++i )
{
float flOutput = RemapValClamped( flDistance, m_flInputMin, m_flInputMax, flMin, flMax );
if ( m_bScaleInitialRange )
{
const float *pInitialOutput = pParticles->GetInitialFloatAttributePtr( m_nFieldOutput, i );
flOutput = *pInitialOutput * flOutput;
}
float *pOutput = pParticles->GetFloatAttributePtrForWrite( m_nFieldOutput, i );
*pOutput = Lerp (flStrength, *pOutput, flOutput);
}
}
//-----------------------------------------------------------------------------
// Distance to CP Operator
//-----------------------------------------------------------------------------
class C_OP_DistanceToCP : public CParticleOperatorInstance
{
DECLARE_PARTICLE_OPERATOR( C_OP_DistanceToCP );
uint32 GetWrittenAttributes( void ) const
{
return 1 << m_nFieldOutput;
}
uint32 GetReadAttributes( void ) const
{
return PARTICLE_ATTRIBUTE_XYZ_MASK;
}
uint32 GetReadInitialAttributes( void ) const
{
return 1 << m_nFieldOutput;
}
virtual uint64 GetReadControlPointMask() const
{
return ( 1ULL << m_nStartCP ) | ( 1ULL << m_nEndCP );
}
void InitParams( CParticleSystemDefinition *pDef, CDmxElement *pElement )
{
m_nCollisionGroupNumber = g_pParticleSystemMgr->Query()->GetCollisionGroupFromName( m_CollisionGroupName );
m_nStartCP = max( 0, min( MAX_PARTICLE_CONTROL_POINTS-1, m_nStartCP ) );
m_nEndCP = max( 0, min( MAX_PARTICLE_CONTROL_POINTS-1, m_nEndCP ) );
}
virtual void Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const;
int m_nFieldOutput;
float m_flInputMin;
float m_flInputMax;
float m_flOutputMin;
float m_flOutputMax;
int m_nStartCP;
int m_nEndCP;
bool m_bLOS;
char m_CollisionGroupName[128];
int m_nCollisionGroupNumber;
float m_flMaxTraceLength;
float m_flLOSScale;
bool m_bScaleInitialRange;
bool m_bActiveRange;
};
DEFINE_PARTICLE_OPERATOR( C_OP_DistanceToCP, "Remap Distance to Control Point to Scalar", OPERATOR_GENERIC );
BEGIN_PARTICLE_OPERATOR_UNPACK( C_OP_DistanceToCP )
DMXELEMENT_UNPACK_FIELD( "distance minimum","0", float, m_flInputMin )
DMXELEMENT_UNPACK_FIELD( "distance maximum","128", float, m_flInputMax )
DMXELEMENT_UNPACK_FIELD_USERDATA( "output field", "3", int, m_nFieldOutput, "intchoice particlefield_scalar" )
DMXELEMENT_UNPACK_FIELD( "output minimum","0", float, m_flOutputMin )
DMXELEMENT_UNPACK_FIELD( "output maximum","1", float, m_flOutputMax )
DMXELEMENT_UNPACK_FIELD( "control point","0", int, m_nStartCP )
DMXELEMENT_UNPACK_FIELD( "ensure line of sight","0", bool, m_bLOS )
DMXELEMENT_UNPACK_FIELD_STRING( "LOS collision group", "NONE", m_CollisionGroupName )
DMXELEMENT_UNPACK_FIELD( "Maximum Trace Length", "-1", float, m_flMaxTraceLength )
DMXELEMENT_UNPACK_FIELD( "LOS Failure Scalar", "0", float, m_flLOSScale )
DMXELEMENT_UNPACK_FIELD( "output is scalar of initial random range","0", bool, m_bScaleInitialRange )
DMXELEMENT_UNPACK_FIELD( "only active within specified distance","0", bool, m_bActiveRange )
END_PARTICLE_OPERATOR_UNPACK( C_OP_DistanceToCP )
void C_OP_DistanceToCP::Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const
{
// clamp the result to 0 and 1 if it's alpha
float flMin=m_flOutputMin;
float flMax=m_flOutputMax;
if ( ATTRIBUTES_WHICH_ARE_0_TO_1 & ( 1 << m_nFieldOutput ) )
{
flMin = clamp(m_flOutputMin, 0.0f, 1.0f );
flMax = clamp(m_flOutputMax, 0.0f, 1.0f );
}
Vector vecControlPoint1 = pParticles->GetControlPointAtCurrentTime( m_nStartCP );
// FIXME: SSE-ize
for ( int i = 0; i < pParticles->m_nActiveParticles; ++i )
{
Vector vecPosition2;
const float *pXYZ = pParticles->GetFloatAttributePtr(PARTICLE_ATTRIBUTE_XYZ, i );
vecPosition2 = Vector(pXYZ[0], pXYZ[4], pXYZ[8]);
Vector vecDelta = vecControlPoint1 - vecPosition2;
float flDistance = vecDelta.Length();
if ( m_bActiveRange && ( flDistance < m_flInputMin || flDistance > m_flInputMax ) )
{
continue;
}
if ( m_bLOS )
{
Vector vecEndPoint = vecPosition2;
if ( m_flMaxTraceLength != -1.0f && m_flMaxTraceLength < flDistance )
{
VectorNormalize(vecEndPoint);
vecEndPoint *= m_flMaxTraceLength;
vecEndPoint += vecControlPoint1;
}
CBaseTrace tr;
g_pParticleSystemMgr->Query()->TraceLine( vecControlPoint1, vecEndPoint, MASK_OPAQUE_AND_NPCS, NULL , m_nCollisionGroupNumber, &tr );
if (tr.fraction != 1.0f)
{
flDistance *= tr.fraction * m_flLOSScale;
}
}
float flOutput = RemapValClamped( flDistance, m_flInputMin, m_flInputMax, flMin, flMax );
if ( m_bScaleInitialRange )
{
const float *pInitialOutput = pParticles->GetInitialFloatAttributePtr( m_nFieldOutput, i );
flOutput = *pInitialOutput * flOutput;
}
float *pOutput = pParticles->GetFloatAttributePtrForWrite( m_nFieldOutput, i );
*pOutput = Lerp (flStrength, *pOutput, flOutput);
//float *pOutput = pParticles->GetFloatAttributePtrForWrite( m_nFieldOutput, i );
//float flOutput = RemapValClamped( flDistance, m_flInputMin, m_flInputMax, flMin, flMax );
//*pOutput = Lerp (flStrength, *pOutput, flOutput);
}
}
//-----------------------------------------------------------------------------
// Assign CP to Player
//-----------------------------------------------------------------------------
class C_OP_SetControlPointToPlayer : public CParticleOperatorInstance
{
DECLARE_PARTICLE_OPERATOR( C_OP_SetControlPointToPlayer );
int m_nCP1;
Vector m_vecCP1Pos;
uint32 GetWrittenAttributes( void ) const
{
return 0;
}
uint32 GetReadAttributes( void ) const
{
return 0;
}
void InitParams( CParticleSystemDefinition *pDef, CDmxElement *pElement )
{
m_nCP1 = max( 0, min( MAX_PARTICLE_CONTROL_POINTS-1, m_nCP1 ) );
}
bool ShouldRunBeforeEmitters( void ) const
{
return true;
}
virtual void Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const;
};
DEFINE_PARTICLE_OPERATOR( C_OP_SetControlPointToPlayer, "Set Control Point To Player", OPERATOR_GENERIC );
BEGIN_PARTICLE_OPERATOR_UNPACK( C_OP_SetControlPointToPlayer )
DMXELEMENT_UNPACK_FIELD( "Control Point Number", "1", int, m_nCP1 )
DMXELEMENT_UNPACK_FIELD( "Control Point Offset", "0 0 0", Vector, m_vecCP1Pos )
END_PARTICLE_OPERATOR_UNPACK( C_OP_SetControlPointToPlayer )
void C_OP_SetControlPointToPlayer::Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const
{
Vector vecClientPos =g_pParticleSystemMgr->Query()->GetLocalPlayerPos();
pParticles->SetControlPoint( m_nCP1, m_vecCP1Pos + vecClientPos );
Vector vecForward;
Vector vecRight;
Vector vecUp;
g_pParticleSystemMgr->Query()->GetLocalPlayerEyeVectors( &vecForward, &vecRight, &vecUp);
pParticles->SetControlPointOrientation( m_nCP1, vecForward, vecRight, vecUp );
}
//-------------------------
// Emits particles from particles
//NOT FINISHED
//-------------------------
class C_OP_PerParticleEmitter : public CParticleOperatorInstance
{
DECLARE_PARTICLE_OPERATOR( C_OP_PerParticleEmitter );
struct C_OP_PerParticleEmitterContext_t
{
float m_flTotalActualParticlesSoFar;
int m_nTotalEmittedSoFar;
bool m_bStoppedEmission;
};
int m_nChildGroupID;
bool m_bInheritVelocity;
float m_flEmitRate;
float m_flVelocityScale;
float m_flStartTime;
float m_flEmissionDuration;
uint32 GetWrittenAttributes( void ) const
{
return PARTICLE_ATTRIBUTE_CREATION_TIME;
}
uint32 GetReadAttributes( void ) const
{
return PARTICLE_ATTRIBUTE_XYZ | PARTICLE_ATTRIBUTE_PREV_XYZ;
}
void InitParams( CParticleSystemDefinition *pDef, CDmxElement *pElement )
{
if ( m_flEmitRate < 0.0f )
{
m_flEmitRate = 0.0f;
}
if ( m_flEmissionDuration < 0.0f )
{
m_flEmissionDuration = 0.0f;
}
}
inline bool IsInfinitelyEmitting() const
{
return ( m_flEmissionDuration == 0.0f );
}
virtual bool MayCreateMoreParticles( CParticleCollection *pParticles, void *pContext ) const
{
C_OP_PerParticleEmitterContext_t *pCtx = reinterpret_cast<C_OP_PerParticleEmitterContext_t *>( pContext );
if ( pCtx->m_bStoppedEmission )
return false;
if ( m_flEmitRate <= 0.0f )
return false;
if ( m_flEmissionDuration != 0.0f && ( pParticles->m_flCurTime - pParticles->m_flDt ) > ( m_flStartTime + m_flEmissionDuration ) )
return false;
return true;
}
virtual void InitializeContextData( CParticleCollection *pParticles, void *pContext ) const
{
C_OP_PerParticleEmitterContext_t *pCtx=reinterpret_cast<C_OP_PerParticleEmitterContext_t *>( pContext );
pCtx->m_flTotalActualParticlesSoFar = 0.0f;
pCtx->m_nTotalEmittedSoFar = 0;
pCtx->m_bStoppedEmission = false;
}
virtual void Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const;
};
DEFINE_PARTICLE_OPERATOR( C_OP_PerParticleEmitter, "Per Particle Emitter", OPERATOR_GENERIC );
BEGIN_PARTICLE_OPERATOR_UNPACK( C_OP_PerParticleEmitter )
DMXELEMENT_UNPACK_FIELD( "Group ID to affect", "1", int, m_nChildGroupID )
DMXELEMENT_UNPACK_FIELD( "Inherit Velocity", "0", int, m_bInheritVelocity )
DMXELEMENT_UNPACK_FIELD( "Emission Rate", "100", float, m_flEmitRate )
DMXELEMENT_UNPACK_FIELD( "Velocity Scale", "0", int, m_flVelocityScale )
DMXELEMENT_UNPACK_FIELD( "Emission Start Time", "0", float, m_flStartTime )
DMXELEMENT_UNPACK_FIELD( "Emission Duration", "0", float, m_flEmissionDuration )
END_PARTICLE_OPERATOR_UNPACK( C_OP_PerParticleEmitter )
void C_OP_PerParticleEmitter::Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const
{
for( CParticleCollection *pChild = pParticles->m_Children.m_pHead; pChild; pChild = pChild->m_pNext )
{
if ( pChild->GetGroupID() == m_nChildGroupID )
{
for ( int i = 0; i < pParticles->m_nActiveParticles; ++i )
{
C_OP_PerParticleEmitterContext_t *pCtx=reinterpret_cast<C_OP_PerParticleEmitterContext_t *>( pContext );
const float *pXYZ = pParticles->GetFloatAttributePtr(
PARTICLE_ATTRIBUTE_XYZ, i );
const float *pXYZ_Prev = pParticles->GetFloatAttributePtr(
PARTICLE_ATTRIBUTE_PREV_XYZ, i );
Vector vecParticlePosition, vecParticlePosition_prev, vParticleDelta ;
vecParticlePosition = Vector ( pXYZ[0], pXYZ[4], pXYZ[8] );
vecParticlePosition_prev = Vector ( pXYZ_Prev[0], pXYZ_Prev[4], pXYZ_Prev[8] );
vParticleDelta = vecParticlePosition - vecParticlePosition_prev;
float flEmissionRate = m_flEmitRate * flStrength;
if ( m_flVelocityScale != 0.0f )
{
float flVelocity = vParticleDelta.Length();
flEmissionRate *= flVelocity * m_flVelocityScale * pParticles->m_flDt;
}
if ( flEmissionRate == 0.0f )
continue;
if ( !C_OP_PerParticleEmitter::MayCreateMoreParticles( pChild, pContext ) )
continue;
Assert( flEmissionRate != 0.0f );
// determine our previous and current draw times and clamp them to start time and emission duration
float flPrevDrawTime = pParticles->m_flCurTime - pParticles->m_flDt;
float flCurrDrawTime = pParticles->m_flCurTime;
if ( !IsInfinitelyEmitting() )
{
if ( flPrevDrawTime < m_flStartTime )
{
flPrevDrawTime = m_flStartTime;
}
if ( flCurrDrawTime > m_flStartTime + m_flEmissionDuration )
{
flCurrDrawTime = m_flStartTime + m_flEmissionDuration;
}
}
float flDeltaTime = flCurrDrawTime - flPrevDrawTime;
//Calculate emission rate by delta time from last frame to determine number of particles to emit this frame as a fractional float
float flActualParticlesToEmit = flEmissionRate * flDeltaTime;
int nParticlesEmitted = pCtx->m_nTotalEmittedSoFar;
//Add emitted particle to float counter to allow for fractional emission
pCtx->m_flTotalActualParticlesSoFar += flActualParticlesToEmit;
//Floor float accumulated value and subtract whole int emitted so far from the result to determine total whole particles to emit this frame
int nParticlesToEmit = floor ( pCtx->m_flTotalActualParticlesSoFar ) - pCtx->m_nTotalEmittedSoFar;
//Add emitted particles to running int total.
pCtx->m_nTotalEmittedSoFar += nParticlesToEmit;
if ( nParticlesToEmit == 0 )
continue;
// We're only allowed to emit so many particles, though..
// If we run out of room, only emit the last N particles
int nActualParticlesToEmit = nParticlesToEmit;
int nAllowedParticlesToEmit = pChild->m_nMaxAllowedParticles - pParticles->m_nActiveParticles;
if ( nAllowedParticlesToEmit < nParticlesToEmit )
{
nActualParticlesToEmit = nAllowedParticlesToEmit;
}
if ( nActualParticlesToEmit == 0 )
continue;
int nStartParticle = pChild->m_nActiveParticles;
pChild->SetNActiveParticles( nActualParticlesToEmit + pChild->m_nActiveParticles );
float flTimeStampStep = ( flDeltaTime ) / ( nActualParticlesToEmit );
float flTimeStep = flPrevDrawTime + flTimeStampStep;
Vector vecMoveStampStep = vParticleDelta / nActualParticlesToEmit ;
Vector vecMoveStep = vecParticlePosition_prev + vecMoveStampStep ;
if ( nParticlesEmitted != pChild->m_nActiveParticles )
{
uint32 nInittedMask = ( PARTICLE_ATTRIBUTE_XYZ_MASK | PARTICLE_ATTRIBUTE_PREV_XYZ_MASK | PARTICLE_ATTRIBUTE_CREATION_TIME_MASK );
// init newly emitted particles
pChild->InitializeNewParticles( nParticlesEmitted, pChild->m_nActiveParticles - nParticlesEmitted, nInittedMask );
//CHECKSYSTEM( this );
}
// Set the particle creation time to the exact sub-frame particle emission time
// !! speed!! do sse init here
for( int j = nStartParticle; j < nStartParticle + nActualParticlesToEmit; j++ )
{
float *pTimeStamp = pChild->GetFloatAttributePtrForWrite( PARTICLE_ATTRIBUTE_CREATION_TIME, j );
flTimeStep = min( flTimeStep, flCurrDrawTime );
*pTimeStamp = flTimeStep;
flTimeStep += flTimeStampStep;
float *pXYZ_Child = pChild->GetFloatAttributePtrForWrite( PARTICLE_ATTRIBUTE_XYZ, j );
float *pXYZ_Prev_Child = pChild->GetFloatAttributePtrForWrite( PARTICLE_ATTRIBUTE_PREV_XYZ, j );
Vector vecChildXYZ;
SetVectorFromAttribute ( vecChildXYZ, pXYZ_Child);
vecChildXYZ = vecMoveStep;
SetVectorAttribute ( pXYZ_Child, vecChildXYZ);
vecMoveStep += vecMoveStampStep;
if ( m_bInheritVelocity )
{
*pXYZ_Prev_Child = *pXYZ_Prev;
}
else
{
*pXYZ_Prev_Child = *pXYZ_Child;
}
}
}
}
}
}
class C_OP_LockToBone : public CParticleOperatorInstance
{
DECLARE_PARTICLE_OPERATOR( C_OP_LockToBone );
int m_nControlPointNumber;
float m_flLifeTimeFadeStart;
float m_flLifeTimeFadeEnd;
uint32 GetWrittenAttributes( void ) const
{
return PARTICLE_ATTRIBUTE_XYZ_MASK | PARTICLE_ATTRIBUTE_PREV_XYZ_MASK;
}
uint32 GetReadAttributes( void ) const
{
int ret= PARTICLE_ATTRIBUTE_XYZ_MASK | PARTICLE_ATTRIBUTE_PREV_XYZ_MASK |
PARTICLE_ATTRIBUTE_HITBOX_RELATIVE_XYZ_MASK | PARTICLE_ATTRIBUTE_HITBOX_INDEX_MASK;
ret |= PARTICLE_ATTRIBUTE_CREATION_TIME_MASK;
return ret;
}
virtual uint64 GetReadControlPointMask() const
{
return ( 1ULL << m_nControlPointNumber );
}
void InitParams( CParticleSystemDefinition *pDef, CDmxElement *pElement )
{
m_nControlPointNumber = max( 0, min( MAX_PARTICLE_CONTROL_POINTS-1, m_nControlPointNumber ) );
}
virtual void Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const;
};
DEFINE_PARTICLE_OPERATOR( C_OP_LockToBone , "Movement Lock to Bone", OPERATOR_GENERIC );
BEGIN_PARTICLE_OPERATOR_UNPACK( C_OP_LockToBone )
DMXELEMENT_UNPACK_FIELD( "control_point_number", "0", int, m_nControlPointNumber )
DMXELEMENT_UNPACK_FIELD( "lifetime fade start", "0", float, m_flLifeTimeFadeStart )
DMXELEMENT_UNPACK_FIELD( "lifetime fade end", "0", float, m_flLifeTimeFadeEnd )
END_PARTICLE_OPERATOR_UNPACK( C_OP_LockToBone )
void C_OP_LockToBone::Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const
{
pParticles->UpdateHitBoxInfo( m_nControlPointNumber );
if ( pParticles->m_ControlPointHitBoxes[m_nControlPointNumber].CurAndPrevValid() )
{
float flAgeThreshold = m_flLifeTimeFadeEnd;
if ( flAgeThreshold <= 0.0 )
flAgeThreshold = 1.0e20;
float flIScale = 0.0;
if ( m_flLifeTimeFadeEnd > m_flLifeTimeFadeStart )
flIScale = 1.0/( m_flLifeTimeFadeEnd - m_flLifeTimeFadeStart );
for ( int i = 0; i < pParticles->m_nActiveParticles; ++i )
{
float *pXYZ = pParticles->GetFloatAttributePtrForWrite( PARTICLE_ATTRIBUTE_XYZ, i );
float *pPrevXYZ = pParticles->GetFloatAttributePtrForWrite( PARTICLE_ATTRIBUTE_PREV_XYZ, i );
const float *pUVW = pParticles->GetFloatAttributePtr( PARTICLE_ATTRIBUTE_HITBOX_RELATIVE_XYZ, i );
const int nBoxIndex = *pParticles->GetIntAttributePtr( PARTICLE_ATTRIBUTE_HITBOX_INDEX, i );
float const *pCreationTime = pParticles->GetFloatAttributePtr( PARTICLE_ATTRIBUTE_CREATION_TIME, i );
float flAge = pParticles->m_flCurTime -*pCreationTime;
if ( flAge < flAgeThreshold )
{
if (
( nBoxIndex < pParticles->m_ControlPointHitBoxes[m_nControlPointNumber].m_nNumHitBoxes ) &&
( nBoxIndex < pParticles->m_ControlPointHitBoxes[m_nControlPointNumber].m_nNumPrevHitBoxes ) &&
( nBoxIndex >= 0 )
)
{
Vector vecParticlePosition;
ModelHitBoxInfo_t const &hb = pParticles->m_ControlPointHitBoxes[m_nControlPointNumber].m_pHitBoxes[ nBoxIndex ];
vecParticlePosition.x = Lerp( pUVW[0], hb.m_vecBoxMins.x, hb.m_vecBoxMaxes.x );
vecParticlePosition.y = Lerp( pUVW[4], hb.m_vecBoxMins.y, hb.m_vecBoxMaxes.y );
vecParticlePosition.z = Lerp( pUVW[8], hb.m_vecBoxMins.z, hb.m_vecBoxMaxes.z );
Vector vecWorldPosition;
VectorTransform( vecParticlePosition, hb.m_Transform, vecWorldPosition );
Vector vecPrevParticlePosition;
ModelHitBoxInfo_t phb = pParticles->m_ControlPointHitBoxes[m_nControlPointNumber].m_pPrevBoxes[ nBoxIndex ];
vecPrevParticlePosition.x = Lerp( pUVW[0], phb.m_vecBoxMins.x, phb.m_vecBoxMaxes.x );
vecPrevParticlePosition.y = Lerp( pUVW[4], phb.m_vecBoxMins.y, phb.m_vecBoxMaxes.y );
vecPrevParticlePosition.z = Lerp( pUVW[8], phb.m_vecBoxMins.z, phb.m_vecBoxMaxes.z );
Vector vecPrevWorldPosition;
VectorTransform( vecPrevParticlePosition, phb.m_Transform, vecPrevWorldPosition );
Vector Delta = vecWorldPosition-vecPrevWorldPosition;
if ( flAge > m_flLifeTimeFadeStart )
Delta *= flStrength * ( 1.0- ( ( flAge - m_flLifeTimeFadeStart ) * flIScale ) );
Vector xyz;
SetVectorFromAttribute( xyz, pXYZ );
xyz += Delta;
SetVectorAttribute( pXYZ, xyz );
Vector prevxyz;
SetVectorFromAttribute( prevxyz, pPrevXYZ );
prevxyz += Delta;
SetVectorAttribute( pPrevXYZ, prevxyz );
}
}
}
}
};
//-----------------------------------------------------------------------------
// Plane Cull Operator - cull particles on the "wrong" side of a plane
//-----------------------------------------------------------------------------
class C_OP_PlaneCull : public CParticleOperatorInstance
{
int m_nPlaneControlPoint;
Vector m_vecPlaneDirection;
float m_flPlaneOffset;
DECLARE_PARTICLE_OPERATOR( C_OP_PlaneCull );
uint32 GetWrittenAttributes( void ) const
{
return 0;
}
uint32 GetReadAttributes( void ) const
{
return PARTICLE_ATTRIBUTE_XYZ_MASK;
}
virtual uint64 GetReadControlPointMask() const
{
return ( 1ULL << m_nPlaneControlPoint );
}
virtual void Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const;
};
DEFINE_PARTICLE_OPERATOR( C_OP_PlaneCull, "Cull when crossing plane", OPERATOR_GENERIC );
BEGIN_PARTICLE_OPERATOR_UNPACK( C_OP_PlaneCull )
DMXELEMENT_UNPACK_FIELD( "Control Point for point on plane", "0", int, m_nPlaneControlPoint )
DMXELEMENT_UNPACK_FIELD( "Cull plane offset", "0", float, m_flPlaneOffset )
DMXELEMENT_UNPACK_FIELD( "Plane Normal", "0 0 1", Vector, m_vecPlaneDirection )
END_PARTICLE_OPERATOR_UNPACK( C_OP_PlaneCull )
void C_OP_PlaneCull::Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const
{
C4VAttributeIterator pXYZ( PARTICLE_ATTRIBUTE_XYZ, pParticles );
int nLimit = pParticles->m_nPaddedActiveParticles << 2;
// setup vars
FourVectors v4N ;
v4N.DuplicateVector( m_vecPlaneDirection );
v4N.VectorNormalize();
FourVectors v4Pnt;
v4Pnt.DuplicateVector( pParticles->GetControlPointAtCurrentTime( m_nPlaneControlPoint ) );
FourVectors ofs = v4N;
ofs *= ReplicateX4( m_flPlaneOffset );
v4Pnt -= ofs;
for ( int i = 0; i < nLimit; i+= 4 )
{
FourVectors f4PlaneRel = (*pXYZ );
f4PlaneRel -= v4Pnt;
fltx4 fl4PlaneEq = ( f4PlaneRel * v4N );
if ( IsAnyNegative( fl4PlaneEq ) )
{
// not especially pretty - we need to kill some particles.
int nMask = TestSignSIMD( fl4PlaneEq );
if ( nMask & 1 )
pParticles->KillParticle( i );
if ( nMask & 2 )
pParticles->KillParticle( i + 1 );
if ( nMask & 4 )
pParticles->KillParticle( i + 2 );
if ( nMask & 8 )
pParticles->KillParticle( i + 3 );
}
++pXYZ;
}
}
//-----------------------------------------------------------------------------
// Model Cull Operator - cull particles inside or outside of a brush/animated model
//-----------------------------------------------------------------------------
class C_OP_ModelCull : public CParticleOperatorInstance
{
DECLARE_PARTICLE_OPERATOR( C_OP_ModelCull );
int m_nControlPointNumber;
bool m_bBoundBox;
bool m_bCullOutside;
uint32 GetWrittenAttributes( void ) const
{
return 0;
}
uint32 GetReadAttributes( void ) const
{
return PARTICLE_ATTRIBUTE_XYZ_MASK;
}
void InitParams( CParticleSystemDefinition *pDef, CDmxElement *pElement )
{
m_nControlPointNumber = max( 0, min( MAX_PARTICLE_CONTROL_POINTS-1, m_nControlPointNumber ) );
}
virtual void Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const;
};
DEFINE_PARTICLE_OPERATOR( C_OP_ModelCull , "Cull relative to model", OPERATOR_GENERIC );
BEGIN_PARTICLE_OPERATOR_UNPACK( C_OP_ModelCull )
DMXELEMENT_UNPACK_FIELD( "control_point_number", "0", int, m_nControlPointNumber )
DMXELEMENT_UNPACK_FIELD( "use only bounding box", "0", bool, m_bBoundBox )
DMXELEMENT_UNPACK_FIELD( "cull outside instead of inside", "0", bool, m_bCullOutside )
END_PARTICLE_OPERATOR_UNPACK( C_OP_ModelCull )
void C_OP_ModelCull::Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const
{
pParticles->UpdateHitBoxInfo( m_nControlPointNumber );
if ( pParticles->m_ControlPointHitBoxes[m_nControlPointNumber].CurAndPrevValid() )
{
for ( int i = 0; i < pParticles->m_nActiveParticles; ++i )
{
float *pXYZ = pParticles->GetFloatAttributePtrForWrite( PARTICLE_ATTRIBUTE_XYZ, i );
Vector vecParticlePosition;
SetVectorFromAttribute( vecParticlePosition, pXYZ );
bool bInside = g_pParticleSystemMgr->Query()->IsPointInControllingObjectHitBox( pParticles, m_nControlPointNumber, vecParticlePosition, m_bBoundBox );
if ( ( bInside && m_bCullOutside ) || ( !bInside && !m_bCullOutside ))
continue;
pParticles->KillParticle(i);
}
}
};
//-----------------------------------------------------------------------------
// Assign CP to Center
//-----------------------------------------------------------------------------
class C_OP_SetControlPointToCenter : public CParticleOperatorInstance
{
DECLARE_PARTICLE_OPERATOR( C_OP_SetControlPointToCenter );
int m_nCP1;
Vector m_vecCP1Pos;
uint32 GetWrittenAttributes( void ) const
{
return 0;
}
uint32 GetReadAttributes( void ) const
{
return 0;
}
void InitParams( CParticleSystemDefinition *pDef, CDmxElement *pElement )
{
m_nCP1 = max( 0, min( MAX_PARTICLE_CONTROL_POINTS-1, m_nCP1 ) );
}
bool ShouldRunBeforeEmitters( void ) const
{
return true;
}
virtual void Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const;
};
DEFINE_PARTICLE_OPERATOR( C_OP_SetControlPointToCenter, "Set Control Point To Particles' Center", OPERATOR_GENERIC );
BEGIN_PARTICLE_OPERATOR_UNPACK( C_OP_SetControlPointToCenter )
DMXELEMENT_UNPACK_FIELD( "Control Point Number to Set", "1", int, m_nCP1 )
DMXELEMENT_UNPACK_FIELD( "Center Offset", "0 0 0", Vector, m_vecCP1Pos )
END_PARTICLE_OPERATOR_UNPACK( C_OP_SetControlPointToCenter )
void C_OP_SetControlPointToCenter::Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const
{
Vector vecMinBounds;
Vector vecMaxBounds;
pParticles->GetBounds( &vecMinBounds, &vecMaxBounds );
Vector vecCenter = ( ( vecMinBounds + vecMaxBounds ) / 2 );
pParticles->SetControlPoint( m_nCP1, m_vecCP1Pos + vecCenter );
}
//-----------------------------------------------------------------------------
// Velocity Match a group of particles
//-----------------------------------------------------------------------------
class C_OP_VelocityMatchingForce : public CParticleOperatorInstance
{
DECLARE_PARTICLE_OPERATOR( C_OP_VelocityMatchingForce );
float m_flDirScale;
float m_flSpdScale;
int m_nCPBroadcast;
struct VelocityMatchingForceContext_t
{
Vector m_vecAvgVelocity;
float m_flAvgSpeed;
};
uint32 GetWrittenAttributes( void ) const
{
return PARTICLE_ATTRIBUTE_XYZ_MASK | PARTICLE_ATTRIBUTE_PREV_XYZ_MASK ;
}
uint32 GetReadAttributes( void ) const
{
return PARTICLE_ATTRIBUTE_XYZ_MASK | PARTICLE_ATTRIBUTE_PREV_XYZ_MASK ;
}
virtual void InitializeContextData( CParticleCollection *pParticles, void *pContext ) const
{
VelocityMatchingForceContext_t *pCtx = reinterpret_cast<VelocityMatchingForceContext_t *>( pContext );
pCtx->m_vecAvgVelocity = vec3_origin;
pCtx->m_flAvgSpeed = 0;
}
size_t GetRequiredContextBytes( void ) const
{
return sizeof( VelocityMatchingForceContext_t );
}
virtual void Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const;
};
DEFINE_PARTICLE_OPERATOR( C_OP_VelocityMatchingForce , "Movement Match Particle Velocities", OPERATOR_GENERIC );
BEGIN_PARTICLE_OPERATOR_UNPACK( C_OP_VelocityMatchingForce )
DMXELEMENT_UNPACK_FIELD( "Direction Matching Strength", "0.25", float, m_flDirScale )
DMXELEMENT_UNPACK_FIELD( "Speed Matching Strength", "0.25", float, m_flSpdScale )
DMXELEMENT_UNPACK_FIELD( "Control Point to Broadcast Speed and Direction To", "-1", int, m_nCPBroadcast )
END_PARTICLE_OPERATOR_UNPACK( C_OP_VelocityMatchingForce )
void C_OP_VelocityMatchingForce::Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const
{
VelocityMatchingForceContext_t *pCtx = reinterpret_cast<VelocityMatchingForceContext_t *>( pContext );
Vector vecVelocityAvg = vec3_origin;
float flAvgSpeed = 0;
// FIXME: SSE-ize
for ( int i = 0; i < pParticles->m_nActiveParticles; ++i )
{
float *xyz = pParticles->GetFloatAttributePtrForWrite( PARTICLE_ATTRIBUTE_XYZ, i );
float *xyz_prev = pParticles->GetFloatAttributePtrForWrite( PARTICLE_ATTRIBUTE_PREV_XYZ, i );
Vector vecXYZ;
Vector vecPXYZ;
SetVectorFromAttribute( vecXYZ, xyz );
SetVectorFromAttribute( vecPXYZ, xyz_prev );
Vector vecVelocityCur = ( ( vecXYZ - vecPXYZ ) / pParticles->m_flDt );
vecVelocityAvg += vecVelocityCur;
float flSpeed = vecVelocityCur.Length();
flAvgSpeed += flSpeed;
if ( pCtx->m_vecAvgVelocity != vec3_origin )
{
Vector vecScaledXYZ;
VectorNormalizeFast(vecVelocityCur);
VectorLerp( vecVelocityCur, pCtx->m_vecAvgVelocity, m_flDirScale, vecScaledXYZ );
VectorNormalizeFast(vecScaledXYZ);
flSpeed = Lerp ( m_flSpdScale, flSpeed, pCtx->m_flAvgSpeed );
vecScaledXYZ *= flSpeed;
vecScaledXYZ = ( ( vecScaledXYZ * pParticles->m_flDt ) + vecPXYZ );
SetVectorAttribute( xyz, vecScaledXYZ );
}
}
VectorNormalizeFast( vecVelocityAvg );
pCtx->m_vecAvgVelocity = vecVelocityAvg;
pCtx->m_flAvgSpeed = ( flAvgSpeed / pParticles->m_nActiveParticles );
if ( m_nCPBroadcast != -1 )
{
pParticles->SetControlPoint( m_nCPBroadcast, Vector ( pCtx->m_flAvgSpeed, pCtx->m_flAvgSpeed, pCtx->m_flAvgSpeed ) );
pParticles->SetControlPointForwardVector( m_nCPBroadcast, pCtx->m_vecAvgVelocity );
}
};
//-----------------------------------------------------------------------------
// Orient to heading
//-----------------------------------------------------------------------------
class C_OP_OrientTo2dDirection : public CParticleOperatorInstance
{
DECLARE_PARTICLE_OPERATOR( C_OP_OrientTo2dDirection );
float m_flRotOffset;
float m_flSpinStrength;
uint32 GetWrittenAttributes( void ) const
{
return PARTICLE_ATTRIBUTE_ROTATION_MASK;
}
uint32 GetReadAttributes( void ) const
{
return PARTICLE_ATTRIBUTE_XYZ_MASK | PARTICLE_ATTRIBUTE_PREV_XYZ_MASK ;
}
virtual void Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const;
};
DEFINE_PARTICLE_OPERATOR( C_OP_OrientTo2dDirection , "Rotation Orient to 2D Direction", OPERATOR_GENERIC );
BEGIN_PARTICLE_OPERATOR_UNPACK( C_OP_OrientTo2dDirection )
DMXELEMENT_UNPACK_FIELD( "Rotation Offset", "0", float, m_flRotOffset )
DMXELEMENT_UNPACK_FIELD( "Spin Strength", "1", float, m_flSpinStrength )
END_PARTICLE_OPERATOR_UNPACK( C_OP_OrientTo2dDirection )
void C_OP_OrientTo2dDirection::Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const
{
float flRotOffset = m_flRotOffset * ( M_PI / 180.0f );
// FIXME: SSE-ize
for ( int i = 0; i < pParticles->m_nActiveParticles; ++i )
{
const float *xyz = pParticles->GetFloatAttributePtr( PARTICLE_ATTRIBUTE_XYZ, i );
const float *xyz_prev = pParticles->GetFloatAttributePtr( PARTICLE_ATTRIBUTE_PREV_XYZ, i );
float *roll = pParticles->GetFloatAttributePtrForWrite( PARTICLE_ATTRIBUTE_ROTATION, i );
Vector vecXYZ;
Vector vecPXYZ;
vecXYZ.x = xyz[0];
vecXYZ.y = xyz[4];
vecXYZ.z = xyz[8];
vecPXYZ.x = xyz_prev[0];
vecPXYZ.y = xyz_prev[4];
vecPXYZ.z = xyz_prev[8];
Vector vecVelocityCur = ( vecXYZ - vecPXYZ );
vecVelocityCur.z = 0.0f;
VectorNormalizeFast ( vecVelocityCur );
float flCurRot = *roll;
float flVelRot = atan2(vecVelocityCur.y, vecVelocityCur.x ) + M_PI;
flVelRot += flRotOffset;
float flRotation = Lerp ( m_flSpinStrength, flCurRot, flVelRot );
*roll = flRotation;
}
};
//-----------------------------------------------------------------------------
// Orient relative to CP
//-----------------------------------------------------------------------------
class C_OP_Orient2DRelToCP : public CParticleOperatorInstance
{
DECLARE_PARTICLE_OPERATOR( C_OP_Orient2DRelToCP );
float m_flRotOffset;
float m_flSpinStrength;
int m_nCP;
uint32 GetWrittenAttributes( void ) const
{
return PARTICLE_ATTRIBUTE_ROTATION_MASK;
}
uint32 GetReadAttributes( void ) const
{
return PARTICLE_ATTRIBUTE_XYZ_MASK ;
}
virtual uint64 GetReadControlPointMask() const
{
return ( 1ULL << m_nCP );
}
virtual void Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const;
};
DEFINE_PARTICLE_OPERATOR( C_OP_Orient2DRelToCP , "Rotation Orient Relative to CP", OPERATOR_GENERIC );
BEGIN_PARTICLE_OPERATOR_UNPACK( C_OP_Orient2DRelToCP )
DMXELEMENT_UNPACK_FIELD( "Rotation Offset", "0", float, m_flRotOffset )
DMXELEMENT_UNPACK_FIELD( "Spin Strength", "1", float, m_flSpinStrength )
DMXELEMENT_UNPACK_FIELD( "Control Point", "0", int, m_nCP )
END_PARTICLE_OPERATOR_UNPACK( C_OP_Orient2DRelToCP )
void C_OP_Orient2DRelToCP::Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const
{
float flRotOffset = m_flRotOffset * ( M_PI / 180.0f );
// FIXME: SSE-ize
for ( int i = 0; i < pParticles->m_nActiveParticles; ++i )
{
const float *xyz = pParticles->GetFloatAttributePtr( PARTICLE_ATTRIBUTE_XYZ, i );
float *roll = pParticles->GetFloatAttributePtrForWrite( PARTICLE_ATTRIBUTE_ROTATION, i );
Vector vecXYZ;
Vector vecCP;
vecCP = pParticles->GetControlPointAtCurrentTime( m_nCP );
vecXYZ.x = xyz[0];
vecXYZ.y = xyz[4];
vecXYZ.z = xyz[8];
Vector vecVelocityCur = ( vecXYZ - vecCP );
vecVelocityCur.z = 0.0f;
VectorNormalizeFast ( vecVelocityCur );
float flCurRot = *roll;
float flVelRot = atan2(vecVelocityCur.y, vecVelocityCur.x ) + M_PI;
flVelRot += flRotOffset;
float flRotation = Lerp ( m_flSpinStrength, flCurRot, flVelRot );
*roll = flRotation;
}
};
//-----------------------------------------------------------------------------
// Max Velocity - clamps the maximum velocity of a particle
//-----------------------------------------------------------------------------
class C_OP_MaxVelocity : public CParticleOperatorInstance
{
DECLARE_PARTICLE_OPERATOR( C_OP_MaxVelocity );
float m_flMaxVelocity;
uint32 GetWrittenAttributes( void ) const
{
return PARTICLE_ATTRIBUTE_XYZ_MASK | PARTICLE_ATTRIBUTE_PREV_XYZ_MASK ;
}
uint32 GetReadAttributes( void ) const
{
return PARTICLE_ATTRIBUTE_XYZ_MASK | PARTICLE_ATTRIBUTE_PREV_XYZ_MASK ;
}
virtual void Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const;
};
DEFINE_PARTICLE_OPERATOR( C_OP_MaxVelocity , "Movement Max Velocity", OPERATOR_GENERIC );
BEGIN_PARTICLE_OPERATOR_UNPACK( C_OP_MaxVelocity )
DMXELEMENT_UNPACK_FIELD( "Maximum Velocity", "0", float, m_flMaxVelocity )
END_PARTICLE_OPERATOR_UNPACK( C_OP_MaxVelocity )
void C_OP_MaxVelocity::Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const
{
// FIXME: SSE-ize
for ( int i = 0; i < pParticles->m_nActiveParticles; ++i )
{
float *xyz = pParticles->GetFloatAttributePtrForWrite( PARTICLE_ATTRIBUTE_XYZ, i );
float *xyz_prev = pParticles->GetFloatAttributePtrForWrite( PARTICLE_ATTRIBUTE_PREV_XYZ, i );
Vector vecXYZ;
Vector vecPXYZ;
SetVectorFromAttribute( vecXYZ, xyz );
SetVectorFromAttribute( vecPXYZ, xyz_prev );
Vector vecVelocityCur = ( ( vecXYZ - vecPXYZ ) );
float flSpeed = vecVelocityCur.Length();
VectorNormalizeFast( vecVelocityCur );
float flMaxVelocityNormalized = m_flMaxVelocity * pParticles->m_flDt;
vecVelocityCur *= min( flSpeed, flMaxVelocityNormalized);
vecXYZ = vecPXYZ + vecVelocityCur;
SetVectorAttribute( xyz, vecXYZ );
}
};
//-----------------------------------------------------------------------------
// Maintain position along a path
//-----------------------------------------------------------------------------
struct SequentialPositionContext_t
{
int m_nParticleCount;
float m_flStep;
int m_nCountAmount;
};
class C_OP_MaintainSequentialPath : public CParticleOperatorInstance
{
DECLARE_PARTICLE_OPERATOR( C_OP_MaintainSequentialPath );
float m_fMaxDistance;
float m_flNumToAssign;
bool m_bLoop;
float m_flCohesionStrength;
struct CPathParameters m_PathParams;
uint32 GetWrittenAttributes( void ) const
{
return PARTICLE_ATTRIBUTE_XYZ_MASK | PARTICLE_ATTRIBUTE_PREV_XYZ_MASK;
}
uint32 GetReadAttributes( void ) const
{
return 0;
}
virtual uint64 GetReadControlPointMask() const
{
uint64 nStartMask = ( 1ULL << m_PathParams.m_nStartControlPointNumber ) - 1;
uint64 nEndMask = ( 1ULL << ( m_PathParams.m_nEndControlPointNumber + 1 ) ) - 1;
return nEndMask & (~nStartMask);
}
virtual void InitializeContextData( CParticleCollection *pParticles, void *pContext ) const
{
SequentialPositionContext_t *pCtx = reinterpret_cast<SequentialPositionContext_t *>( pContext );
pCtx->m_nParticleCount = 0;
if ( m_flNumToAssign > 1.0f )
{
pCtx->m_flStep = 1.0f / ( m_flNumToAssign - 1 );
}
else
{
pCtx->m_flStep = 0.0f;
}
pCtx->m_nCountAmount = 1;
}
void InitParams( CParticleSystemDefinition *pDef, CDmxElement *pElement )
{
m_PathParams.ClampControlPointIndices();
}
size_t GetRequiredContextBytes( void ) const
{
return sizeof( SequentialPositionContext_t );
}
virtual void Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const;
};
DEFINE_PARTICLE_OPERATOR( C_OP_MaintainSequentialPath, "Movement Maintain Position Along Path", OPERATOR_GENERIC );
BEGIN_PARTICLE_OPERATOR_UNPACK( C_OP_MaintainSequentialPath )
DMXELEMENT_UNPACK_FIELD( "maximum distance", "0", float, m_fMaxDistance )
DMXELEMENT_UNPACK_FIELD( "bulge", "0", float, m_PathParams.m_flBulge )
DMXELEMENT_UNPACK_FIELD( "start control point number", "0", int, m_PathParams.m_nStartControlPointNumber )
DMXELEMENT_UNPACK_FIELD( "end control point number", "0", int, m_PathParams.m_nEndControlPointNumber )
DMXELEMENT_UNPACK_FIELD( "bulge control 0=random 1=orientation of start pnt 2=orientation of end point", "0", int, m_PathParams.m_nBulgeControl )
DMXELEMENT_UNPACK_FIELD( "mid point position", "0.5", float, m_PathParams.m_flMidPoint )
DMXELEMENT_UNPACK_FIELD( "particles to map from start to end", "100", float, m_flNumToAssign )
DMXELEMENT_UNPACK_FIELD( "restart behavior (0 = bounce, 1 = loop )", "1", bool, m_bLoop )
DMXELEMENT_UNPACK_FIELD( "cohesion strength", "1", float, m_flCohesionStrength )
END_PARTICLE_OPERATOR_UNPACK( C_OP_MaintainSequentialPath )
void C_OP_MaintainSequentialPath::Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const
{
// NOTE: Using C_OP_ContinuousEmitter:: avoids a virtual function call
SequentialPositionContext_t *pCtx = reinterpret_cast<SequentialPositionContext_t *>( pContext );
float fl_Cohesion = ( 1 - m_flCohesionStrength );
for ( int i = 0; i < pParticles->m_nActiveParticles; ++i )
{
float *xyz = pParticles->GetFloatAttributePtrForWrite( PARTICLE_ATTRIBUTE_XYZ, i );
float *pxyz = pParticles->GetFloatAttributePtrForWrite( PARTICLE_ATTRIBUTE_PREV_XYZ, i );
Vector StartPnt, MidP, EndPnt;
pParticles->CalculatePathValues( m_PathParams, pParticles->m_flCurTime, &StartPnt, &MidP, &EndPnt);
if ( pCtx->m_nParticleCount >= m_flNumToAssign || pCtx->m_nParticleCount < 0 )
{
if ( m_bLoop )
{
pCtx->m_nParticleCount = 0;
}
else
{
pCtx->m_nCountAmount *= -1;
pCtx->m_nParticleCount = min ( pCtx->m_nParticleCount, (int)( m_flNumToAssign - 1) );
pCtx->m_nParticleCount = max ( pCtx->m_nParticleCount, 1 );
}
}
float t= pCtx->m_nParticleCount * pCtx->m_flStep;
// form delta terms needed for quadratic bezier
Vector Delta0=MidP-StartPnt;
Vector Delta1 = EndPnt-MidP;
Vector L0 = StartPnt+t*Delta0;
Vector L1 = MidP+t*Delta1;
Vector Pnt = L0+(L1-L0)*t;
// Allow an offset distance and position lerp
Vector vecXYZ;
Vector vecPXYZ;
SetVectorFromAttribute( vecXYZ, xyz );
SetVectorFromAttribute( vecPXYZ, pxyz );
vecXYZ -= Pnt;
vecPXYZ -= Pnt;
float flXYZOffset = min (vecXYZ.Length(), m_fMaxDistance );
float flPXYZOffset = min (vecPXYZ.Length(), m_fMaxDistance );
VectorNormalizeFast( vecXYZ );
vecXYZ *= flXYZOffset * fl_Cohesion;
VectorNormalizeFast( vecPXYZ );
vecPXYZ *= flPXYZOffset * fl_Cohesion;
vecXYZ += Pnt;
vecPXYZ += Pnt;
xyz[0] = vecXYZ.x;
xyz[4] = vecXYZ.y;
xyz[8] = vecXYZ.z;
pxyz[0] = vecPXYZ.x;
pxyz[4] = vecPXYZ.y;
pxyz[8] = vecPXYZ.z;
pCtx->m_nParticleCount += pCtx->m_nCountAmount;
}
}
//-----------------------------------------------------------------------------
// Remap Dot Product to Scalar Operator
//-----------------------------------------------------------------------------
class C_OP_RemapDotProductToScalar : public CParticleOperatorInstance
{
DECLARE_PARTICLE_OPERATOR( C_OP_RemapDotProductToScalar );
uint32 GetWrittenAttributes( void ) const
{
return 1 << m_nFieldOutput;
}
uint32 GetReadAttributes( void ) const
{
return PARTICLE_ATTRIBUTE_XYZ_MASK | PARTICLE_ATTRIBUTE_PREV_XYZ_MASK;
}
virtual uint64 GetReadControlPointMask() const
{
return ( 1ULL << m_nInputCP1 ) | ( 1ULL << m_nInputCP2 );
}
virtual void Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const;
int m_nInputCP1;
int m_nInputCP2;
int m_nFieldOutput;
float m_flInputMin;
float m_flInputMax;
float m_flOutputMin;
float m_flOutputMax;
bool m_bUseParticleVelocity;
bool m_bScaleInitialRange;
bool m_bActiveRange;
};
DEFINE_PARTICLE_OPERATOR( C_OP_RemapDotProductToScalar, "Remap Dot Product to Scalar", OPERATOR_GENERIC );
BEGIN_PARTICLE_OPERATOR_UNPACK( C_OP_RemapDotProductToScalar )
DMXELEMENT_UNPACK_FIELD( "use particle velocity for first input", "0", bool, m_bUseParticleVelocity )
DMXELEMENT_UNPACK_FIELD( "first input control point", "0", int, m_nInputCP1 )
DMXELEMENT_UNPACK_FIELD( "second input control point", "0", int, m_nInputCP2 )
DMXELEMENT_UNPACK_FIELD( "input minimum (-1 to 1)","0", float, m_flInputMin )
DMXELEMENT_UNPACK_FIELD( "input maximum (-1 to 1)","1", float, m_flInputMax )
DMXELEMENT_UNPACK_FIELD_USERDATA( "output field", "3", int, m_nFieldOutput, "intchoice particlefield_scalar" )
DMXELEMENT_UNPACK_FIELD( "output minimum","0", float, m_flOutputMin )
DMXELEMENT_UNPACK_FIELD( "output maximum","1", float, m_flOutputMax )
DMXELEMENT_UNPACK_FIELD( "output is scalar of initial random range","0", bool, m_bScaleInitialRange )
DMXELEMENT_UNPACK_FIELD( "only active within specified input range","0", bool, m_bActiveRange )
END_PARTICLE_OPERATOR_UNPACK( C_OP_RemapDotProductToScalar )
void C_OP_RemapDotProductToScalar::Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const
{
// clamp the result to 0 and 1 if it's alpha
float flMin=m_flOutputMin;
float flMax=m_flOutputMax;
if ( ATTRIBUTES_WHICH_ARE_0_TO_1 & ( 1 << m_nFieldOutput ) )
{
flMin = clamp(m_flOutputMin, 0.0f, 1.0f );
flMax = clamp(m_flOutputMax, 0.0f, 1.0f );
}
Vector vecInput1;
Vector vecInput2;
CParticleSIMDTransformation pXForm1;
CParticleSIMDTransformation pXForm2;
pParticles->GetControlPointTransformAtTime( m_nInputCP1, pParticles->m_flCurTime, &pXForm1 );
pParticles->GetControlPointTransformAtTime( m_nInputCP2, pParticles->m_flCurTime, &pXForm2 );
vecInput1 = pXForm1.m_v4Fwd.Vec( 0 );
vecInput2 = pXForm2.m_v4Fwd.Vec( 0 );
float flInput = DotProduct( vecInput1, vecInput2 );
// only use within start/end time frame and, if set, active input range
if ( ( m_bActiveRange && !m_bUseParticleVelocity && ( flInput < m_flInputMin || flInput > m_flInputMax ) ) )
return;
// FIXME: SSE-ize
for ( int i = 0; i < pParticles->m_nActiveParticles; ++i )
{
if ( m_bUseParticleVelocity )
{
const float *xyz = pParticles->GetFloatAttributePtrForWrite( PARTICLE_ATTRIBUTE_XYZ, i );
const float *pxyz = pParticles->GetFloatAttributePtrForWrite( PARTICLE_ATTRIBUTE_PREV_XYZ, i );
Vector vecXYZ;
Vector vecPXYZ;
vecXYZ.x = xyz[0];
vecXYZ.y = xyz[4];
vecXYZ.z = xyz[8];
vecPXYZ.x = pxyz[0];
vecPXYZ.y = pxyz[4];
vecPXYZ.z = pxyz[8];
vecInput1 = vecXYZ - vecPXYZ;
VectorNormalizeFast( vecInput1 );
float flInputDot = DotProduct( vecInput1, vecInput2 );
// only use within start/end time frame and, if set, active input range
if ( ( m_bActiveRange && (flInputDot < m_flInputMin || flInputDot > m_flInputMax ) ) )
continue;
}
float *pOutput = pParticles->GetFloatAttributePtrForWrite( m_nFieldOutput, i );
float flOutput = RemapValClamped( flInput, m_flInputMin, m_flInputMax, flMin, flMax );
if ( m_bScaleInitialRange )
{
flOutput *= *pOutput;
}
if ( ATTRIBUTES_WHICH_ARE_INTS & ( 1 << m_nFieldOutput ) )
{
*pOutput = int ( flOutput );
}
else
{
*pOutput = flOutput;
}
}
}
//-----------------------------------------------------------------------------
// Remap CP to Scalar Operator
//-----------------------------------------------------------------------------
class C_OP_RemapCPtoScalar : public CParticleOperatorInstance
{
DECLARE_PARTICLE_OPERATOR( C_OP_RemapCPtoScalar );
uint32 GetWrittenAttributes( void ) const
{
return 1 << m_nFieldOutput;
}
uint32 GetReadAttributes( void ) const
{
return 0;
}
virtual uint64 GetReadControlPointMask() const
{
return 1ULL << m_nCPInput;
}
virtual void InitParams( CParticleSystemDefinition *pDef, CDmxElement *pElement )
{
m_nField = int (clamp (m_nField, 0, 2));
}
virtual void Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const;
int m_nCPInput;
int m_nFieldOutput;
int m_nField;
float m_flInputMin;
float m_flInputMax;
float m_flOutputMin;
float m_flOutputMax;
float m_flStartTime;
float m_flEndTime;
bool m_bScaleInitialRange;
};
DEFINE_PARTICLE_OPERATOR( C_OP_RemapCPtoScalar, "Remap Control Point to Scalar", OPERATOR_GENERIC );
BEGIN_PARTICLE_OPERATOR_UNPACK( C_OP_RemapCPtoScalar )
DMXELEMENT_UNPACK_FIELD( "emitter lifetime start time (seconds)", "-1", float, m_flStartTime )
DMXELEMENT_UNPACK_FIELD( "emitter lifetime end time (seconds)", "-1", float, m_flEndTime )
DMXELEMENT_UNPACK_FIELD( "input control point number", "0", int, m_nCPInput )
DMXELEMENT_UNPACK_FIELD( "input minimum","0", float, m_flInputMin )
DMXELEMENT_UNPACK_FIELD( "input maximum","1", float, m_flInputMax )
DMXELEMENT_UNPACK_FIELD( "input field 0-2 X/Y/Z","0", int, m_nField )
DMXELEMENT_UNPACK_FIELD_USERDATA( "output field", "3", int, m_nFieldOutput, "intchoice particlefield_scalar" )
DMXELEMENT_UNPACK_FIELD( "output minimum","0", float, m_flOutputMin )
DMXELEMENT_UNPACK_FIELD( "output maximum","1", float, m_flOutputMax )
DMXELEMENT_UNPACK_FIELD( "output is scalar of initial random range","0", bool, m_bScaleInitialRange )
END_PARTICLE_OPERATOR_UNPACK( C_OP_RemapCPtoScalar )
void C_OP_RemapCPtoScalar::Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const
{
const float *pCreationTime;
// clamp the result to 0 and 1 if it's alpha
float flMin=m_flOutputMin;
float flMax=m_flOutputMax;
if ( ATTRIBUTES_WHICH_ARE_0_TO_1 & ( 1 << m_nFieldOutput ) )
{
flMin = clamp(m_flOutputMin, 0.0f, 1.0f );
flMax = clamp(m_flOutputMax, 0.0f, 1.0f );
}
Vector vecControlPoint = pParticles->GetControlPointAtCurrentTime( m_nCPInput );
float flInput = vecControlPoint[m_nField];
// FIXME: SSE-ize
for( int i = 0; i < pParticles->m_nActiveParticles; ++i )
{
pCreationTime = pParticles->GetFloatAttributePtr( PARTICLE_ATTRIBUTE_CREATION_TIME, i );
// using raw creation time to map to emitter lifespan
float flLifeTime = *pCreationTime;
// only use within start/end time frame
if ( ( ( flLifeTime < m_flStartTime ) || ( flLifeTime >= m_flEndTime ) ) && ( ( m_flStartTime != -1.0f) && ( m_flEndTime != -1.0f) ) )
continue;
float *pOutput = pParticles->GetFloatAttributePtrForWrite( m_nFieldOutput, i );
float flOutput = RemapValClamped( flInput, m_flInputMin, m_flInputMax, flMin, flMax );
if ( m_bScaleInitialRange )
{
flOutput = *pOutput * flOutput;
}
if ( ATTRIBUTES_WHICH_ARE_INTS & ( 1 << m_nFieldOutput ) )
{
*pOutput = int ( flOutput );
}
else
{
*pOutput = flOutput;
}
}
}
//-----------------------------------------------------------------------------
// Rotate Particle around axis
//-----------------------------------------------------------------------------
class C_OP_MovementRotateParticleAroundAxis : public CParticleOperatorInstance
{
DECLARE_PARTICLE_OPERATOR( C_OP_MovementRotateParticleAroundAxis );
Vector m_vecRotAxis;
float m_flRotRate;
int m_nCP;
bool m_bLocalSpace;
uint32 GetWrittenAttributes( void ) const
{
return PARTICLE_ATTRIBUTE_XYZ_MASK | PARTICLE_ATTRIBUTE_PREV_XYZ_MASK ;
}
uint32 GetReadAttributes( void ) const
{
return PARTICLE_ATTRIBUTE_XYZ_MASK | PARTICLE_ATTRIBUTE_PREV_XYZ_MASK ;
}
virtual uint64 GetReadControlPointMask() const
{
return 1ULL << m_nCP;
}
void InitParams( CParticleSystemDefinition *pDef )
{
VectorNormalize( m_vecRotAxis );
}
virtual void Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const;
};
DEFINE_PARTICLE_OPERATOR( C_OP_MovementRotateParticleAroundAxis , "Movement Rotate Particle Around Axis", OPERATOR_GENERIC );
BEGIN_PARTICLE_OPERATOR_UNPACK( C_OP_MovementRotateParticleAroundAxis )
DMXELEMENT_UNPACK_FIELD( "Rotation Axis", "0 0 1", Vector, m_vecRotAxis )
DMXELEMENT_UNPACK_FIELD( "Rotation Rate", "180", float, m_flRotRate )
DMXELEMENT_UNPACK_FIELD( "Control Point", "0", int, m_nCP )
DMXELEMENT_UNPACK_FIELD( "Use Local Space", "0", bool, m_bLocalSpace )
END_PARTICLE_OPERATOR_UNPACK( C_OP_MovementRotateParticleAroundAxis )
void C_OP_MovementRotateParticleAroundAxis::Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const
{
float flRotRate = m_flRotRate * pParticles->m_flDt;
matrix3x4_t matRot;
Vector vecRotAxis = m_vecRotAxis;
if ( m_bLocalSpace )
{
matrix3x4_t matLocalCP;
pParticles->GetControlPointTransformAtCurrentTime( m_nCP, &matLocalCP );
VectorRotate( m_vecRotAxis, matLocalCP, vecRotAxis );
}
MatrixBuildRotationAboutAxis ( vecRotAxis, flRotRate, matRot );
Vector vecCPPos = pParticles->GetControlPointAtCurrentTime( m_nCP );
FourVectors fvCPPos;
fvCPPos.DuplicateVector( vecCPPos );
fltx4 fl4Strength = ReplicateX4( flStrength );
C4VAttributeWriteIterator pXYZ( PARTICLE_ATTRIBUTE_XYZ, pParticles );
C4VAttributeWriteIterator pPrevXYZ( PARTICLE_ATTRIBUTE_PREV_XYZ, pParticles );
int nCtr = pParticles->m_nPaddedActiveParticles;
do
{
FourVectors fvCurPos = *pXYZ;
fvCurPos -= fvCPPos;
FourVectors fvPrevPos = *pPrevXYZ;
fvPrevPos -= fvCPPos;
fvCurPos.RotateBy( matRot );
fvPrevPos.RotateBy( matRot );
fvCurPos += fvCPPos;
fvCurPos -= *pXYZ;
fvCurPos *= fl4Strength;
*pXYZ += fvCurPos;
fvPrevPos += fvCPPos;
fvPrevPos -= *pPrevXYZ;
fvPrevPos *= fl4Strength;
*pPrevXYZ += fvPrevPos;
++pXYZ;
++pPrevXYZ;
} while ( --nCtr );
};
//-----------------------------------------------------------------------------
// Remap Speed to CP Operator
//-----------------------------------------------------------------------------
class C_OP_RemapSpeedtoCP : public CParticleOperatorInstance
{
DECLARE_PARTICLE_OPERATOR( C_OP_RemapSpeedtoCP );
uint32 GetWrittenAttributes( void ) const
{
return 0;
}
uint32 GetReadAttributes( void ) const
{
return 0;
}
virtual uint64 GetReadControlPointMask() const
{
return ( 1ULL << m_nInControlPointNumber ) | ( 1ULL << m_nOutControlPointNumber );
}
bool ShouldRunBeforeEmitters( void ) const
{
return true;
}
virtual void InitParams(CParticleSystemDefinition *pDef )
{
// Safety for bogus input->output feedback loop
if ( m_nInControlPointNumber == m_nOutControlPointNumber )
m_nOutControlPointNumber = -1;
}
virtual void Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const;
int m_nInControlPointNumber;
int m_nOutControlPointNumber;
int m_nField;
float m_flInputMin;
float m_flInputMax;
float m_flOutputMin;
float m_flOutputMax;
};
DEFINE_PARTICLE_OPERATOR( C_OP_RemapSpeedtoCP, "Remap CP Speed to CP", OPERATOR_GENERIC );
BEGIN_PARTICLE_OPERATOR_UNPACK( C_OP_RemapSpeedtoCP )
DMXELEMENT_UNPACK_FIELD( "input control point", "0", int, m_nInControlPointNumber )
DMXELEMENT_UNPACK_FIELD( "input minimum","0", float, m_flInputMin )
DMXELEMENT_UNPACK_FIELD( "input maximum","1", float, m_flInputMax )
DMXELEMENT_UNPACK_FIELD( "output control point", "-1", int, m_nOutControlPointNumber )
DMXELEMENT_UNPACK_FIELD( "Output field 0-2 X/Y/Z","0", int, m_nField )
DMXELEMENT_UNPACK_FIELD( "output minimum","0", float, m_flOutputMin )
DMXELEMENT_UNPACK_FIELD( "output maximum","1", float, m_flOutputMax )
END_PARTICLE_OPERATOR_UNPACK( C_OP_RemapSpeedtoCP );
void C_OP_RemapSpeedtoCP::Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const
{
if ( m_nOutControlPointNumber >= 0 )
{
Vector vecPrevPos;
pParticles->GetControlPointAtPrevTime( m_nInControlPointNumber, &vecPrevPos );
Vector vecDelta;
vecDelta = pParticles->GetControlPointAtCurrentTime( m_nInControlPointNumber ) - vecPrevPos;
float flSpeed = vecDelta.Length() / pParticles->m_flPreviousDt;
float flOutput = RemapValClamped( flSpeed, m_flInputMin, m_flInputMax, m_flOutputMin, m_flOutputMax );
Vector vecControlPoint = pParticles->GetControlPointAtCurrentTime( m_nOutControlPointNumber );
vecControlPoint[m_nField] = flOutput;
pParticles->SetControlPoint( m_nOutControlPointNumber, vecControlPoint );
}
}
void AddBuiltInParticleOperators( void )
{
REGISTER_PARTICLE_OPERATOR( FUNCTION_OPERATOR, C_OP_BasicMovement );
REGISTER_PARTICLE_OPERATOR( FUNCTION_OPERATOR, C_OP_Decay );
REGISTER_PARTICLE_OPERATOR( FUNCTION_OPERATOR, C_OP_VelocityDecay );
REGISTER_PARTICLE_OPERATOR( FUNCTION_OPERATOR, C_OP_FadeAndKill );
REGISTER_PARTICLE_OPERATOR( FUNCTION_OPERATOR, C_OP_FadeIn );
REGISTER_PARTICLE_OPERATOR( FUNCTION_OPERATOR, C_OP_FadeOut );
REGISTER_PARTICLE_OPERATOR( FUNCTION_OPERATOR, C_OP_Spin );
REGISTER_PARTICLE_OPERATOR( FUNCTION_OPERATOR, C_OP_SpinUpdate );
REGISTER_PARTICLE_OPERATOR( FUNCTION_OPERATOR, C_OP_SpinYaw );
REGISTER_PARTICLE_OPERATOR( FUNCTION_OPERATOR, C_OP_OrientTo2dDirection );
REGISTER_PARTICLE_OPERATOR( FUNCTION_OPERATOR, C_OP_Orient2DRelToCP );
REGISTER_PARTICLE_OPERATOR( FUNCTION_OPERATOR, C_OP_InterpolateRadius );
REGISTER_PARTICLE_OPERATOR( FUNCTION_OPERATOR, C_OP_ColorInterpolate );
REGISTER_PARTICLE_OPERATOR( FUNCTION_OPERATOR, C_OP_OscillateScalar );
REGISTER_PARTICLE_OPERATOR( FUNCTION_OPERATOR, C_OP_OscillateVector );
REGISTER_PARTICLE_OPERATOR( FUNCTION_OPERATOR, C_OP_DampenToCP );
REGISTER_PARTICLE_OPERATOR( FUNCTION_OPERATOR, C_OP_PositionLock );
REGISTER_PARTICLE_OPERATOR( FUNCTION_OPERATOR, C_OP_LockToBone );
REGISTER_PARTICLE_OPERATOR( FUNCTION_OPERATOR, C_OP_DistanceBetweenCPs );
REGISTER_PARTICLE_OPERATOR( FUNCTION_OPERATOR, C_OP_DistanceToCP );
REGISTER_PARTICLE_OPERATOR( FUNCTION_OPERATOR, C_OP_SetControlPointToPlayer );
REGISTER_PARTICLE_OPERATOR( FUNCTION_OPERATOR, C_OP_SetControlPointToCenter );
REGISTER_PARTICLE_OPERATOR( FUNCTION_OPERATOR, C_OP_SetChildControlPoints );
REGISTER_PARTICLE_OPERATOR( FUNCTION_OPERATOR, C_OP_SetControlPointPositions );
REGISTER_PARTICLE_OPERATOR( FUNCTION_OPERATOR, C_OP_PlaneCull );
REGISTER_PARTICLE_OPERATOR( FUNCTION_OPERATOR, C_OP_ModelCull );
REGISTER_PARTICLE_OPERATOR( FUNCTION_OPERATOR, C_OP_Cull );
REGISTER_PARTICLE_OPERATOR( FUNCTION_OPERATOR, C_OP_ControlpointLight );
REGISTER_PARTICLE_OPERATOR( FUNCTION_OPERATOR, C_OP_RemapScalar );
REGISTER_PARTICLE_OPERATOR( FUNCTION_OPERATOR, C_OP_Noise );
REGISTER_PARTICLE_OPERATOR( FUNCTION_OPERATOR, C_OP_VectorNoise );
REGISTER_PARTICLE_OPERATOR( FUNCTION_OPERATOR, C_OP_VelocityMatchingForce );
REGISTER_PARTICLE_OPERATOR( FUNCTION_OPERATOR, C_OP_MaxVelocity );
REGISTER_PARTICLE_OPERATOR( FUNCTION_OPERATOR, C_OP_MaintainSequentialPath );
REGISTER_PARTICLE_OPERATOR( FUNCTION_OPERATOR, C_OP_RemapDotProductToScalar );
REGISTER_PARTICLE_OPERATOR( FUNCTION_OPERATOR, C_OP_RemapCPtoScalar );
REGISTER_PARTICLE_OPERATOR( FUNCTION_OPERATOR, C_OP_MovementRotateParticleAroundAxis );
REGISTER_PARTICLE_OPERATOR( FUNCTION_OPERATOR, C_OP_RemapSpeedtoCP );
}