hl2_src-leak-2017/src/vphysics/physics_object.cpp

2002 lines
54 KiB
C++

//========= Copyright Valve Corporation, All rights reserved. ============//
//
// Purpose:
//
// $NoKeywords: $
//=============================================================================//
#include "cbase.h"
#include "ivp_surman_polygon.hxx"
#include "ivp_compact_ledge.hxx"
#include "ivp_compact_ledge_solver.hxx"
#include "ivp_mindist.hxx"
#include "ivp_friction.hxx"
#include "ivp_phantom.hxx"
#include "ivp_listener_collision.hxx"
#include "ivp_clustering_visualizer.hxx"
#include "ivp_anomaly_manager.hxx"
#include "ivp_collision_filter.hxx"
#include "hk_mopp/ivp_surman_mopp.hxx"
#include "hk_mopp/ivp_compact_mopp.hxx"
#include "ivp_compact_surface.hxx"
#include "physics_trace.h"
#include "physics_shadow.h"
#include "physics_friction.h"
#include "physics_constraint.h"
#include "bspflags.h"
#include "vphysics/player_controller.h"
#include "vphysics/friction.h"
// memdbgon must be the last include file in a .cpp file!!!
#include "tier0/memdbgon.h"
extern IPhysicsCollision *physcollision;
// UNDONE: Make this a stack variable / member variable of some save/load object or function?
// NOTE: This keeps a list of objects who were saved while asleep, but not created asleep
// So some info will be lost unless it's regenerated after loading.
struct postrestore_objectlist_t
{
CPhysicsObject *pObject;
bool growFriction;
bool enableCollisions;
void Defaults()
{
pObject = NULL;
growFriction = false;
enableCollisions = false;
}
};
static CUtlVector<postrestore_objectlist_t> g_PostRestoreObjectList;
// This angular basis is the integral of each differential drag area's torque over the whole OBB
// For each axis, each face, the integral is (1/Iaxis) * (1/3 * w^2l^3 + 1/2 * w^4l + lw^2h^2)
// l,w, & h are half widths - where l is in the direction of the axis, w is in the plane (l/w plane) of the face,
// and h is perpendicular to the face. So for each axis, you sum up this integral over 2 pairs of faces
// (this function returns the integral for one pair of opposite faces, not one face)
static float AngDragIntegral( float invInertia, float l, float w, float h )
{
float w2 = w*w;
float l2 = l*l;
float h2 = h*h;
return invInertia * ( (1.f/3.f)*w2*l*l2 + 0.5 * w2*w2*l + l*w2*h2 );
}
CPhysicsObject::CPhysicsObject( void )
{
#ifdef _WIN32
void *pData = ((char *)this) + sizeof(void *); // offset beyond vtable
int dataSize = sizeof(*this) - sizeof(void *);
Assert( pData == &m_pGameData );
memset( pData, 0, dataSize );
#elif POSIX
//!!HACK HACK - rework this if we ever change compiler versions (from gcc 3.2!!!)
void *pData = ((char *)this) + sizeof(void *); // offset beyond vtable
int dataSize = sizeof(*this) - sizeof(void *);
Assert( pData == &m_pGameData );
memset( pData, 0, dataSize );
#else
#error
#endif
// HACKHACK: init this as a sphere until someone attaches a surfacemanager
m_collideType = COLLIDE_BALL;
m_contentsMask = CONTENTS_SOLID;
m_hasTouchedDynamic = 0;
}
void CPhysicsObject::Init( const CPhysCollide *pCollisionModel, IVP_Real_Object *pObject, int materialIndex, float volume, float drag, float angDrag )
{
m_pCollide = pCollisionModel;
m_materialIndex = materialIndex;
m_pObject = pObject;
pObject->client_data = (void *)this;
m_pGameData = NULL;
m_gameFlags = 0;
m_gameIndex = 0;
m_sleepState = OBJ_SLEEP; // objects start asleep
m_callbacks = CALLBACK_GLOBAL_COLLISION|CALLBACK_GLOBAL_FRICTION|CALLBACK_FLUID_TOUCH|CALLBACK_GLOBAL_TOUCH|CALLBACK_GLOBAL_COLLIDE_STATIC|CALLBACK_DO_FLUID_SIMULATION;
m_activeIndex = 0xFFFF;
m_pShadow = NULL;
m_shadowTempGravityDisable = false;
m_forceSilentDelete = false;
m_dragBasis = vec3_origin;
m_angDragBasis = vec3_origin;
if ( !IsStatic() && GetCollide() )
{
RecomputeDragBases();
}
else
{
drag = 0;
angDrag = 0;
}
m_dragCoefficient = drag;
m_angDragCoefficient = angDrag;
SetVolume( volume );
}
CPhysicsObject::~CPhysicsObject( void )
{
RemoveShadowController();
if ( m_pObject )
{
// prevents callbacks to the game code / unlink from this object
m_callbacks = 0;
m_pGameData = 0;
m_pObject->client_data = 0;
IVP_Core *pCore = m_pObject->get_core();
if ( pCore->physical_unmoveable == IVP_TRUE && pCore->controllers_of_core.n_elems )
{
// go ahead and notify them if this happens in the real world
for(int i = pCore->controllers_of_core.len()-1; i >=0 ;i-- )
{
IVP_Controller *my_controller = pCore->controllers_of_core.element_at(i);
my_controller->core_is_going_to_be_deleted_event(pCore);
Assert(my_controller==pCore->environment->get_gravity_controller());
}
}
// UNDONE: Don't free the surface manager here
// UNDONE: Remove reference to it by calling something in physics_collide
IVP_SurfaceManager *pSurman = GetSurfaceManager();
CPhysicsEnvironment *pVEnv = GetVPhysicsEnvironment();
// BUGBUG: Sometimes IVP will call a "revive" on the object we're deleting!
MEM_ALLOC_CREDIT();
if ( m_forceSilentDelete || (pVEnv && pVEnv->ShouldQuickDelete()) || !m_hasTouchedDynamic )
{
m_pObject->delete_silently();
}
else
{
m_pObject->delete_and_check_vicinity();
}
delete pSurman;
}
}
void CPhysicsObject::Wake( void )
{
m_pObject->ensure_in_simulation();
}
// supported
void CPhysicsObject::Sleep( void )
{
m_pObject->disable_simulation();
}
bool CPhysicsObject::IsAsleep() const
{
if ( m_sleepState == OBJ_AWAKE )
return false;
// double-check that we aren't pending
if ( m_pObject->get_core()->is_in_wakeup_vec )
return false;
return true;
}
void CPhysicsObject::NotifySleep( void )
{
if ( m_sleepState == OBJ_AWAKE )
{
m_sleepState = OBJ_STARTSLEEP;
}
else
{
// UNDONE: This fails sometimes and we get sleep calls for a sleeping object, debug?
//Assert(m_sleepState==OBJ_STARTSLEEP);
m_sleepState = OBJ_SLEEP;
}
}
void CPhysicsObject::NotifyWake( void )
{
m_asleepSinceCreation = false;
m_sleepState = OBJ_AWAKE;
}
void CPhysicsObject::SetCallbackFlags( unsigned short callbackflags )
{
#if IVP_ENABLE_VISUALIZER
unsigned short changedFlags = m_callbacks ^ callbackflags;
if ( changedFlags & CALLBACK_MARKED_FOR_TEST )
{
if ( callbackflags & CALLBACK_MARKED_FOR_TEST )
{
ENABLE_SHORTRANGE_VISUALIZATION(m_pObject);
ENABLE_LONGRANGE_VISUALIZATION(m_pObject);
}
else
{
DISABLE_SHORTRANGE_VISUALIZATION(m_pObject);
DISABLE_LONGRANGE_VISUALIZATION(m_pObject);
}
}
#endif
m_callbacks = callbackflags;
}
unsigned short CPhysicsObject::GetCallbackFlags() const
{
return m_callbacks;
}
void CPhysicsObject::SetGameFlags( unsigned short userFlags )
{
m_gameFlags = userFlags;
}
unsigned short CPhysicsObject::GetGameFlags() const
{
return m_gameFlags;
}
void CPhysicsObject::SetGameIndex( unsigned short gameIndex )
{
m_gameIndex = gameIndex;
}
unsigned short CPhysicsObject::GetGameIndex() const
{
return m_gameIndex;
}
bool CPhysicsObject::IsStatic() const
{
if ( m_pObject->get_core()->physical_unmoveable )
return true;
return false;
}
void CPhysicsObject::EnableCollisions( bool enable )
{
if ( enable )
{
m_callbacks |= CALLBACK_ENABLING_COLLISION;
BEGIN_IVP_ALLOCATION();
m_pObject->enable_collision_detection( IVP_TRUE );
END_IVP_ALLOCATION();
m_callbacks &= ~CALLBACK_ENABLING_COLLISION;
}
else
{
if ( IsCollisionEnabled() )
{
// Delete all contact points with this physics object because it's collision is becoming disabled
IPhysicsFrictionSnapshot *pSnapshot = CreateFrictionSnapshot();
while ( pSnapshot->IsValid() )
{
pSnapshot->MarkContactForDelete();
pSnapshot->NextFrictionData();
}
pSnapshot->DeleteAllMarkedContacts( true );
DestroyFrictionSnapshot( pSnapshot );
}
m_pObject->enable_collision_detection( IVP_FALSE );
}
}
void CPhysicsObject::RecheckCollisionFilter()
{
if ( CallbackFlags() & CALLBACK_MARKED_FOR_DELETE )
return;
m_callbacks |= CALLBACK_ENABLING_COLLISION;
BEGIN_IVP_ALLOCATION();
m_pObject->recheck_collision_filter();
// UNDONE: do a RecheckContactPoints() here?
END_IVP_ALLOCATION();
m_callbacks &= ~CALLBACK_ENABLING_COLLISION;
}
void CPhysicsObject::RecheckContactPoints()
{
IVP_Environment *pEnv = m_pObject->get_environment();
IVP_Collision_Filter *coll_filter = pEnv->get_collision_filter();
IPhysicsFrictionSnapshot *pSnapshot = CreateFrictionSnapshot();
while ( pSnapshot->IsValid() )
{
CPhysicsObject *pOther = static_cast<CPhysicsObject *>(pSnapshot->GetObject(1));
if ( !coll_filter->check_objects_for_collision_detection( m_pObject, pOther->m_pObject ) )
{
pSnapshot->MarkContactForDelete();
}
pSnapshot->NextFrictionData();
}
pSnapshot->DeleteAllMarkedContacts( true );
DestroyFrictionSnapshot( pSnapshot );
}
CPhysicsEnvironment *CPhysicsObject::GetVPhysicsEnvironment()
{
return (CPhysicsEnvironment *) (m_pObject->get_environment()->client_data);
}
const CPhysicsEnvironment *CPhysicsObject::GetVPhysicsEnvironment() const
{
return (CPhysicsEnvironment *) (m_pObject->get_environment()->client_data);
}
bool CPhysicsObject::IsControlling( const IVP_Controller *pController ) const
{
IVP_Core *pCore = m_pObject->get_core();
for ( int i = 0; i < pCore->controllers_of_core.len(); i++ )
{
// already controlling this core?
if ( pCore->controllers_of_core.element_at(i) == pController )
return true;
}
return false;
}
bool CPhysicsObject::IsGravityEnabled() const
{
if ( !IsStatic() )
{
return IsControlling( m_pObject->get_core()->environment->get_gravity_controller() );
}
return false;
}
bool CPhysicsObject::IsDragEnabled() const
{
if ( !IsStatic() )
{
return IsControlling( GetVPhysicsEnvironment()->GetDragController() );
}
return false;
}
bool CPhysicsObject::IsMotionEnabled() const
{
return m_pObject->get_core()->pinned ? false : true;
}
bool CPhysicsObject::IsMoveable() const
{
if ( IsStatic() || !IsMotionEnabled() )
return false;
return true;
}
void CPhysicsObject::EnableGravity( bool enable )
{
if ( IsStatic() )
return;
bool isEnabled = IsGravityEnabled();
if ( enable == isEnabled )
return;
IVP_Controller *pGravity = m_pObject->get_core()->environment->get_gravity_controller();
if ( enable )
{
m_pObject->get_core()->add_core_controller( pGravity );
}
else
{
m_pObject->get_core()->rem_core_controller( pGravity );
}
}
void CPhysicsObject::EnableDrag( bool enable )
{
if ( IsStatic() )
return;
bool isEnabled = IsDragEnabled();
if ( enable == isEnabled )
return;
IVP_Controller *pDrag = GetVPhysicsEnvironment()->GetDragController();
if ( enable )
{
m_pObject->get_core()->add_core_controller( pDrag );
}
else
{
m_pObject->get_core()->rem_core_controller( pDrag );
}
}
void CPhysicsObject::SetDragCoefficient( float *pDrag, float *pAngularDrag )
{
if ( pDrag )
{
m_dragCoefficient = *pDrag;
}
if ( pAngularDrag )
{
m_angDragCoefficient = *pAngularDrag;
}
EnableDrag( m_dragCoefficient || m_angDragCoefficient );
}
void CPhysicsObject::RecomputeDragBases()
{
if ( IsStatic() || !GetCollide() )
return;
// Basically we are computing drag as an OBB. Get OBB extents for projection
// scale those extents by appropriate mass/inertia to compute velocity directly (not force)
// in the controller
// NOTE: Compute these even if drag coefficients are zero, because the drag coefficient could change later
// Get an AABB for this object and use the area of each side as a basis for approximating cross-section area for drag
Vector dragMins, dragMaxs;
// NOTE: coordinates in/out of physcollision are in HL units, not IVP
// PERFORMANCE: Cache this? Expensive.
physcollision->CollideGetAABB( &dragMins, &dragMaxs, GetCollide(), vec3_origin, vec3_angle );
Vector areaFractions = physcollision->CollideGetOrthographicAreas( GetCollide() );
Vector delta = dragMaxs - dragMins;
ConvertPositionToIVP( delta.x, delta.y, delta.z );
delta.x = fabsf(delta.x);
delta.y = fabsf(delta.y);
delta.z = fabsf(delta.z);
// dragBasis is now the area of each side
m_dragBasis.x = delta.y * delta.z * areaFractions.x;
m_dragBasis.y = delta.x * delta.z * areaFractions.y;
m_dragBasis.z = delta.x * delta.y * areaFractions.z;
m_dragBasis *= GetInvMass();
const IVP_U_Float_Point *pInvRI = m_pObject->get_core()->get_inv_rot_inertia();
// This angular basis is the integral of each differential drag area's torque over the whole OBB
// need half lengths for this integral
delta *= 0.5;
// rotation about the x axis
m_angDragBasis.x = areaFractions.z * AngDragIntegral( pInvRI->k[0], delta.x, delta.y, delta.z ) + areaFractions.y * AngDragIntegral( pInvRI->k[0], delta.x, delta.z, delta.y );
// rotation about the y axis
m_angDragBasis.y = areaFractions.z * AngDragIntegral( pInvRI->k[1], delta.y, delta.x, delta.z ) + areaFractions.x * AngDragIntegral( pInvRI->k[1], delta.y, delta.z, delta.x );
// rotation about the z axis
m_angDragBasis.z = areaFractions.y * AngDragIntegral( pInvRI->k[2], delta.z, delta.x, delta.y ) + areaFractions.x * AngDragIntegral( pInvRI->k[2], delta.z, delta.y, delta.x );
}
void CPhysicsObject::EnableMotion( bool enable )
{
if ( IsStatic() )
return;
bool isMoveable = IsMotionEnabled();
// no change
if ( isMoveable == enable )
return;
BEGIN_IVP_ALLOCATION();
m_pObject->set_pinned( enable ? IVP_FALSE : IVP_TRUE );
END_IVP_ALLOCATION();
if ( enable && IsHinged() )
{
BecomeHinged( m_hingedAxis-1 );
}
RecheckCollisionFilter();
RecheckContactPoints();
}
bool CPhysicsObject::IsControlledByGame() const
{
if (m_pShadow && !m_pShadow->IsPhysicallyControlled())
return true;
if ( CallbackFlags() & CALLBACK_IS_PLAYER_CONTROLLER )
return true;
return false;
}
IPhysicsFrictionSnapshot *CPhysicsObject::CreateFrictionSnapshot()
{
return ::CreateFrictionSnapshot( m_pObject );
}
void CPhysicsObject::DestroyFrictionSnapshot( IPhysicsFrictionSnapshot *pSnapshot )
{
::DestroyFrictionSnapshot(pSnapshot);
}
bool CPhysicsObject::IsMassCenterAtDefault() const
{
// this is the actual mass center of the object as created
Vector massCenterHL = GetMassCenterLocalSpace();
// Get the default mass center to see if it has been changed
IVP_U_Float_Point massCenterIVPDefault;
Vector massCenterHLDefault;
GetObject()->get_surface_manager()->get_mass_center( &massCenterIVPDefault );
ConvertPositionToHL( massCenterIVPDefault, massCenterHLDefault );
float delta = (massCenterHLDefault - massCenterHL).Length();
return ( delta <= g_PhysicsUnits.collisionSweepIncrementalEpsilon ) ? true : false;
}
Vector CPhysicsObject::GetMassCenterLocalSpace() const
{
if ( m_pObject->flags.shift_core_f_object_is_zero )
return vec3_origin;
Vector out;
ConvertPositionToHL( *m_pObject->get_shift_core_f_object(), out );
// core shift is what you add to the mass center to get the origin
// so we want the negative core shift (origin relative position of the mass center)
return -out;
}
void CPhysicsObject::SetGameData( void *pGameData )
{
m_pGameData = pGameData;
}
void *CPhysicsObject::GetGameData( void ) const
{
return m_pGameData;
}
void CPhysicsObject::SetMass( float mass )
{
bool reset = false;
if ( !IsMoveable() )
{
reset = true;
EnableMotion(true);
}
Assert( mass > 0 );
mass = clamp( mass, 0, VPHYSICS_MAX_MASS ); // NOTE: Allow zero procedurally, but not by initialization
m_pObject->change_mass( mass );
SetVolume( m_volume );
RecomputeDragBases();
if ( reset )
{
EnableMotion(false);
}
}
float CPhysicsObject::GetMass( void ) const
{
return m_pObject->get_core()->get_mass();
}
float CPhysicsObject::GetInvMass( void ) const
{
return m_pObject->get_core()->get_inv_mass();
}
Vector CPhysicsObject::GetInertia( void ) const
{
const IVP_U_Float_Point *pRI = m_pObject->get_core()->get_rot_inertia();
Vector hlInertia;
ConvertDirectionToHL( *pRI, hlInertia );
VectorAbs( hlInertia, hlInertia );
return hlInertia;
}
Vector CPhysicsObject::GetInvInertia( void ) const
{
const IVP_U_Float_Point *pRI = m_pObject->get_core()->get_inv_rot_inertia();
Vector hlInvInertia;
ConvertDirectionToHL( *pRI, hlInvInertia );
VectorAbs( hlInvInertia, hlInvInertia );
return hlInvInertia;
}
void CPhysicsObject::SetInertia( const Vector &inertia )
{
IVP_U_Float_Point ri;
ConvertDirectionToIVP( inertia, ri );
ri.k[0] = IVP_Inline_Math::fabsd(ri.k[0]);
ri.k[1] = IVP_Inline_Math::fabsd(ri.k[1]);
ri.k[2] = IVP_Inline_Math::fabsd(ri.k[2]);
m_pObject->get_core()->set_rotation_inertia( &ri );
}
void CPhysicsObject::GetDamping( float *speed, float *rot ) const
{
IVP_Core *pCore = m_pObject->get_core();
if ( speed )
{
*speed = pCore->speed_damp_factor;
}
if ( rot )
{
*rot = pCore->rot_speed_damp_factor.k[0];
}
}
void CPhysicsObject::SetDamping( const float *speed, const float *rot )
{
IVP_Core *pCore = m_pObject->get_core();
if ( speed )
{
pCore->speed_damp_factor = *speed;
}
if ( rot )
{
pCore->rot_speed_damp_factor.set( *rot, *rot, *rot );
}
}
void CPhysicsObject::SetVolume( float volume )
{
m_volume = volume;
if ( volume != 0.f )
{
// minimum volume is 5 cubic inches - otherwise buoyancy can get unstable
if ( volume < 5.0f )
{
volume = 5.0f;
}
volume *= HL2IVP_FACTOR*HL2IVP_FACTOR*HL2IVP_FACTOR;
float density = GetMass() / volume;
float matDensity;
physprops->GetPhysicsProperties( GetMaterialIndexInternal(), &matDensity, NULL, NULL, NULL );
m_buoyancyRatio = density / matDensity;
}
else
{
m_buoyancyRatio = 1.0f;
}
}
float CPhysicsObject::GetVolume() const
{
return m_volume;
}
void CPhysicsObject::SetBuoyancyRatio( float ratio )
{
m_buoyancyRatio = ratio;
}
void CPhysicsObject::SetContents( unsigned int contents )
{
m_contentsMask = contents;
}
// converts HL local units to HL world units
void CPhysicsObject::LocalToWorld( Vector *worldPosition, const Vector &localPosition ) const
{
matrix3x4_t matrix;
GetPositionMatrix( &matrix );
// copy in case the src == dest
VectorTransform( Vector(localPosition), matrix, *worldPosition );
}
// Converts world HL units to HL local/object units
void CPhysicsObject::WorldToLocal( Vector *localPosition, const Vector &worldPosition ) const
{
matrix3x4_t matrix;
GetPositionMatrix( &matrix );
// copy in case the src == dest
VectorITransform( Vector(worldPosition), matrix, *localPosition );
}
void CPhysicsObject::LocalToWorldVector( Vector *worldVector, const Vector &localVector ) const
{
matrix3x4_t matrix;
GetPositionMatrix( &matrix );
// copy in case the src == dest
VectorRotate( Vector(localVector), matrix, *worldVector );
}
void CPhysicsObject::WorldToLocalVector( Vector *localVector, const Vector &worldVector ) const
{
matrix3x4_t matrix;
GetPositionMatrix( &matrix );
// copy in case the src == dest
VectorIRotate( Vector(worldVector), matrix, *localVector );
}
// Apply force impulse (momentum) to the object
void CPhysicsObject::ApplyForceCenter( const Vector &forceVector )
{
if ( !IsMoveable() )
return;
IVP_U_Float_Point tmp;
ConvertForceImpulseToIVP( forceVector, tmp );
IVP_Core *core = m_pObject->get_core();
tmp.mult( core->get_inv_mass() );
m_pObject->async_add_speed_object_ws( &tmp );
ClampVelocity();
}
void CPhysicsObject::ApplyForceOffset( const Vector &forceVector, const Vector &worldPosition )
{
if ( !IsMoveable() )
return;
IVP_U_Point pos;
IVP_U_Float_Point force;
ConvertForceImpulseToIVP( forceVector, force );
ConvertPositionToIVP( worldPosition, pos );
IVP_Core *core = m_pObject->get_core();
core->async_push_core_ws( &pos, &force );
Wake();
ClampVelocity();
}
void CPhysicsObject::CalculateForceOffset( const Vector &forceVector, const Vector &worldPosition, Vector *centerForce, AngularImpulse *centerTorque ) const
{
IVP_U_Point pos;
IVP_U_Float_Point force;
ConvertPositionToIVP( forceVector, force );
ConvertPositionToIVP( worldPosition, pos );
IVP_Core *core = m_pObject->get_core();
const IVP_U_Matrix *m_world_f_core = core->get_m_world_f_core_PSI();
IVP_U_Float_Point point_d_ws;
point_d_ws.subtract(&pos, m_world_f_core->get_position());
IVP_U_Float_Point cross_point_dir;
cross_point_dir.calc_cross_product( &point_d_ws, &force);
m_world_f_core->inline_vimult3( &cross_point_dir, &cross_point_dir);
ConvertAngularImpulseToHL( cross_point_dir, *centerTorque );
ConvertForceImpulseToHL( force, *centerForce );
}
void CPhysicsObject::CalculateVelocityOffset( const Vector &forceVector, const Vector &worldPosition, Vector *centerVelocity, AngularImpulse *centerAngularVelocity ) const
{
IVP_U_Point pos;
IVP_U_Float_Point force;
ConvertForceImpulseToIVP( forceVector, force );
ConvertPositionToIVP( worldPosition, pos );
IVP_Core *core = m_pObject->get_core();
const IVP_U_Matrix *m_world_f_core = core->get_m_world_f_core_PSI();
IVP_U_Float_Point point_d_ws;
point_d_ws.subtract(&pos, m_world_f_core->get_position());
IVP_U_Float_Point cross_point_dir;
cross_point_dir.calc_cross_product( &point_d_ws, &force);
m_world_f_core->inline_vimult3( &cross_point_dir, &cross_point_dir);
cross_point_dir.set_pairwise_mult( &cross_point_dir, core->get_inv_rot_inertia());
ConvertAngularImpulseToHL( cross_point_dir, *centerAngularVelocity );
force.set_multiple( &force, core->get_inv_mass() );
ConvertForceImpulseToHL( force, *centerVelocity );
}
void CPhysicsObject::ApplyTorqueCenter( const AngularImpulse &torqueImpulse )
{
if ( !IsMoveable() )
return;
IVP_U_Float_Point ivpTorque;
ConvertAngularImpulseToIVP( torqueImpulse, ivpTorque );
IVP_Core *core = m_pObject->get_core();
core->async_rot_push_core_multiple_ws( &ivpTorque, 1.0 );
Wake();
ClampVelocity();
}
void CPhysicsObject::GetPosition( Vector *worldPosition, QAngle *angles ) const
{
IVP_U_Matrix matrix;
m_pObject->get_m_world_f_object_AT( &matrix );
if ( worldPosition )
{
ConvertPositionToHL( matrix.vv, *worldPosition );
}
if ( angles )
{
ConvertRotationToHL( matrix, *angles );
}
}
void CPhysicsObject::GetPositionMatrix( matrix3x4_t *positionMatrix ) const
{
IVP_U_Matrix matrix;
m_pObject->get_m_world_f_object_AT( &matrix );
ConvertMatrixToHL( matrix, *positionMatrix );
}
void CPhysicsObject::GetImplicitVelocity( Vector *velocity, AngularImpulse *angularVelocity ) const
{
if ( !velocity && !angularVelocity )
return;
IVP_Core *core = m_pObject->get_core();
if ( velocity )
{
// just convert the cached dx
ConvertPositionToHL( core->delta_world_f_core_psis, *velocity );
}
if ( angularVelocity )
{
// compute the relative transform that was actually integrated in the last psi
IVP_U_Quat q_core_f_core;
q_core_f_core.set_invert_mult( &core->q_world_f_core_last_psi, &core->q_world_f_core_next_psi);
// now convert that to an axis/angle pair
Quaternion q( q_core_f_core.x, q_core_f_core.y, q_core_f_core.z, q_core_f_core.w );
AngularImpulse axis;
float angle;
QuaternionAxisAngle( q, axis, angle );
// scale it by the timestep to get a velocity
angle *= core->i_delta_time;
// ConvertDirectionToHL() - convert this ipion direction (in HL type) to HL coords
float tmpY = axis.z;
angularVelocity->z = -axis.y;
angularVelocity->y = tmpY;
angularVelocity->x = axis.x;
// now scale the axis by the angle to return the data in the correct format
(*angularVelocity) *= angle;
}
}
void CPhysicsObject::GetVelocity( Vector *velocity, AngularImpulse *angularVelocity ) const
{
if ( !velocity && !angularVelocity )
return;
IVP_Core *core = m_pObject->get_core();
if ( velocity )
{
IVP_U_Float_Point speed;
speed.add( &core->speed, &core->speed_change );
ConvertPositionToHL( speed, *velocity );
}
if ( angularVelocity )
{
IVP_U_Float_Point rotSpeed;
rotSpeed.add( &core->rot_speed, &core->rot_speed_change );
// xform to HL space
ConvertAngularImpulseToHL( rotSpeed, *angularVelocity );
}
}
void CPhysicsObject::GetVelocityAtPoint( const Vector &worldPosition, Vector *pVelocity ) const
{
IVP_Core *core = m_pObject->get_core();
IVP_U_Point pos;
ConvertPositionToIVP( worldPosition, pos );
IVP_U_Float_Point rotSpeed;
rotSpeed.add( &core->rot_speed, &core->rot_speed_change );
IVP_U_Float_Point av_ws;
core->get_m_world_f_core_PSI()->vmult3( &rotSpeed, &av_ws);
IVP_U_Float_Point pos_rel;
pos_rel.subtract( &pos, core->get_position_PSI());
IVP_U_Float_Point cross;
cross.inline_calc_cross_product(&av_ws,&pos_rel);
IVP_U_Float_Point speed;
speed.add(&core->speed, &cross);
speed.add(&core->speed_change);
ConvertPositionToHL( speed, *pVelocity );
}
// UNDONE: Limit these?
void CPhysicsObject::AddVelocity( const Vector *velocity, const AngularImpulse *angularVelocity )
{
Assert(IsMoveable());
if ( !IsMoveable() )
return;
IVP_Core *core = m_pObject->get_core();
Wake();
if ( velocity )
{
IVP_U_Float_Point ivpVelocity;
ConvertPositionToIVP( *velocity, ivpVelocity );
core->speed_change.add( &ivpVelocity );
}
if ( angularVelocity )
{
IVP_U_Float_Point ivpAngularVelocity;
ConvertAngularImpulseToIVP( *angularVelocity, ivpAngularVelocity );
core->rot_speed_change.add(&ivpAngularVelocity);
}
ClampVelocity();
}
void CPhysicsObject::SetPosition( const Vector &worldPosition, const QAngle &angles, bool isTeleport )
{
IVP_U_Quat rot;
IVP_U_Point pos;
if ( m_pShadow )
{
UpdateShadow( worldPosition, angles, false, 0 );
}
ConvertPositionToIVP( worldPosition, pos );
ConvertRotationToIVP( angles, rot );
if ( m_pObject->is_collision_detection_enabled() && isTeleport )
{
EnableCollisions( false );
m_pObject->beam_object_to_new_position( &rot, &pos, IVP_FALSE );
EnableCollisions( true );
}
else
{
m_pObject->beam_object_to_new_position( &rot, &pos, IVP_FALSE );
}
}
void CPhysicsObject::SetPositionMatrix( const matrix3x4_t& matrix, bool isTeleport )
{
if ( m_pShadow )
{
Vector worldPosition;
QAngle angles;
MatrixAngles( matrix, angles );
MatrixGetColumn( matrix, 3, worldPosition );
UpdateShadow( worldPosition, angles, false, 0 );
}
IVP_U_Quat rot;
IVP_U_Matrix mat;
ConvertMatrixToIVP( matrix, mat );
rot.set_quaternion( &mat );
if ( m_pObject->is_collision_detection_enabled() && isTeleport )
{
EnableCollisions( false );
m_pObject->beam_object_to_new_position( &rot, &mat.vv, IVP_FALSE );
EnableCollisions( true );
}
else
{
m_pObject->beam_object_to_new_position( &rot, &mat.vv, IVP_FALSE );
}
}
void CPhysicsObject::SetVelocityInstantaneous( const Vector *velocity, const AngularImpulse *angularVelocity )
{
Assert(IsMoveable());
if ( !IsMoveable() )
return;
IVP_Core *core = m_pObject->get_core();
Wake();
if ( velocity )
{
ConvertPositionToIVP( *velocity, core->speed );
core->speed_change.set_to_zero();
}
if ( angularVelocity )
{
ConvertAngularImpulseToIVP( *angularVelocity, core->rot_speed );
core->rot_speed_change.set_to_zero();
}
ClampVelocity();
}
void CPhysicsObject::SetVelocity( const Vector *velocity, const AngularImpulse *angularVelocity )
{
if ( !IsMoveable() )
return;
IVP_Core *core = m_pObject->get_core();
Wake();
if ( velocity )
{
ConvertPositionToIVP( *velocity, core->speed_change );
core->speed.set_to_zero();
}
if ( angularVelocity )
{
ConvertAngularImpulseToIVP( *angularVelocity, core->rot_speed_change );
core->rot_speed.set_to_zero();
}
ClampVelocity();
}
void CPhysicsObject::ClampVelocity()
{
if ( m_pShadow )
return;
m_pObject->get_core()->apply_velocity_limit();
}
void GetWorldCoordFromSynapse( IVP_Synapse_Friction *pfriction, IVP_U_Point &world )
{
world.set(pfriction->get_contact_point()->get_contact_point_ws());
}
bool CPhysicsObject::GetContactPoint( Vector *contactPoint, IPhysicsObject **contactObject ) const
{
IVP_Synapse_Friction *pfriction = m_pObject->get_first_friction_synapse();
if ( !pfriction )
return false;
if ( contactPoint )
{
IVP_U_Point world;
GetWorldCoordFromSynapse( pfriction, world );
ConvertPositionToHL( world, *contactPoint );
}
if ( contactObject )
{
IVP_Real_Object *pivp = GetOppositeSynapseObject( pfriction );
*contactObject = static_cast<IPhysicsObject *>(pivp->client_data);
}
return true;
}
void CPhysicsObject::SetShadow( float maxSpeed, float maxAngularSpeed, bool allowPhysicsMovement, bool allowPhysicsRotation )
{
if ( m_pShadow )
{
m_pShadow->MaxSpeed( maxSpeed, maxAngularSpeed );
}
else
{
m_shadowTempGravityDisable = false;
CPhysicsEnvironment *pVEnv = GetVPhysicsEnvironment();
m_pShadow = pVEnv->CreateShadowController( this, allowPhysicsMovement, allowPhysicsRotation );
m_pShadow->MaxSpeed( maxSpeed, maxAngularSpeed );
// This really should be in the game code, but do this here because the game may (does) use
// shadow/AI control as a collision filter indicator.
RecheckCollisionFilter();
}
}
void CPhysicsObject::UpdateShadow( const Vector &targetPosition, const QAngle &targetAngles, bool tempDisableGravity, float timeOffset )
{
if ( tempDisableGravity != m_shadowTempGravityDisable )
{
m_shadowTempGravityDisable = tempDisableGravity;
if ( !m_pShadow || m_pShadow->AllowsTranslation() )
{
EnableGravity( !m_shadowTempGravityDisable );
}
}
if ( m_pShadow )
{
m_pShadow->Update( targetPosition, targetAngles, timeOffset );
}
}
void CPhysicsObject::RemoveShadowController()
{
if ( m_pShadow )
{
CPhysicsEnvironment *pVEnv = GetVPhysicsEnvironment();
pVEnv->DestroyShadowController( m_pShadow );
m_pShadow = NULL;
}
}
// Back door to allow save/restore of backlink between shadow controller and physics object
void CPhysicsObject::RestoreShadowController( IPhysicsShadowController *pShadowController )
{
Assert( !m_pShadow );
m_pShadow = pShadowController;
}
int CPhysicsObject::GetShadowPosition( Vector *position, QAngle *angles ) const
{
IVP_U_Matrix matrix;
IVP_Environment *pEnv = m_pObject->get_environment();
double psi = pEnv->get_next_PSI_time().get_seconds();
m_pObject->calc_at_matrix( psi, &matrix );
if ( angles )
{
ConvertRotationToHL( matrix, *angles );
}
if ( position )
{
ConvertPositionToHL( matrix.vv, *position );
}
return 1;
}
IPhysicsShadowController *CPhysicsObject::GetShadowController( void ) const
{
return m_pShadow;
}
const CPhysCollide *CPhysicsObject::GetCollide( void ) const
{
return m_pCollide;
}
IVP_SurfaceManager *CPhysicsObject::GetSurfaceManager( void ) const
{
if ( m_collideType != COLLIDE_BALL )
{
return m_pObject->get_surface_manager();
}
return NULL;
}
float CPhysicsObject::GetDragInDirection( const IVP_U_Float_Point &velocity ) const
{
IVP_U_Float_Point local;
const IVP_U_Matrix *m_world_f_core = m_pObject->get_core()->get_m_world_f_core_PSI();
m_world_f_core->vimult3( &velocity, &local );
return m_dragCoefficient * IVP_Inline_Math::fabsd( local.k[0] * m_dragBasis.x ) +
IVP_Inline_Math::fabsd( local.k[1] * m_dragBasis.y ) +
IVP_Inline_Math::fabsd( local.k[2] * m_dragBasis.z );
}
float CPhysicsObject::GetAngularDragInDirection( const IVP_U_Float_Point &angVelocity ) const
{
return m_angDragCoefficient * IVP_Inline_Math::fabsd( angVelocity.k[0] * m_angDragBasis.x ) +
IVP_Inline_Math::fabsd( angVelocity.k[1] * m_angDragBasis.y ) +
IVP_Inline_Math::fabsd( angVelocity.k[2] * m_angDragBasis.z );
}
const char *CPhysicsObject::GetName() const
{
return m_pObject->get_name();
}
void CPhysicsObject::SetMaterialIndex( int materialIndex )
{
if ( m_materialIndex == materialIndex )
return;
m_materialIndex = materialIndex;
IVP_Material *pMaterial = physprops->GetIVPMaterial( materialIndex );
Assert(pMaterial);
m_pObject->l_default_material = pMaterial;
m_callbacks |= CALLBACK_ENABLING_COLLISION;
BEGIN_IVP_ALLOCATION();
m_pObject->recompile_material_changed();
END_IVP_ALLOCATION();
m_callbacks &= ~CALLBACK_ENABLING_COLLISION;
if ( GetShadowController() )
{
GetShadowController()->ObjectMaterialChanged( materialIndex );
}
}
// convert square velocity magnitude from IVP to HL
float CPhysicsObject::GetEnergy() const
{
IVP_Core *pCore = m_pObject->get_core();
IVP_FLOAT energy = 0.0f;
IVP_U_Float_Point tmp;
energy = 0.5f * pCore->get_mass() * pCore->speed.dot_product(&pCore->speed); // 1/2mvv
tmp.set_pairwise_mult(&pCore->rot_speed, pCore->get_rot_inertia()); // wI
energy += 0.5f * tmp.dot_product(&pCore->rot_speed); // 1/2mvv + 1/2wIw
return ConvertEnergyToHL( energy );
}
float CPhysicsObject::ComputeShadowControl( const hlshadowcontrol_params_t &params, float secondsToArrival, float dt )
{
return ComputeShadowControllerHL( this, params, secondsToArrival, dt );
}
float CPhysicsObject::GetSphereRadius() const
{
if ( m_collideType != COLLIDE_BALL )
return 0;
return ConvertDistanceToHL( m_pObject->to_ball()->get_radius() );
}
float CPhysicsObject::CalculateLinearDrag( const Vector &unitDirection ) const
{
IVP_U_Float_Point ivpDir;
ConvertDirectionToIVP( unitDirection, ivpDir );
return GetDragInDirection( ivpDir );
}
float CPhysicsObject::CalculateAngularDrag( const Vector &objectSpaceRotationAxis ) const
{
IVP_U_Float_Point ivpAxis;
ConvertDirectionToIVP( objectSpaceRotationAxis, ivpAxis );
// drag factor is per-radian, convert to per-degree
return GetAngularDragInDirection( ivpAxis ) * DEG2RAD(1.0);
}
void CPhysicsObject::BecomeTrigger()
{
if ( IsTrigger() )
return;
if ( GetShadowController() )
{
// triggers won't have the standard collisions, so the material change is no longer necessary
// also: This will fix problems with surfaceprops if the trigger becomes a fluid.
GetShadowController()->UseShadowMaterial( false );
}
EnableDrag( false );
EnableGravity( false );
// UNDONE: Use defaults here? Do we want object sets by default?
IVP_Template_Phantom trigger;
trigger.manage_intruding_cores = IVP_TRUE; // manage a list of intruded objects
trigger.manage_sleeping_cores = IVP_TRUE; // don't untouch/touch on sleep/wake
trigger.dont_check_for_unmoveables = IVP_TRUE;
trigger.exit_policy_extra_radius = 0.1f; // relatively strict exit check [m]
bool enableCollisions = IsCollisionEnabled();
EnableCollisions( false );
BEGIN_IVP_ALLOCATION();
m_pObject->convert_to_phantom( &trigger );
END_IVP_ALLOCATION();
// hook up events
CPhysicsEnvironment *pVEnv = GetVPhysicsEnvironment();
pVEnv->PhantomAdd( this );
EnableCollisions( enableCollisions );
}
void CPhysicsObject::RemoveTrigger()
{
IVP_Controller_Phantom *pController = m_pObject->get_controller_phantom();
// NOTE: This will remove the back-link in the object
delete pController;
}
bool CPhysicsObject::IsTrigger() const
{
return m_pObject->get_controller_phantom() != NULL ? true : false;
}
bool CPhysicsObject::IsFluid() const
{
IVP_Controller_Phantom *pController = m_pObject->get_controller_phantom();
if ( pController )
{
// UNDONE: Make a base class for triggers? IPhysicsTrigger?
// and derive fluids and any other triggers from that class
// then you can ask that class what to do here.
if ( pController->client_data )
return true;
}
return false;
}
// sets the object to be hinged. Fixed it place, but able to rotate around one axis.
void CPhysicsObject::BecomeHinged( int localAxis )
{
if ( IsMoveable() )
{
float savedMass = GetMass();
IVP_U_Float_Hesse *iri = (IVP_U_Float_Hesse *)m_pObject->get_core()->get_inv_rot_inertia();
float savedRI[3];
for ( int i = 0; i < 3; i++ )
savedRI[i] = iri->k[i];
SetMass( VPHYSICS_MAX_MASS );
IVP_U_Float_Hesse tmp = *iri;
#if 0
for ( i = 0; i < 3; i++ )
tmp.k[i] = savedRI[i];
#else
int localAxisIVP = ConvertCoordinateAxisToIVP(localAxis);
tmp.k[localAxisIVP] = savedRI[localAxisIVP];
#endif
SetMass( savedMass );
*iri = tmp;
}
m_hingedAxis = localAxis+1;
}
void CPhysicsObject::RemoveHinged()
{
m_hingedAxis = 0;
m_pObject->get_core()->calc_calc();
}
// dumps info about the object to Msg()
void CPhysicsObject::OutputDebugInfo() const
{
Msg("-----------------\nObject: %s\n", m_pObject->get_name());
Msg("Mass: %.1f (inv %.3f)\n", GetMass(), GetInvMass() );
Vector inertia = GetInertia();
Vector invInertia = GetInvInertia();
Msg("Inertia: %.2f, %.2f, %.2f (inv %.3f, %.3f, %.3f)\n", inertia.x, inertia.y, inertia.z, invInertia.x, invInertia.y, invInertia.z );
Vector speed, angSpeed;
GetVelocity( &speed, &angSpeed );
Msg("Velocity: %.2f, %.2f, %.2f \n", speed.x, speed.y, speed.z );
Msg("Ang Velocity: %.2f, %.2f, %.2f \n", angSpeed.x, angSpeed.y, angSpeed.z );
float damp, angDamp;
GetDamping( &damp, &angDamp );
Msg("Damping %.2f linear, %.2f angular\n", damp, angDamp );
Msg("Linear Drag: %.2f, %.2f, %.2f (factor %.2f)\n", m_dragBasis.x, m_dragBasis.y, m_dragBasis.z, m_dragCoefficient );
Msg("Angular Drag: %.2f, %.2f, %.2f (factor %.2f)\n", m_angDragBasis.x, m_angDragBasis.y, m_angDragBasis.z, m_angDragCoefficient );
if ( IsHinged() )
{
const char *pAxisNames[] = {"x", "y", "z"};
Msg("Hinged on %s axis\n", pAxisNames[m_hingedAxis-1] );
}
Msg("attached to %d controllers\n", m_pObject->get_core()->controllers_of_core.len() );
for (int k = m_pObject->get_core()->controllers_of_core.len()-1; k>=0;k--)
{
// NOTE: Set a breakpoint here and take a look at what it's hooked to
IVP_Controller *pController = m_pObject->get_core()->controllers_of_core.element_at(k);
Msg("%d) %s\n", k, pController->get_controller_name() );
}
Msg("State: %s, Collision %s, Motion %s, %sFlags %04X (game %04x, index %d)\n",
IsAsleep() ? "Asleep" : "Awake",
IsCollisionEnabled() ? "Enabled" : "Disabled",
IsStatic() ? "Static" : (IsMotionEnabled() ? "Enabled" : "Disabled"),
(GetCallbackFlags() & CALLBACK_MARKED_FOR_TEST) ? "Debug! " : "",
(int)GetCallbackFlags(), (int)GetGameFlags(), (int)GetGameIndex() );
float matDensity = 0;
float matThickness = 0;
float matFriction = 0;
float matElasticity = 0;
physprops->GetPhysicsProperties( GetMaterialIndexInternal(), &matDensity, &matThickness, &matFriction, &matElasticity );
Msg("Material: %s : density(%.1f), thickness(%.2f), friction(%.2f), elasticity(%.2f)\n", physprops->GetPropName(GetMaterialIndexInternal()),
matDensity, matThickness, matFriction, matElasticity );
if ( GetCollide() )
{
OutputCollideDebugInfo( GetCollide() );
}
}
bool CPhysicsObject::IsAttachedToConstraint( bool bExternalOnly ) const
{
if ( m_pObject )
{
for (int k = m_pObject->get_core()->controllers_of_core.len()-1; k>=0;k--)
{
IVP_Controller *pController = m_pObject->get_core()->controllers_of_core.element_at(k);
if ( pController->get_controller_priority() == IVP_CP_CONSTRAINTS )
{
if ( !bExternalOnly || IsExternalConstraint(pController, GetGameData()) )
return true;
}
}
}
return false;
}
static void InitObjectTemplate( IVP_Template_Real_Object &objectTemplate, int materialIndex, objectparams_t *pParams, bool isStatic )
{
objectTemplate.mass = pParams->mass;
objectTemplate.mass = clamp( objectTemplate.mass, VPHYSICS_MIN_MASS, VPHYSICS_MAX_MASS );
if ( materialIndex >= 0 )
{
objectTemplate.material = physprops->GetIVPMaterial( materialIndex );
}
else
{
materialIndex = physprops->GetSurfaceIndex( "default" );
objectTemplate.material = physprops->GetIVPMaterial( materialIndex );
}
// HACKHACK: Do something with this name?
BEGIN_IVP_ALLOCATION();
if ( IsPC() )
{
objectTemplate.set_name(pParams->pName);
}
END_IVP_ALLOCATION();
#if USE_COLLISION_GROUP_STRING
objectTemplate.set_nocoll_group_ident( NULL );
#endif
objectTemplate.physical_unmoveable = isStatic ? IVP_TRUE : IVP_FALSE;
objectTemplate.rot_inertia_is_factor = IVP_TRUE;
float inertia = pParams->inertia;
// don't allow <=0 inertia!!!!
if ( inertia <= 0 )
inertia = 1.0;
if ( inertia > 1e18f )
inertia = 1e18f;
objectTemplate.rot_inertia.set(inertia, inertia, inertia);
objectTemplate.rot_speed_damp_factor.set(pParams->rotdamping, pParams->rotdamping, pParams->rotdamping);
objectTemplate.speed_damp_factor = pParams->damping;
objectTemplate.auto_check_rot_inertia = pParams->rotInertiaLimit;
}
CPhysicsObject *CreatePhysicsObject( CPhysicsEnvironment *pEnvironment, const CPhysCollide *pCollisionModel, int materialIndex, const Vector &position, const QAngle& angles, objectparams_t *pParams, bool isStatic )
{
if ( materialIndex < 0 )
{
materialIndex = physprops->GetSurfaceIndex( "default" );
}
AssertOnce(materialIndex>=0 && materialIndex<127);
IVP_Template_Real_Object objectTemplate;
IVP_U_Quat rotation;
IVP_U_Point pos;
Assert( position.IsValid() );
Assert( angles.IsValid() );
#if _WIN32
if ( !position.IsValid() || !angles.IsValid() )
{
DebuggerBreakIfDebugging();
Warning("Invalid initial position on %s\n", pParams->pName );
Vector *pPos = (Vector *)&position;
QAngle *pRot = (QAngle *)&angles;
if ( !pPos->IsValid() )
pPos->Init();
if ( !pRot->IsValid() )
pRot->Init();
}
#endif
ConvertRotationToIVP( angles, rotation );
ConvertPositionToIVP( position, pos );
InitObjectTemplate( objectTemplate, materialIndex, pParams, isStatic );
IVP_U_Matrix massCenterMatrix;
massCenterMatrix.init();
if ( pParams->massCenterOverride )
{
IVP_U_Point center;
ConvertPositionToIVP( *pParams->massCenterOverride, center );
massCenterMatrix.shift_os( &center );
objectTemplate.mass_center_override = &massCenterMatrix;
}
CPhysicsObject *pObject = new CPhysicsObject();
short collideType;
IVP_SurfaceManager *pSurman = CreateSurfaceManager( pCollisionModel, collideType );
if ( !pSurman )
return NULL;
pObject->m_collideType = collideType;
pObject->m_asleepSinceCreation = true;
BEGIN_IVP_ALLOCATION();
IVP_Polygon *realObject = pEnvironment->GetIVPEnvironment()->create_polygon(pSurman, &objectTemplate, &rotation, &pos);
pObject->Init( pCollisionModel, realObject, materialIndex, pParams->volume, pParams->dragCoefficient, pParams->dragCoefficient );
pObject->SetGameData( pParams->pGameData );
if ( pParams->enableCollisions )
{
pObject->EnableCollisions( true );
}
if ( !isStatic && pParams->dragCoefficient != 0.0f )
{
pObject->EnableDrag( true );
}
END_IVP_ALLOCATION();
return pObject;
}
CPhysicsObject *CreatePhysicsSphere( CPhysicsEnvironment *pEnvironment, float radius, int materialIndex, const Vector &position, const QAngle &angles, objectparams_t *pParams, bool isStatic )
{
IVP_U_Quat rotation;
IVP_U_Point pos;
ConvertRotationToIVP( angles, rotation );
ConvertPositionToIVP( position, pos );
IVP_Template_Real_Object objectTemplate;
InitObjectTemplate( objectTemplate, materialIndex, pParams, isStatic );
IVP_Template_Ball ballTemplate;
ballTemplate.radius = ConvertDistanceToIVP( radius );
MEM_ALLOC_CREDIT();
IVP_Ball *realObject = pEnvironment->GetIVPEnvironment()->create_ball( &ballTemplate, &objectTemplate, &rotation, &pos );
float volume = pParams->volume;
if ( volume <= 0 )
{
volume = 4.0f * radius * radius * radius * M_PI / 3.0f;
}
CPhysicsObject *pObject = new CPhysicsObject();
pObject->Init( NULL, realObject, materialIndex, volume, 0, 0 ); //, pParams->dragCoefficient, pParams->dragCoefficient
pObject->SetGameData( pParams->pGameData );
if ( pParams->enableCollisions )
{
pObject->EnableCollisions( true );
}
// drag is not supported on spheres
//pObject->EnableDrag( false );
return pObject;
}
class CMaterialIndexOps : public CDefSaveRestoreOps
{
public:
// save data type interface
virtual void Save( const SaveRestoreFieldInfo_t &fieldInfo, ISave *pSave )
{
int materialIndex = *((int *)fieldInfo.pField);
const char *pMaterialName = physprops->GetPropName( materialIndex );
if ( !pMaterialName )
{
pMaterialName = physprops->GetPropName( 0 );
}
int len = strlen(pMaterialName) + 1;
pSave->WriteInt( &len );
pSave->WriteString( pMaterialName );
}
virtual void Restore( const SaveRestoreFieldInfo_t &fieldInfo, IRestore *pRestore )
{
char nameBuf[1024];
int nameLen = pRestore->ReadInt();
pRestore->ReadString( nameBuf, sizeof(nameBuf), nameLen );
int *pMaterialIndex = (int *)fieldInfo.pField;
*pMaterialIndex = physprops->GetSurfaceIndex( nameBuf );
if ( *pMaterialIndex < 0 )
{
*pMaterialIndex = 0;
}
}
virtual bool IsEmpty( const SaveRestoreFieldInfo_t &fieldInfo )
{
int *pMaterialIndex = (int *)fieldInfo.pField;
return (*pMaterialIndex == 0);
}
virtual void MakeEmpty( const SaveRestoreFieldInfo_t &fieldInfo )
{
int *pMaterialIndex = (int *)fieldInfo.pField;
*pMaterialIndex = 0;
}
};
static CMaterialIndexOps g_MaterialIndexDataOps;
ISaveRestoreOps* MaterialIndexDataOps()
{
return &g_MaterialIndexDataOps;
}
BEGIN_SIMPLE_DATADESC( vphysics_save_cphysicsobject_t )
// DEFINE_FIELD( pCollide, FIELD_??? ), // don't save this
// DEFINE_FIELD( pName, FIELD_??? ), // don't save this
DEFINE_FIELD( sphereRadius, FIELD_FLOAT ),
DEFINE_FIELD( isStatic, FIELD_BOOLEAN ),
DEFINE_FIELD( collisionEnabled, FIELD_BOOLEAN ),
DEFINE_FIELD( gravityEnabled, FIELD_BOOLEAN ),
DEFINE_FIELD( dragEnabled, FIELD_BOOLEAN ),
DEFINE_FIELD( motionEnabled, FIELD_BOOLEAN ),
DEFINE_FIELD( isAsleep, FIELD_BOOLEAN ),
DEFINE_FIELD( isTrigger, FIELD_BOOLEAN ),
DEFINE_FIELD( asleepSinceCreation, FIELD_BOOLEAN ),
DEFINE_FIELD( hasTouchedDynamic, FIELD_BOOLEAN ),
DEFINE_CUSTOM_FIELD( materialIndex, &g_MaterialIndexDataOps ),
DEFINE_FIELD( mass, FIELD_FLOAT ),
DEFINE_FIELD( rotInertia, FIELD_VECTOR ),
DEFINE_FIELD( speedDamping, FIELD_FLOAT ),
DEFINE_FIELD( rotSpeedDamping, FIELD_FLOAT ),
DEFINE_FIELD( massCenterOverride, FIELD_VECTOR ),
DEFINE_FIELD( callbacks, FIELD_INTEGER ),
DEFINE_FIELD( gameFlags, FIELD_INTEGER ),
DEFINE_FIELD( contentsMask, FIELD_INTEGER ),
DEFINE_FIELD( volume, FIELD_FLOAT ),
DEFINE_FIELD( dragCoefficient, FIELD_FLOAT ),
DEFINE_FIELD( angDragCoefficient, FIELD_FLOAT ),
DEFINE_FIELD( hasShadowController,FIELD_BOOLEAN ),
//DEFINE_VPHYSPTR( pShadow ),
DEFINE_FIELD( origin, FIELD_POSITION_VECTOR ),
DEFINE_FIELD( angles, FIELD_VECTOR ),
DEFINE_FIELD( velocity, FIELD_VECTOR ),
DEFINE_FIELD( angVelocity, FIELD_VECTOR ),
DEFINE_FIELD( collideType, FIELD_SHORT ),
DEFINE_FIELD( gameIndex, FIELD_SHORT ),
DEFINE_FIELD( hingeAxis, FIELD_INTEGER ),
END_DATADESC()
bool CPhysicsObject::IsCollisionEnabled() const
{
return GetObject()->is_collision_detection_enabled() ? true : false;
}
void CPhysicsObject::WriteToTemplate( vphysics_save_cphysicsobject_t &objectTemplate )
{
if ( m_collideType == COLLIDE_BALL )
{
objectTemplate.pCollide = NULL;
objectTemplate.sphereRadius = GetSphereRadius();
}
else
{
objectTemplate.pCollide = GetCollide();
objectTemplate.sphereRadius = 0;
}
objectTemplate.isStatic = IsStatic();
objectTemplate.collisionEnabled = IsCollisionEnabled();
objectTemplate.gravityEnabled = IsGravityEnabled();
objectTemplate.dragEnabled = IsDragEnabled();
objectTemplate.motionEnabled = IsMotionEnabled();
objectTemplate.isAsleep = IsAsleep();
objectTemplate.isTrigger = IsTrigger();
objectTemplate.asleepSinceCreation = m_asleepSinceCreation;
objectTemplate.materialIndex = m_materialIndex;
objectTemplate.mass = GetMass();
objectTemplate.rotInertia = GetInertia();
GetDamping( &objectTemplate.speedDamping, &objectTemplate.rotSpeedDamping );
objectTemplate.massCenterOverride.Init();
if ( !IsMassCenterAtDefault() )
{
objectTemplate.massCenterOverride = GetMassCenterLocalSpace();
}
objectTemplate.callbacks = m_callbacks;
objectTemplate.gameFlags = m_gameFlags;
objectTemplate.volume = GetVolume();
objectTemplate.dragCoefficient = m_dragCoefficient;
objectTemplate.angDragCoefficient = m_angDragCoefficient;
objectTemplate.pShadow = m_pShadow;
objectTemplate.hasShadowController = (m_pShadow != NULL) ? true : false;
objectTemplate.hasTouchedDynamic = HasTouchedDynamic();
//bool m_shadowTempGravityDisable;
objectTemplate.collideType = m_collideType;
objectTemplate.gameIndex = m_gameIndex;
objectTemplate.contentsMask = m_contentsMask;
objectTemplate.hingeAxis = m_hingedAxis;
GetPosition( &objectTemplate.origin, &objectTemplate.angles );
GetVelocity( &objectTemplate.velocity, &objectTemplate.angVelocity );
}
void CPhysicsObject::InitFromTemplate( CPhysicsEnvironment *pEnvironment, void *pGameData, const vphysics_save_cphysicsobject_t &objectTemplate )
{
MEM_ALLOC_CREDIT();
m_collideType = objectTemplate.collideType;
IVP_Template_Real_Object ivpObjectTemplate;
IVP_U_Quat rotation;
IVP_U_Point pos;
ConvertRotationToIVP( objectTemplate.angles, rotation );
ConvertPositionToIVP( objectTemplate.origin, pos );
ivpObjectTemplate.mass = objectTemplate.mass;
if ( objectTemplate.materialIndex >= 0 )
{
ivpObjectTemplate.material = physprops->GetIVPMaterial( objectTemplate.materialIndex );
}
else
{
ivpObjectTemplate.material = physprops->GetIVPMaterial( physprops->GetSurfaceIndex( "default" ) );
}
Assert( ivpObjectTemplate.material );
// HACKHACK: Pass this name in for debug
ivpObjectTemplate.set_name(objectTemplate.pName);
#if USE_COLLISION_GROUP_STRING
ivpObjectTemplate.set_nocoll_group_ident( NULL );
#endif
ivpObjectTemplate.physical_unmoveable = objectTemplate.isStatic ? IVP_TRUE : IVP_FALSE;
ivpObjectTemplate.rot_inertia_is_factor = IVP_TRUE;
ivpObjectTemplate.rot_inertia.set( 1,1,1 );
ivpObjectTemplate.rot_speed_damp_factor.set( objectTemplate.rotSpeedDamping, objectTemplate.rotSpeedDamping, objectTemplate.rotSpeedDamping );
ivpObjectTemplate.speed_damp_factor = objectTemplate.speedDamping;
IVP_U_Matrix massCenterMatrix;
massCenterMatrix.init();
if ( objectTemplate.massCenterOverride != vec3_origin )
{
IVP_U_Point center;
ConvertPositionToIVP( objectTemplate.massCenterOverride, center );
massCenterMatrix.shift_os( &center );
ivpObjectTemplate.mass_center_override = &massCenterMatrix;
}
IVP_Real_Object *realObject = NULL;
if ( m_collideType == COLLIDE_BALL )
{
IVP_Template_Ball ballTemplate;
ballTemplate.radius = ConvertDistanceToIVP( objectTemplate.sphereRadius );
realObject = pEnvironment->GetIVPEnvironment()->create_ball( &ballTemplate, &ivpObjectTemplate, &rotation, &pos );
}
else
{
short collideType;
IVP_SurfaceManager *surman = CreateSurfaceManager( objectTemplate.pCollide, collideType );
m_collideType = collideType;
realObject = pEnvironment->GetIVPEnvironment()->create_polygon(surman, &ivpObjectTemplate, &rotation, &pos);
}
m_pObject = realObject;
SetInertia( objectTemplate.rotInertia );
Init( objectTemplate.pCollide, realObject, objectTemplate.materialIndex, objectTemplate.volume, objectTemplate.dragCoefficient, objectTemplate.dragCoefficient );
SetCallbackFlags( (unsigned short) objectTemplate.callbacks );
SetGameFlags( (unsigned short) objectTemplate.gameFlags );
SetGameIndex( objectTemplate.gameIndex );
SetGameData( pGameData );
SetContents( objectTemplate.contentsMask );
if ( objectTemplate.dragEnabled )
{
Assert( !objectTemplate.isStatic );
EnableDrag( true );
}
if ( !objectTemplate.motionEnabled )
{
Assert( !objectTemplate.isStatic );
EnableMotion( false );
}
if ( objectTemplate.isTrigger )
{
BecomeTrigger();
}
if ( !objectTemplate.gravityEnabled )
{
EnableGravity( false );
}
if ( objectTemplate.collisionEnabled )
{
EnableCollisions( true );
}
// will wake up the object
if ( objectTemplate.velocity.LengthSqr() != 0 || objectTemplate.angVelocity.LengthSqr() != 0 )
{
SetVelocityInstantaneous( &objectTemplate.velocity, &objectTemplate.angVelocity );
if ( objectTemplate.isAsleep )
{
Sleep();
}
}
m_asleepSinceCreation = objectTemplate.asleepSinceCreation;
if ( !objectTemplate.isAsleep )
{
Assert( !objectTemplate.isStatic );
Wake();
}
if ( objectTemplate.hingeAxis )
{
BecomeHinged( objectTemplate.hingeAxis-1 );
}
if ( objectTemplate.hasTouchedDynamic )
{
SetTouchedDynamic();
}
m_pShadow = NULL;
}
bool SavePhysicsObject( const physsaveparams_t &params, CPhysicsObject *pObject )
{
vphysics_save_cphysicsobject_t objectTemplate;
memset( &objectTemplate, 0, sizeof(objectTemplate) );
pObject->WriteToTemplate( objectTemplate );
params.pSave->WriteAll( &objectTemplate );
if ( objectTemplate.hasShadowController )
{
return SavePhysicsShadowController( params, objectTemplate.pShadow );
}
return true;
}
bool RestorePhysicsObject( const physrestoreparams_t &params, CPhysicsObject **ppObject )
{
vphysics_save_cphysicsobject_t objectTemplate;
memset( &objectTemplate, 0, sizeof(objectTemplate) );
params.pRestore->ReadAll( &objectTemplate );
Assert(objectTemplate.origin.IsValid());
Assert(objectTemplate.angles.IsValid());
objectTemplate.pCollide = params.pCollisionModel;
objectTemplate.pName = params.pName;
*ppObject = new CPhysicsObject();
postrestore_objectlist_t entry;
entry.Defaults();
if ( objectTemplate.collisionEnabled )
{
// queue up the collision enable for these in case their entities have other dependent
// physics handlers (like controllers) that need to be restored before callbacks are useful
entry.pObject = *ppObject;
entry.enableCollisions = true;
objectTemplate.collisionEnabled = false;
}
(*ppObject)->InitFromTemplate( static_cast<CPhysicsEnvironment *>(params.pEnvironment), params.pGameData, objectTemplate );
if ( (*ppObject)->IsAsleep() && !(*ppObject)->m_asleepSinceCreation && !(*ppObject)->IsStatic() )
{
entry.pObject = *ppObject;
entry.growFriction = true;
}
if ( entry.pObject )
{
g_PostRestoreObjectList.AddToTail( entry );
}
if ( objectTemplate.hasShadowController )
{
bool restored = RestorePhysicsShadowControllerInternal( params, &objectTemplate.pShadow, *ppObject );
(*ppObject)->RestoreShadowController( objectTemplate.pShadow );
return restored;
}
return true;
}
IPhysicsObject *CreateObjectFromBuffer( CPhysicsEnvironment *pEnvironment, void *pGameData, unsigned char *pBuffer, unsigned int bufferSize, bool enableCollisions )
{
CPhysicsObject *pObject = new CPhysicsObject();
if ( bufferSize >= sizeof(vphysics_save_cphysicsobject_t))
{
vphysics_save_cphysicsobject_t *pTemplate = reinterpret_cast<vphysics_save_cphysicsobject_t *>(pBuffer);
pTemplate->hasShadowController = false; // this hasn't been saved separately so cannot be supported via this path
pObject->InitFromTemplate( pEnvironment, pGameData, *pTemplate );
if ( pTemplate->collisionEnabled && enableCollisions )
{
pObject->EnableCollisions(true);
}
return pObject;
}
return NULL;
}
IPhysicsObject *CreateObjectFromBuffer_UseExistingMemory( CPhysicsEnvironment *pEnvironment, void *pGameData, unsigned char *pBuffer, unsigned int bufferSize, CPhysicsObject *pExistingMemory )
{
if ( bufferSize >= sizeof(vphysics_save_cphysicsobject_t))
{
vphysics_save_cphysicsobject_t *pTemplate = reinterpret_cast<vphysics_save_cphysicsobject_t *>(pBuffer);
// Allow the placement new. If we don't do this, then it'll get a compile error because new
// might be defined as the special form in MEMALL_DEBUG_NEW.
#include "tier0/memdbgoff.h"
pExistingMemory = new ( pExistingMemory ) CPhysicsObject();
#include "tier0/memdbgon.h"
pExistingMemory->InitFromTemplate( pEnvironment, pGameData, *pTemplate );
if ( pTemplate->collisionEnabled )
{
pExistingMemory->EnableCollisions(true);
}
return pExistingMemory;
}
return NULL;
}
// regenerate the friction systems for these objects. Because when it was saved it had them (came to rest with the contact points).
// So now we need to recreate them or some objects may not wake up when this object (or its neighbors) are deleted.
void PostRestorePhysicsObject()
{
for ( int i = g_PostRestoreObjectList.Count()-1; i >= 0; --i )
{
if ( g_PostRestoreObjectList[i].pObject )
{
if ( g_PostRestoreObjectList[i].growFriction )
{
g_PostRestoreObjectList[i].pObject->GetObject()->force_grow_friction_system();
}
if ( g_PostRestoreObjectList[i].enableCollisions )
{
g_PostRestoreObjectList[i].pObject->EnableCollisions( true );
}
}
}
g_PostRestoreObjectList.Purge();
}