hl2_src-leak-2017/src/vstdlib/random.cpp

266 lines
7.3 KiB
C++

//========= Copyright Valve Corporation, All rights reserved. ============//
//
// Purpose: Random number generator
//
// $Workfile: $
// $NoKeywords: $
//===========================================================================//
#include "vstdlib/random.h"
#include <math.h>
#include "dbg.h"
#include "tier0/memdbgon.h"
#define IA 16807
#define IM 2147483647
#define IQ 127773
#define IR 2836
#define NDIV (1+(IM-1)/NTAB)
#define MAX_RANDOM_RANGE 0x7FFFFFFFUL
// fran1 -- return a random floating-point number on the interval [0,1)
//
#define AM (1.0/IM)
#define EPS 1.2e-7
#define RNMX (1.0-EPS)
//-----------------------------------------------------------------------------
// globals
//-----------------------------------------------------------------------------
static CUniformRandomStream s_UniformStream;
static CGaussianRandomStream s_GaussianStream;
static IUniformRandomStream *s_pUniformStream = &s_UniformStream;
//-----------------------------------------------------------------------------
// Installs a global random number generator, which will affect the Random functions above
//-----------------------------------------------------------------------------
void InstallUniformRandomStream( IUniformRandomStream *pStream )
{
s_pUniformStream = pStream ? pStream : &s_UniformStream;
}
//-----------------------------------------------------------------------------
// A couple of convenience functions to access the library's global uniform stream
//-----------------------------------------------------------------------------
void RandomSeed( int iSeed )
{
s_pUniformStream->SetSeed( iSeed );
}
float RandomFloat( float flMinVal, float flMaxVal )
{
return s_pUniformStream->RandomFloat( flMinVal, flMaxVal );
}
float RandomFloatExp( float flMinVal, float flMaxVal, float flExponent )
{
return s_pUniformStream->RandomFloatExp( flMinVal, flMaxVal, flExponent );
}
int RandomInt( int iMinVal, int iMaxVal )
{
return s_pUniformStream->RandomInt( iMinVal, iMaxVal );
}
float RandomGaussianFloat( float flMean, float flStdDev )
{
return s_GaussianStream.RandomFloat( flMean, flStdDev );
}
//-----------------------------------------------------------------------------
//
// Implementation of the uniform random number stream
//
//-----------------------------------------------------------------------------
CUniformRandomStream::CUniformRandomStream()
{
SetSeed(0);
}
void CUniformRandomStream::SetSeed( int iSeed )
{
AUTO_LOCK( m_mutex );
m_idum = ( ( iSeed < 0 ) ? iSeed : -iSeed );
m_iy = 0;
}
int CUniformRandomStream::GenerateRandomNumber()
{
AUTO_LOCK( m_mutex );
int j;
int k;
if (m_idum <= 0 || !m_iy)
{
if (-(m_idum) < 1)
m_idum=1;
else
m_idum = -(m_idum);
for ( j=NTAB+7; j>=0; j--)
{
k = (m_idum)/IQ;
m_idum = IA*(m_idum-k*IQ)-IR*k;
if (m_idum < 0)
m_idum += IM;
if (j < NTAB)
m_iv[j] = m_idum;
}
m_iy=m_iv[0];
}
k=(m_idum)/IQ;
m_idum=IA*(m_idum-k*IQ)-IR*k;
if (m_idum < 0)
m_idum += IM;
j=m_iy/NDIV;
// We're seeing some strange memory corruption in the contents of s_pUniformStream.
// Perhaps it's being caused by something writing past the end of this array?
// Bounds-check in release to see if that's the case.
if (j >= NTAB || j < 0)
{
DebuggerBreakIfDebugging();
Warning("CUniformRandomStream had an array overrun: tried to write to element %d of 0..31. Contact Tom or Elan.\n", j);
// Ensure that NTAB is a power of two.
COMPILE_TIME_ASSERT( ( NTAB & ( NTAB - 1 ) ) == 0 );
// Clamp j.
j &= NTAB - 1;
}
m_iy=m_iv[j];
m_iv[j] = m_idum;
return m_iy;
}
float CUniformRandomStream::RandomFloat( float flLow, float flHigh )
{
// float in [0,1)
float fl = AM * GenerateRandomNumber();
if (fl > RNMX)
{
fl = RNMX;
}
return (fl * ( flHigh - flLow ) ) + flLow; // float in [low,high)
}
float CUniformRandomStream::RandomFloatExp( float flMinVal, float flMaxVal, float flExponent )
{
// float in [0,1)
float fl = AM * GenerateRandomNumber();
if (fl > RNMX)
{
fl = RNMX;
}
if ( flExponent != 1.0f )
{
fl = powf( fl, flExponent );
}
return (fl * ( flMaxVal - flMinVal ) ) + flMinVal; // float in [low,high)
}
int CUniformRandomStream::RandomInt( int iLow, int iHigh )
{
//ASSERT(lLow <= lHigh);
unsigned int maxAcceptable;
unsigned int x = iHigh-iLow+1;
unsigned int n;
// If you hit either of these assert, you're not getting back the random number that you thought you were.
Assert( x == iHigh-(int64)iLow+1 ); // Check that we didn't overflow int
Assert( x-1 <= MAX_RANDOM_RANGE ); // Check that the values provide an acceptable range
if (x <= 1 || MAX_RANDOM_RANGE < x-1)
{
Assert( iLow == iHigh ); // This is the only time it is OK to have a range containing a single number
return iLow;
}
// The following maps a uniform distribution on the interval [0,MAX_RANDOM_RANGE]
// to a smaller, client-specified range of [0,x-1] in a way that doesn't bias
// the uniform distribution unfavorably. Even for a worst case x, the loop is
// guaranteed to be taken no more than half the time, so for that worst case x,
// the average number of times through the loop is 2. For cases where x is
// much smaller than MAX_RANDOM_RANGE, the average number of times through the
// loop is very close to 1.
//
maxAcceptable = MAX_RANDOM_RANGE - ((MAX_RANDOM_RANGE+1) % x );
do
{
n = GenerateRandomNumber();
} while (n > maxAcceptable);
return iLow + (n % x);
}
//-----------------------------------------------------------------------------
//
// Implementation of the gaussian random number stream
// We're gonna use the Box-Muller method (which actually generates 2
// gaussian-distributed numbers at once)
//
//-----------------------------------------------------------------------------
CGaussianRandomStream::CGaussianRandomStream( IUniformRandomStream *pUniformStream )
{
AttachToStream( pUniformStream );
}
//-----------------------------------------------------------------------------
// Attaches to a random uniform stream
//-----------------------------------------------------------------------------
void CGaussianRandomStream::AttachToStream( IUniformRandomStream *pUniformStream )
{
AUTO_LOCK( m_mutex );
m_pUniformStream = pUniformStream;
m_bHaveValue = false;
}
//-----------------------------------------------------------------------------
// Generates random numbers
//-----------------------------------------------------------------------------
float CGaussianRandomStream::RandomFloat( float flMean, float flStdDev )
{
AUTO_LOCK( m_mutex );
IUniformRandomStream *pUniformStream = m_pUniformStream ? m_pUniformStream : s_pUniformStream;
float fac,rsq,v1,v2;
if (!m_bHaveValue)
{
// Pick 2 random #s from -1 to 1
// Make sure they lie inside the unit circle. If they don't, try again
do
{
v1 = 2.0f * pUniformStream->RandomFloat() - 1.0f;
v2 = 2.0f * pUniformStream->RandomFloat() - 1.0f;
rsq = v1*v1 + v2*v2;
} while ((rsq > 1.0f) || (rsq == 0.0f));
// The box-muller transformation to get the two gaussian numbers
fac = sqrtf( -2.0f * log(rsq) / rsq );
// Store off one value for later use
m_flRandomValue = v1 * fac;
m_bHaveValue = true;
return flStdDev * (v2 * fac) + flMean;
}
else
{
m_bHaveValue = false;
return flStdDev * m_flRandomValue + flMean;
}
}
//-----------------------------------------------------------------------------
// Creates a histogram (for testing)
//-----------------------------------------------------------------------------