hl2_src-leak-2017/src/public/XZip.cpp

3035 lines
111 KiB
C++

//========= Copyright Valve Corporation, All rights reserved. ============//
//
// Purpose:
//
// $NoKeywords: $
//
//=============================================================================//
// XZip.cpp Version 1.1
//
// Authors: Mark Adler et al. (see below)
//
// Modified by: Lucian Wischik
// lu@wischik.com
//
// Version 1.0 - Turned C files into just a single CPP file
// - Made them compile cleanly as C++ files
// - Gave them simpler APIs
// - Added the ability to zip/unzip directly in memory without
// any intermediate files
//
// Modified by: Hans Dietrich
// hdietrich2@hotmail.com
//
// Version 1.1: - Added Unicode support to CreateZip() and ZipAdd()
// - Changed file names to avoid conflicts with Lucian's files
//
///////////////////////////////////////////////////////////////////////////////
//
// Lucian Wischik's comments:
// --------------------------
// THIS FILE is almost entirely based upon code by Info-ZIP.
// It has been modified by Lucian Wischik.
// The original code may be found at http://www.info-zip.org
// The original copyright text follows.
//
///////////////////////////////////////////////////////////////////////////////
//
// Original authors' comments:
// ---------------------------
// This is version 2002-Feb-16 of the Info-ZIP copyright and license. The
// definitive version of this document should be available at
// ftp://ftp.info-zip.org/pub/infozip/license.html indefinitely.
//
// Copyright (c) 1990-2002 Info-ZIP. All rights reserved.
//
// For the purposes of this copyright and license, "Info-ZIP" is defined as
// the following set of individuals:
//
// Mark Adler, John Bush, Karl Davis, Harald Denker, Jean-Michel Dubois,
// Jean-loup Gailly, Hunter Goatley, Ian Gorman, Chris Herborth, Dirk Haase,
// Greg Hartwig, Robert Heath, Jonathan Hudson, Paul Kienitz,
// David Kirschbaum, Johnny Lee, Onno van der Linden, Igor Mandrichenko,
// Steve P. Miller, Sergio Monesi, Keith Owens, George Petrov, Greg Roelofs,
// Kai Uwe Rommel, Steve Salisbury, Dave Smith, Christian Spieler,
// Antoine Verheijen, Paul von Behren, Rich Wales, Mike White
//
// This software is provided "as is", without warranty of any kind, express
// or implied. In no event shall Info-ZIP or its contributors be held liable
// for any direct, indirect, incidental, special or consequential damages
// arising out of the use of or inability to use this software.
//
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
//
// 1. Redistributions of source code must retain the above copyright notice,
// definition, disclaimer, and this list of conditions.
//
// 2. Redistributions in binary form (compiled executables) must reproduce
// the above copyright notice, definition, disclaimer, and this list of
// conditions in documentation and/or other materials provided with the
// distribution. The sole exception to this condition is redistribution
// of a standard UnZipSFX binary as part of a self-extracting archive;
// that is permitted without inclusion of this license, as long as the
// normal UnZipSFX banner has not been removed from the binary or disabled.
//
// 3. Altered versions--including, but not limited to, ports to new
// operating systems, existing ports with new graphical interfaces, and
// dynamic, shared, or static library versions--must be plainly marked
// as such and must not be misrepresented as being the original source.
// Such altered versions also must not be misrepresented as being
// Info-ZIP releases--including, but not limited to, labeling of the
// altered versions with the names "Info-ZIP" (or any variation thereof,
// including, but not limited to, different capitalizations),
// "Pocket UnZip", "WiZ" or "MacZip" without the explicit permission of
// Info-ZIP. Such altered versions are further prohibited from
// misrepresentative use of the Zip-Bugs or Info-ZIP e-mail addresses or
// of the Info-ZIP URL(s).
//
// 4. Info-ZIP retains the right to use the names "Info-ZIP", "Zip", "UnZip",
// "UnZipSFX", "WiZ", "Pocket UnZip", "Pocket Zip", and "MacZip" for its
// own source and binary releases.
//
///////////////////////////////////////////////////////////////////////////////
#if defined( WIN32) && !defined( _X360 )
#define STRICT
#define WIN32_LEAN_AND_MEAN
#include <windows.h>
#elif !defined(_X360)
#define far
#define near
#define INVALID_HANDLE_VALUE (void*)-1
#define _tzset tzset
#endif
#if defined( _X360 )
#include "xbox/xbox_win32stubs.h"
#endif
#include <time.h>
#include "zip/XZip.h"
#ifdef __clang__
// These clang 3.1 warnings don't seem very useful, and cannot easily be
// avoided in this file.
#pragma GCC diagnostic ignored "-Wdangling-else" // warning: add explicit braces to avoid dangling else [-Wdangling-else]
#endif
#ifdef OSX
#define MAP_ANONYMOUS MAP_ANON
#endif
#ifdef XZIP_NOT_THREAD_SAFE
static ZRESULT lasterrorZ=ZR_OK;
#else
#include "tier0/threadtools.h"
static CThreadLocalInt<ZRESULT> lasterrorZ;
#endif
typedef unsigned char uch; // unsigned 8-bit value
typedef unsigned short ush; // unsigned 16-bit value
typedef unsigned long ulg; // unsigned 32-bit value
typedef size_t extent; // file size
typedef unsigned Pos; // must be at least 32 bits
typedef unsigned IPos; // A Pos is an index in the character window. Pos is used only for parameter passing
#ifndef EOF
#define EOF (-1)
#endif
// Error return values. The values 0..4 and 12..18 follow the conventions
// of PKZIP. The values 4..10 are all assigned to "insufficient memory"
// by PKZIP, so the codes 5..10 are used here for other purposes.
#define ZE_MISS -1 // used by procname(), zipbare()
#define ZE_OK 0 // success
#define ZE_EOF 2 // unexpected end of zip file
#define ZE_FORM 3 // zip file structure error
#define ZE_MEM 4 // out of memory
#define ZE_LOGIC 5 // internal logic error
#define ZE_BIG 6 // entry too large to split
#define ZE_NOTE 7 // invalid comment format
#define ZE_TEST 8 // zip test (-T) failed or out of memory
#define ZE_ABORT 9 // user interrupt or termination
#define ZE_TEMP 10 // error using a temp file
#define ZE_READ 11 // read or seek error
#define ZE_NONE 12 // nothing to do
#define ZE_NAME 13 // missing or empty zip file
#define ZE_WRITE 14 // error writing to a file
#define ZE_CREAT 15 // couldn't open to write
#define ZE_PARMS 16 // bad command line
#define ZE_OPEN 18 // could not open a specified file to read
#define ZE_MAXERR 18 // the highest error number
// internal file attribute
#define UNKNOWN (-1)
#define BINARY 0
#define ASCII 1
#define BEST -1 // Use best method (deflation or store)
#define STORE 0 // Store method
#define DEFLATE 8 // Deflation method
#define CRCVAL_INITIAL 0L
// MSDOS file or directory attributes
#define MSDOS_HIDDEN_ATTR 0x02
#define MSDOS_DIR_ATTR 0x10
// Lengths of headers after signatures in bytes
#define LOCHEAD 26
#define CENHEAD 42
#define ENDHEAD 18
// Definitions for extra field handling:
#define EB_HEADSIZE 4 /* length of a extra field block header */
#define EB_LEN 2 /* offset of data length field in header */
#define EB_UT_MINLEN 1 /* minimal UT field contains Flags byte */
#define EB_UT_FLAGS 0 /* byte offset of Flags field */
#define EB_UT_TIME1 1 /* byte offset of 1st time value */
#define EB_UT_FL_MTIME (1 << 0) /* mtime present */
#define EB_UT_FL_ATIME (1 << 1) /* atime present */
#define EB_UT_FL_CTIME (1 << 2) /* ctime present */
#define EB_UT_LEN(n) (EB_UT_MINLEN + 4 * (n))
#define EB_L_UT_SIZE (EB_HEADSIZE + EB_UT_LEN(3))
#define EB_C_UT_SIZE (EB_HEADSIZE + EB_UT_LEN(1))
// Macros for writing machine integers to little-endian format
#define PUTSH(a,f) {char _putsh_c=(char)((a)&0xff); wfunc(param,&_putsh_c,1); _putsh_c=(char)((a)>>8); wfunc(param,&_putsh_c,1);}
#define PUTLG(a,f) {PUTSH((a) & 0xffff,(f)) PUTSH((a) >> 16,(f))}
// -- Structure of a ZIP file --
// Signatures for zip file information headers
#define LOCSIG 0x04034b50L
#define CENSIG 0x02014b50L
#define ENDSIG 0x06054b50L
#define EXTLOCSIG 0x08074b50L
#define MIN_MATCH 3
#define MAX_MATCH 258
// The minimum and maximum match lengths
#define WSIZE (0x8000)
// Maximum window size = 32K. If you are really short of memory, compile
// with a smaller WSIZE but this reduces the compression ratio for files
// of size > WSIZE. WSIZE must be a power of two in the current implementation.
//
#define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1)
// Minimum amount of lookahead, except at the end of the input file.
// See deflate.c for comments about the MIN_MATCH+1.
//
#define MAX_DIST (WSIZE-MIN_LOOKAHEAD)
// In order to simplify the code, particularly on 16 bit machines, match
// distances are limited to MAX_DIST instead of WSIZE.
//
// ===========================================================================
// Constants
//
#define MAX_BITS 15
// All codes must not exceed MAX_BITS bits
#define MAX_BL_BITS 7
// Bit length codes must not exceed MAX_BL_BITS bits
#define LENGTH_CODES 29
// number of length codes, not counting the special END_BLOCK code
#define LITERALS 256
// number of literal bytes 0..255
#define END_BLOCK 256
// end of block literal code
#define L_CODES (LITERALS+1+LENGTH_CODES)
// number of Literal or Length codes, including the END_BLOCK code
#define D_CODES 30
// number of distance codes
#define BL_CODES 19
// number of codes used to transfer the bit lengths
#define STORED_BLOCK 0
#define STATIC_TREES 1
#define DYN_TREES 2
// The three kinds of block type
#define LIT_BUFSIZE 0x8000
#define DIST_BUFSIZE LIT_BUFSIZE
// Sizes of match buffers for literals/lengths and distances. There are
// 4 reasons for limiting LIT_BUFSIZE to 64K:
// - frequencies can be kept in 16 bit counters
// - if compression is not successful for the first block, all input data is
// still in the window so we can still emit a stored block even when input
// comes from standard input. (This can also be done for all blocks if
// LIT_BUFSIZE is not greater than 32K.)
// - if compression is not successful for a file smaller than 64K, we can
// even emit a stored file instead of a stored block (saving 5 bytes).
// - creating new Huffman trees less frequently may not provide fast
// adaptation to changes in the input data statistics. (Take for
// example a binary file with poorly compressible code followed by
// a highly compressible string table.) Smaller buffer sizes give
// fast adaptation but have of course the overhead of transmitting trees
// more frequently.
// - I can't count above 4
// The current code is general and allows DIST_BUFSIZE < LIT_BUFSIZE (to save
// memory at the expense of compression). Some optimizations would be possible
// if we rely on DIST_BUFSIZE == LIT_BUFSIZE.
//
#define REP_3_6 16
// repeat previous bit length 3-6 times (2 bits of repeat count)
#define REPZ_3_10 17
// repeat a zero length 3-10 times (3 bits of repeat count)
#define REPZ_11_138 18
// repeat a zero length 11-138 times (7 bits of repeat count)
#define HEAP_SIZE (2*L_CODES+1)
// maximum heap size
// ===========================================================================
// Local data used by the "bit string" routines.
//
#define Buf_size (8 * 2*sizeof(char))
// Number of bits used within bi_buf. (bi_buf may be implemented on
// more than 16 bits on some systems.)
// Output a 16 bit value to the bit stream, lower (oldest) byte first
#define PUTSHORT(state,w) \
{ if (state.bs.out_offset >= state.bs.out_size-1) \
state.flush_outbuf(state.param,state.bs.out_buf, &state.bs.out_offset); \
/* flush may fail, so only write into the buffer if there's actually room (same below) */ \
if (state.bs.out_offset < state.bs.out_size-1) { \
state.bs.out_buf[state.bs.out_offset++] = (char) ((w) & 0xff); \
state.bs.out_buf[state.bs.out_offset++] = (char) ((ush)(w) >> 8); \
} \
}
#define PUTBYTE(state,b) \
{ if (state.bs.out_offset >= state.bs.out_size) \
state.flush_outbuf(state.param,state.bs.out_buf, &state.bs.out_offset); \
if (state.bs.out_offset < state.bs.out_size) \
state.bs.out_buf[state.bs.out_offset++] = (char) (b); \
}
// DEFLATE.CPP HEADER
#define HASH_BITS 15
// For portability to 16 bit machines, do not use values above 15.
#define HASH_SIZE (unsigned)(1<<HASH_BITS)
#define HASH_MASK (HASH_SIZE-1)
#define WMASK (WSIZE-1)
// HASH_SIZE and WSIZE must be powers of two
#define NIL 0
// Tail of hash chains
#define FAST 4
#define SLOW 2
// speed options for the general purpose bit flag
#define TOO_FAR 4096
// Matches of length 3 are discarded if their distance exceeds TOO_FAR
#define EQUAL 0
// result of memcmp for equal strings
// ===========================================================================
// Local data used by the "longest match" routines.
#define H_SHIFT ((HASH_BITS+MIN_MATCH-1)/MIN_MATCH)
// Number of bits by which ins_h and del_h must be shifted at each
// input step. It must be such that after MIN_MATCH steps, the oldest
// byte no longer takes part in the hash key, that is:
// H_SHIFT * MIN_MATCH >= HASH_BITS
#define max_insert_length max_lazy_match
// Insert new strings in the hash table only if the match length
// is not greater than this length. This saves time but degrades compression.
// max_insert_length is used only for compression levels <= 3.
const int extra_lbits[LENGTH_CODES] // extra bits for each length code
= {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
const int extra_dbits[D_CODES] // extra bits for each distance code
= {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
const int extra_blbits[BL_CODES]// extra bits for each bit length code
= {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
const uch bl_order[BL_CODES] = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
// The lengths of the bit length codes are sent in order of decreasing
// probability, to avoid transmitting the lengths for unused bit length codes.
typedef struct config {
ush good_length; // reduce lazy search above this match length
ush max_lazy; // do not perform lazy search above this match length
ush nice_length; // quit search above this match length
ush max_chain;
} config;
// Values for max_lazy_match, good_match, nice_match and max_chain_length,
// depending on the desired pack level (0..9). The values given below have
// been tuned to exclude worst case performance for pathological files.
// Better values may be found for specific files.
//
const config configuration_table[10] = {
// good lazy nice chain
{0, 0, 0, 0}, // 0 store only
{4, 4, 8, 4}, // 1 maximum speed, no lazy matches
{4, 5, 16, 8}, // 2
{4, 6, 32, 32}, // 3
{4, 4, 16, 16}, // 4 lazy matches */
{8, 16, 32, 32}, // 5
{8, 16, 128, 128}, // 6
{8, 32, 128, 256}, // 7
{32, 128, 258, 1024}, // 8
{32, 258, 258, 4096}};// 9 maximum compression */
// Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4
// For deflate_fast() (levels <= 3) good is ignored and lazy has a different meaning.
// Data structure describing a single value and its code string.
typedef struct ct_data {
union {
ush freq; // frequency count
ush code; // bit string
} fc;
union {
ush dad; // father node in Huffman tree
ush len; // length of bit string
} dl;
} ct_data;
typedef struct tree_desc {
ct_data *dyn_tree; // the dynamic tree
ct_data *static_tree; // corresponding static tree or NULL
const int *extra_bits; // extra bits for each code or NULL
int extra_base; // base index for extra_bits
int elems; // max number of elements in the tree
int max_length; // max bit length for the codes
int max_code; // largest code with non zero frequency
} tree_desc;
class TTreeState
{ public:
TTreeState();
ct_data dyn_ltree[HEAP_SIZE]; // literal and length tree
ct_data dyn_dtree[2*D_CODES+1]; // distance tree
ct_data static_ltree[L_CODES+2]; // the static literal tree...
// ... Since the bit lengths are imposed, there is no need for the L_CODES
// extra codes used during heap construction. However the codes 286 and 287
// are needed to build a canonical tree (see ct_init below).
ct_data static_dtree[D_CODES]; // the static distance tree...
// ... (Actually a trivial tree since all codes use 5 bits.)
ct_data bl_tree[2*BL_CODES+1]; // Huffman tree for the bit lengths
tree_desc l_desc;
tree_desc d_desc;
tree_desc bl_desc;
ush bl_count[MAX_BITS+1]; // number of codes at each bit length for an optimal tree
int heap[2*L_CODES+1]; // heap used to build the Huffman trees
int heap_len; // number of elements in the heap
int heap_max; // element of largest frequency
// The sons of heap[n] are heap[2*n] and heap[2*n+1]. heap[0] is not used.
// The same heap array is used to build all trees.
uch depth[2*L_CODES+1];
// Depth of each subtree used as tie breaker for trees of equal frequency
uch length_code[MAX_MATCH-MIN_MATCH+1];
// length code for each normalized match length (0 == MIN_MATCH)
uch dist_code[512];
// distance codes. The first 256 values correspond to the distances
// 3 .. 258, the last 256 values correspond to the top 8 bits of
// the 15 bit distances.
int base_length[LENGTH_CODES];
// First normalized length for each code (0 = MIN_MATCH)
int base_dist[D_CODES];
// First normalized distance for each code (0 = distance of 1)
uch far l_buf[LIT_BUFSIZE]; // buffer for literals/lengths
ush far d_buf[DIST_BUFSIZE]; // buffer for distances
uch flag_buf[(LIT_BUFSIZE/8)];
// flag_buf is a bit array distinguishing literals from lengths in
// l_buf, and thus indicating the presence or absence of a distance.
unsigned last_lit; // running index in l_buf
unsigned last_dist; // running index in d_buf
unsigned last_flags; // running index in flag_buf
uch flags; // current flags not yet saved in flag_buf
uch flag_bit; // current bit used in flags
// bits are filled in flags starting at bit 0 (least significant).
// Note: these flags are overkill in the current code since we don't
// take advantage of DIST_BUFSIZE == LIT_BUFSIZE.
ulg opt_len; // bit length of current block with optimal trees
ulg static_len; // bit length of current block with static trees
ulg cmpr_bytelen; // total byte length of compressed file
ulg cmpr_len_bits; // number of bits past 'cmpr_bytelen'
ulg input_len; // total byte length of input file
// input_len is for debugging only since we can get it by other means.
ush *file_type; // pointer to UNKNOWN, BINARY or ASCII
// int *file_method; // pointer to DEFLATE or STORE
};
TTreeState::TTreeState()
{ tree_desc a = {dyn_ltree, static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS, 0}; l_desc = a;
tree_desc b = {dyn_dtree, static_dtree, extra_dbits, 0, D_CODES, MAX_BITS, 0}; d_desc = b;
tree_desc c = {bl_tree, NULL, extra_blbits, 0, BL_CODES, MAX_BL_BITS, 0}; bl_desc = c;
last_lit=0;
last_dist=0;
last_flags=0;
}
class TBitState
{ public:
int flush_flg;
//
unsigned bi_buf;
// Output buffer. bits are inserted starting at the bottom (least significant
// bits). The width of bi_buf must be at least 16 bits.
int bi_valid;
// Number of valid bits in bi_buf. All bits above the last valid bit
// are always zero.
char *out_buf;
// Current output buffer.
unsigned out_offset;
// Current offset in output buffer.
// On 16 bit machines, the buffer is limited to 64K.
unsigned out_size;
// Size of current output buffer
ulg bits_sent; // bit length of the compressed data only needed for debugging???
};
class TDeflateState
{ public:
TDeflateState() {window_size=0;}
uch window[2L*WSIZE];
// Sliding window. Input bytes are read into the second half of the window,
// and move to the first half later to keep a dictionary of at least WSIZE
// bytes. With this organization, matches are limited to a distance of
// WSIZE-MAX_MATCH bytes, but this ensures that IO is always
// performed with a length multiple of the block size. Also, it limits
// the window size to 64K, which is quite useful on MSDOS.
// To do: limit the window size to WSIZE+CBSZ if SMALL_MEM (the code would
// be less efficient since the data would have to be copied WSIZE/CBSZ times)
Pos prev[WSIZE];
// Link to older string with same hash index. To limit the size of this
// array to 64K, this link is maintained only for the last 32K strings.
// An index in this array is thus a window index modulo 32K.
Pos head[HASH_SIZE];
// Heads of the hash chains or NIL. If your compiler thinks that
// HASH_SIZE is a dynamic value, recompile with -DDYN_ALLOC.
ulg window_size;
// window size, 2*WSIZE except for MMAP or BIG_MEM, where it is the
// input file length plus MIN_LOOKAHEAD.
long block_start;
// window position at the beginning of the current output block. Gets
// negative when the window is moved backwards.
int sliding;
// Set to false when the input file is already in memory
unsigned ins_h; // hash index of string to be inserted
unsigned int prev_length;
// Length of the best match at previous step. Matches not greater than this
// are discarded. This is used in the lazy match evaluation.
unsigned strstart; // start of string to insert
unsigned match_start; // start of matching string
int eofile; // flag set at end of input file
unsigned lookahead; // number of valid bytes ahead in window
unsigned max_chain_length;
// To speed up deflation, hash chains are never searched beyond this length.
// A higher limit improves compression ratio but degrades the speed.
unsigned int max_lazy_match;
// Attempt to find a better match only when the current match is strictly
// smaller than this value. This mechanism is used only for compression
// levels >= 4.
unsigned good_match;
// Use a faster search when the previous match is longer than this
int nice_match; // Stop searching when current match exceeds this
};
typedef struct iztimes {
time_t atime,mtime,ctime;
} iztimes; // access, modify, create times
typedef struct zlist {
ush vem, ver, flg, how; // See central header in zipfile.c for what vem..off are
ulg tim, crc, siz, len;
extent nam, ext, cext, com; // offset of ext must be >= LOCHEAD
ush dsk, att, lflg; // offset of lflg must be >= LOCHEAD
ulg atx, off;
char name[MAX_PATH]; // File name in zip file
char *extra; // Extra field (set only if ext != 0)
char *cextra; // Extra in central (set only if cext != 0)
char *comment; // Comment (set only if com != 0)
char iname[MAX_PATH]; // Internal file name after cleanup
char zname[MAX_PATH]; // External version of internal name
int mark; // Marker for files to operate on
int trash; // Marker for files to delete
int dosflag; // Set to force MSDOS file attributes
struct zlist far *nxt; // Pointer to next header in list
} TZipFileInfo;
class TState;
typedef unsigned (*READFUNC)(TState &state, char *buf,unsigned size);
typedef unsigned (*FLUSHFUNC)(void *param, const char *buf, unsigned *size);
typedef unsigned (*WRITEFUNC)(void *param, const char *buf, unsigned size);
class TState
{ public: TState() {err=0;}
//
void *param;
int level; bool seekable;
READFUNC readfunc; FLUSHFUNC flush_outbuf;
TTreeState ts; TBitState bs; TDeflateState ds;
const char *err;
};
#undef Assert
void Assert(TState &state,bool cond, const char *msg)
{ if (cond) return;
state.err=msg;
}
void __cdecl Trace(const char *x, ...) {va_list paramList; va_start(paramList, x); paramList; va_end(paramList);}
void __cdecl Tracec(bool ,const char *x, ...) {va_list paramList; va_start(paramList, x); paramList; va_end(paramList);}
// ===========================================================================
// Local (static) routines in this file.
//
void init_block (TState &);
void pqdownheap (TState &,ct_data *tree, int k);
void gen_bitlen (TState &,tree_desc *desc);
void gen_codes (TState &state,ct_data *tree, int max_code);
void build_tree (TState &,tree_desc *desc);
void scan_tree (TState &,ct_data *tree, int max_code);
void send_tree (TState &state,ct_data *tree, int max_code);
int build_bl_tree (TState &);
void send_all_trees (TState &state,int lcodes, int dcodes, int blcodes);
void compress_block (TState &state,ct_data *ltree, ct_data *dtree);
void set_file_type (TState &);
void send_bits (TState &state, int value, int length);
unsigned bi_reverse (unsigned code, int len);
void bi_windup (TState &state);
void copy_block (TState &state,char *buf, unsigned len, int header);
#define send_code(state, c, tree) send_bits(state, tree[c].fc.code, tree[c].dl.len)
// Send a code of the given tree. c and tree must not have side effects
// alternatively...
//#define send_code(state, c, tree)
// { if (state.verbose>1) fprintf(stderr,"\ncd %3d ",(c));
// send_bits(state, tree[c].fc.code, tree[c].dl.len); }
#define d_code(dist) ((dist) < 256 ? state.ts.dist_code[dist] : state.ts.dist_code[256+((dist)>>7)])
// Mapping from a distance to a distance code. dist is the distance - 1 and
// must not have side effects. dist_code[256] and dist_code[257] are never used.
#define Max(a,b) (a >= b ? a : b)
/* the arguments must not have side effects */
/* ===========================================================================
* Allocate the match buffer, initialize the various tables and save the
* location of the internal file attribute (ascii/binary) and method
* (DEFLATE/STORE).
*/
void ct_init(TState &state, ush *attr)
{
int n; /* iterates over tree elements */
int bits; /* bit counter */
int length; /* length value */
int code; /* code value */
int dist; /* distance index */
state.ts.file_type = attr;
//state.ts.file_method = method;
state.ts.cmpr_bytelen = state.ts.cmpr_len_bits = 0L;
state.ts.input_len = 0L;
if (state.ts.static_dtree[0].dl.len != 0) return; /* ct_init already called */
/* Initialize the mapping length (0..255) -> length code (0..28) */
length = 0;
for (code = 0; code < LENGTH_CODES-1; code++) {
state.ts.base_length[code] = length;
for (n = 0; n < (1<<extra_lbits[code]); n++) {
state.ts.length_code[length++] = (uch)code;
}
}
Assert(state,length == 256, "ct_init: length != 256");
/* Note that the length 255 (match length 258) can be represented
* in two different ways: code 284 + 5 bits or code 285, so we
* overwrite length_code[255] to use the best encoding:
*/
state.ts.length_code[length-1] = (uch)code;
/* Initialize the mapping dist (0..32K) -> dist code (0..29) */
dist = 0;
for (code = 0 ; code < 16; code++) {
state.ts.base_dist[code] = dist;
for (n = 0; n < (1<<extra_dbits[code]); n++) {
state.ts.dist_code[dist++] = (uch)code;
}
}
Assert(state,dist == 256, "ct_init: dist != 256");
dist >>= 7; /* from now on, all distances are divided by 128 */
for ( ; code < D_CODES; code++) {
state.ts.base_dist[code] = dist << 7;
for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) {
state.ts.dist_code[256 + dist++] = (uch)code;
}
}
Assert(state,dist == 256, "ct_init: 256+dist != 512");
/* Construct the codes of the static literal tree */
for (bits = 0; bits <= MAX_BITS; bits++) state.ts.bl_count[bits] = 0;
n = 0;
while (n <= 143) state.ts.static_ltree[n++].dl.len = 8, state.ts.bl_count[8]++;
while (n <= 255) state.ts.static_ltree[n++].dl.len = 9, state.ts.bl_count[9]++;
while (n <= 279) state.ts.static_ltree[n++].dl.len = 7, state.ts.bl_count[7]++;
while (n <= 287) state.ts.static_ltree[n++].dl.len = 8, state.ts.bl_count[8]++;
/* fc.codes 286 and 287 do not exist, but we must include them in the
* tree construction to get a canonical Huffman tree (longest code
* all ones)
*/
gen_codes(state,(ct_data *)state.ts.static_ltree, L_CODES+1);
/* The static distance tree is trivial: */
for (n = 0; n < D_CODES; n++) {
state.ts.static_dtree[n].dl.len = 5;
state.ts.static_dtree[n].fc.code = (ush)bi_reverse(n, 5);
}
/* Initialize the first block of the first file: */
init_block(state);
}
/* ===========================================================================
* Initialize a new block.
*/
void init_block(TState &state)
{
int n; /* iterates over tree elements */
/* Initialize the trees. */
for (n = 0; n < L_CODES; n++) state.ts.dyn_ltree[n].fc.freq = 0;
for (n = 0; n < D_CODES; n++) state.ts.dyn_dtree[n].fc.freq = 0;
for (n = 0; n < BL_CODES; n++) state.ts.bl_tree[n].fc.freq = 0;
state.ts.dyn_ltree[END_BLOCK].fc.freq = 1;
state.ts.opt_len = state.ts.static_len = 0L;
state.ts.last_lit = state.ts.last_dist = state.ts.last_flags = 0;
state.ts.flags = 0; state.ts.flag_bit = 1;
}
#define SMALLEST 1
/* Index within the heap array of least frequent node in the Huffman tree */
/* ===========================================================================
* Remove the smallest element from the heap and recreate the heap with
* one less element. Updates heap and heap_len.
*/
#define pqremove(tree, top) \
{\
top = state.ts.heap[SMALLEST]; \
state.ts.heap[SMALLEST] = state.ts.heap[state.ts.heap_len--]; \
pqdownheap(state,tree, SMALLEST); \
}
/* ===========================================================================
* Compares to subtrees, using the tree depth as tie breaker when
* the subtrees have equal frequency. This minimizes the worst case length.
*/
#define smaller(tree, n, m) \
(tree[n].fc.freq < tree[m].fc.freq || \
(tree[n].fc.freq == tree[m].fc.freq && state.ts.depth[n] <= state.ts.depth[m]))
/* ===========================================================================
* Restore the heap property by moving down the tree starting at node k,
* exchanging a node with the smallest of its two sons if necessary, stopping
* when the heap property is re-established (each father smaller than its
* two sons).
*/
void pqdownheap(TState &state,ct_data *tree, int k)
{
int v = state.ts.heap[k];
int j = k << 1; /* left son of k */
int htemp; /* required because of bug in SASC compiler */
while (j <= state.ts.heap_len) {
/* Set j to the smallest of the two sons: */
if (j < state.ts.heap_len && smaller(tree, state.ts.heap[j+1], state.ts.heap[j])) j++;
/* Exit if v is smaller than both sons */
htemp = state.ts.heap[j];
if (smaller(tree, v, htemp)) break;
/* Exchange v with the smallest son */
state.ts.heap[k] = htemp;
k = j;
/* And continue down the tree, setting j to the left son of k */
j <<= 1;
}
state.ts.heap[k] = v;
}
/* ===========================================================================
* Compute the optimal bit lengths for a tree and update the total bit length
* for the current block.
* IN assertion: the fields freq and dad are set, heap[heap_max] and
* above are the tree nodes sorted by increasing frequency.
* OUT assertions: the field len is set to the optimal bit length, the
* array bl_count contains the frequencies for each bit length.
* The length opt_len is updated; static_len is also updated if stree is
* not null.
*/
void gen_bitlen(TState &state,tree_desc *desc)
{
ct_data *tree = desc->dyn_tree;
const int *extra = desc->extra_bits;
int base = desc->extra_base;
int max_code = desc->max_code;
int max_length = desc->max_length;
ct_data *stree = desc->static_tree;
int h; /* heap index */
int n, m; /* iterate over the tree elements */
int bits; /* bit length */
int xbits; /* extra bits */
ush f; /* frequency */
int overflow = 0; /* number of elements with bit length too large */
for (bits = 0; bits <= MAX_BITS; bits++) state.ts.bl_count[bits] = 0;
/* In a first pass, compute the optimal bit lengths (which may
* overflow in the case of the bit length tree).
*/
tree[state.ts.heap[state.ts.heap_max]].dl.len = 0; /* root of the heap */
for (h = state.ts.heap_max+1; h < HEAP_SIZE; h++) {
n = state.ts.heap[h];
bits = tree[tree[n].dl.dad].dl.len + 1;
if (bits > max_length) bits = max_length, overflow++;
tree[n].dl.len = (ush)bits;
/* We overwrite tree[n].dl.dad which is no longer needed */
if (n > max_code) continue; /* not a leaf node */
state.ts.bl_count[bits]++;
xbits = 0;
if (n >= base) xbits = extra[n-base];
f = tree[n].fc.freq;
state.ts.opt_len += (ulg)f * (bits + xbits);
if (stree) state.ts.static_len += (ulg)f * (stree[n].dl.len + xbits);
}
if (overflow == 0) return;
Trace("\nbit length overflow\n");
/* This happens for example on obj2 and pic of the Calgary corpus */
/* Find the first bit length which could increase: */
do {
bits = max_length-1;
while (state.ts.bl_count[bits] == 0) bits--;
state.ts.bl_count[bits]--; /* move one leaf down the tree */
state.ts.bl_count[bits+1] += (ush)2; /* move one overflow item as its brother */
state.ts.bl_count[max_length]--;
/* The brother of the overflow item also moves one step up,
* but this does not affect bl_count[max_length]
*/
overflow -= 2;
} while (overflow > 0);
/* Now recompute all bit lengths, scanning in increasing frequency.
* h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
* lengths instead of fixing only the wrong ones. This idea is taken
* from 'ar' written by Haruhiko Okumura.)
*/
for (bits = max_length; bits != 0; bits--) {
n = state.ts.bl_count[bits];
while (n != 0) {
m = state.ts.heap[--h];
if (m > max_code) continue;
if (tree[m].dl.len != (ush)bits) {
Trace("code %d bits %d->%d\n", m, tree[m].dl.len, bits);
state.ts.opt_len += ((long)bits-(long)tree[m].dl.len)*(long)tree[m].fc.freq;
tree[m].dl.len = (ush)bits;
}
n--;
}
}
}
/* ===========================================================================
* Generate the codes for a given tree and bit counts (which need not be
* optimal).
* IN assertion: the array bl_count contains the bit length statistics for
* the given tree and the field len is set for all tree elements.
* OUT assertion: the field code is set for all tree elements of non
* zero code length.
*/
void gen_codes (TState &state, ct_data *tree, int max_code)
{
ush next_code[MAX_BITS+1]; /* next code value for each bit length */
ush code = 0; /* running code value */
int bits; /* bit index */
int n; /* code index */
/* The distribution counts are first used to generate the code values
* without bit reversal.
*/
for (bits = 1; bits <= MAX_BITS; bits++) {
next_code[bits] = code = (ush)((code + state.ts.bl_count[bits-1]) << 1);
}
/* Check that the bit counts in bl_count are consistent. The last code
* must be all ones.
*/
Assert(state,code + state.ts.bl_count[MAX_BITS]-1 == (1<< ((ush) MAX_BITS)) - 1,
"inconsistent bit counts");
Trace("\ngen_codes: max_code %d ", max_code);
for (n = 0; n <= max_code; n++) {
int len = tree[n].dl.len;
if (len == 0) continue;
/* Now reverse the bits */
tree[n].fc.code = (ush)bi_reverse(next_code[len]++, len);
//Tracec(tree != state.ts.static_ltree, "\nn %3d %c l %2d c %4x (%x) ", n, (isgraph(n) ? n : ' '), len, tree[n].fc.code, next_code[len]-1);
}
}
/* ===========================================================================
* Construct one Huffman tree and assigns the code bit strings and lengths.
* Update the total bit length for the current block.
* IN assertion: the field freq is set for all tree elements.
* OUT assertions: the fields len and code are set to the optimal bit length
* and corresponding code. The length opt_len is updated; static_len is
* also updated if stree is not null. The field max_code is set.
*/
void build_tree(TState &state,tree_desc *desc)
{
ct_data *tree = desc->dyn_tree;
ct_data *stree = desc->static_tree;
int elems = desc->elems;
int n, m; /* iterate over heap elements */
int max_code = -1; /* largest code with non zero frequency */
int node = elems; /* next internal node of the tree */
/* Construct the initial heap, with least frequent element in
* heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
* heap[0] is not used.
*/
state.ts.heap_len = 0, state.ts.heap_max = HEAP_SIZE;
for (n = 0; n < elems; n++) {
if (tree[n].fc.freq != 0) {
state.ts.heap[++state.ts.heap_len] = max_code = n;
state.ts.depth[n] = 0;
} else {
tree[n].dl.len = 0;
}
}
/* The pkzip format requires that at least one distance code exists,
* and that at least one bit should be sent even if there is only one
* possible code. So to avoid special checks later on we force at least
* two codes of non zero frequency.
*/
while (state.ts.heap_len < 2) {
int newcp = state.ts.heap[++state.ts.heap_len] = (max_code < 2 ? ++max_code : 0);
tree[newcp].fc.freq = 1;
state.ts.depth[newcp] = 0;
state.ts.opt_len--; if (stree) state.ts.static_len -= stree[newcp].dl.len;
/* new is 0 or 1 so it does not have extra bits */
}
desc->max_code = max_code;
/* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
* establish sub-heaps of increasing lengths:
*/
for (n = state.ts.heap_len/2; n >= 1; n--) pqdownheap(state,tree, n);
/* Construct the Huffman tree by repeatedly combining the least two
* frequent nodes.
*/
do {
pqremove(tree, n); /* n = node of least frequency */
m = state.ts.heap[SMALLEST]; /* m = node of next least frequency */
state.ts.heap[--state.ts.heap_max] = n; /* keep the nodes sorted by frequency */
state.ts.heap[--state.ts.heap_max] = m;
/* Create a new node father of n and m */
tree[node].fc.freq = (ush)(tree[n].fc.freq + tree[m].fc.freq);
state.ts.depth[node] = (uch) (Max(state.ts.depth[n], state.ts.depth[m]) + 1);
tree[n].dl.dad = tree[m].dl.dad = (ush)node;
/* and insert the new node in the heap */
state.ts.heap[SMALLEST] = node++;
pqdownheap(state,tree, SMALLEST);
} while (state.ts.heap_len >= 2);
state.ts.heap[--state.ts.heap_max] = state.ts.heap[SMALLEST];
/* At this point, the fields freq and dad are set. We can now
* generate the bit lengths.
*/
gen_bitlen(state,(tree_desc *)desc);
/* The field len is now set, we can generate the bit codes */
gen_codes (state,(ct_data *)tree, max_code);
}
/* ===========================================================================
* Scan a literal or distance tree to determine the frequencies of the codes
* in the bit length tree. Updates opt_len to take into account the repeat
* counts. (The contribution of the bit length codes will be added later
* during the construction of bl_tree.)
*/
void scan_tree (TState &state,ct_data *tree, int max_code)
{
int n; /* iterates over all tree elements */
int prevlen = -1; /* last emitted length */
int curlen; /* length of current code */
int nextlen = tree[0].dl.len; /* length of next code */
int count = 0; /* repeat count of the current code */
int max_count = 7; /* max repeat count */
int min_count = 4; /* min repeat count */
if (nextlen == 0) max_count = 138, min_count = 3;
tree[max_code+1].dl.len = (ush)-1; /* guard */
for (n = 0; n <= max_code; n++) {
curlen = nextlen; nextlen = tree[n+1].dl.len;
if (++count < max_count && curlen == nextlen) {
continue;
} else if (count < min_count) {
state.ts.bl_tree[curlen].fc.freq = (ush)(state.ts.bl_tree[curlen].fc.freq + count);
} else if (curlen != 0) {
if (curlen != prevlen) state.ts.bl_tree[curlen].fc.freq++;
state.ts.bl_tree[REP_3_6].fc.freq++;
} else if (count <= 10) {
state.ts.bl_tree[REPZ_3_10].fc.freq++;
} else {
state.ts.bl_tree[REPZ_11_138].fc.freq++;
}
count = 0; prevlen = curlen;
if (nextlen == 0) {
max_count = 138, min_count = 3;
} else if (curlen == nextlen) {
max_count = 6, min_count = 3;
} else {
max_count = 7, min_count = 4;
}
}
}
/* ===========================================================================
* Send a literal or distance tree in compressed form, using the codes in
* bl_tree.
*/
void send_tree (TState &state, ct_data *tree, int max_code)
{
int n; /* iterates over all tree elements */
int prevlen = -1; /* last emitted length */
int curlen; /* length of current code */
int nextlen = tree[0].dl.len; /* length of next code */
int count = 0; /* repeat count of the current code */
int max_count = 7; /* max repeat count */
int min_count = 4; /* min repeat count */
/* tree[max_code+1].dl.len = -1; */ /* guard already set */
if (nextlen == 0) max_count = 138, min_count = 3;
for (n = 0; n <= max_code; n++) {
curlen = nextlen; nextlen = tree[n+1].dl.len;
if (++count < max_count && curlen == nextlen) {
continue;
} else if (count < min_count) {
do { send_code(state, curlen, state.ts.bl_tree); } while (--count != 0);
} else if (curlen != 0) {
if (curlen != prevlen) {
send_code(state, curlen, state.ts.bl_tree); count--;
}
Assert(state,count >= 3 && count <= 6, " 3_6?");
send_code(state,REP_3_6, state.ts.bl_tree); send_bits(state,count-3, 2);
} else if (count <= 10) {
send_code(state,REPZ_3_10, state.ts.bl_tree); send_bits(state,count-3, 3);
} else {
send_code(state,REPZ_11_138, state.ts.bl_tree); send_bits(state,count-11, 7);
}
count = 0; prevlen = curlen;
if (nextlen == 0) {
max_count = 138, min_count = 3;
} else if (curlen == nextlen) {
max_count = 6, min_count = 3;
} else {
max_count = 7, min_count = 4;
}
}
}
/* ===========================================================================
* Construct the Huffman tree for the bit lengths and return the index in
* bl_order of the last bit length code to send.
*/
int build_bl_tree(TState &state)
{
int max_blindex; /* index of last bit length code of non zero freq */
/* Determine the bit length frequencies for literal and distance trees */
scan_tree(state,(ct_data *)state.ts.dyn_ltree, state.ts.l_desc.max_code);
scan_tree(state,(ct_data *)state.ts.dyn_dtree, state.ts.d_desc.max_code);
/* Build the bit length tree: */
build_tree(state,(tree_desc *)(&state.ts.bl_desc));
/* opt_len now includes the length of the tree representations, except
* the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
*/
/* Determine the number of bit length codes to send. The pkzip format
* requires that at least 4 bit length codes be sent. (appnote.txt says
* 3 but the actual value used is 4.)
*/
for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
if (state.ts.bl_tree[bl_order[max_blindex]].dl.len != 0) break;
}
/* Update opt_len to include the bit length tree and counts */
state.ts.opt_len += 3*(max_blindex+1) + 5+5+4;
Trace("\ndyn trees: dyn %ld, stat %ld", state.ts.opt_len, state.ts.static_len);
return max_blindex;
}
/* ===========================================================================
* Send the header for a block using dynamic Huffman trees: the counts, the
* lengths of the bit length codes, the literal tree and the distance tree.
* IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
*/
void send_all_trees(TState &state,int lcodes, int dcodes, int blcodes)
{
int rank; /* index in bl_order */
Assert(state,lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
Assert(state,lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
"too many codes");
Trace("\nbl counts: ");
send_bits(state,lcodes-257, 5);
/* not +255 as stated in appnote.txt 1.93a or -256 in 2.04c */
send_bits(state,dcodes-1, 5);
send_bits(state,blcodes-4, 4); /* not -3 as stated in appnote.txt */
for (rank = 0; rank < blcodes; rank++) {
Trace("\nbl code %2d ", bl_order[rank]);
send_bits(state,state.ts.bl_tree[bl_order[rank]].dl.len, 3);
}
Trace("\nbl tree: sent %ld", state.bs.bits_sent);
send_tree(state,(ct_data *)state.ts.dyn_ltree, lcodes-1); /* send the literal tree */
Trace("\nlit tree: sent %ld", state.bs.bits_sent);
send_tree(state,(ct_data *)state.ts.dyn_dtree, dcodes-1); /* send the distance tree */
Trace("\ndist tree: sent %ld", state.bs.bits_sent);
}
/* ===========================================================================
* Determine the best encoding for the current block: dynamic trees, static
* trees or store, and output the encoded block to the zip file. This function
* returns the total compressed length (in bytes) for the file so far.
*/
ulg flush_block(TState &state,char *buf, ulg stored_len, int eof)
{
ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
int max_blindex; /* index of last bit length code of non zero freq */
state.ts.flag_buf[state.ts.last_flags] = state.ts.flags; /* Save the flags for the last 8 items */
/* Check if the file is ascii or binary */
if (*state.ts.file_type == (ush)UNKNOWN) set_file_type(state);
/* Construct the literal and distance trees */
build_tree(state,(tree_desc *)(&state.ts.l_desc));
Trace("\nlit data: dyn %ld, stat %ld", state.ts.opt_len, state.ts.static_len);
build_tree(state,(tree_desc *)(&state.ts.d_desc));
Trace("\ndist data: dyn %ld, stat %ld", state.ts.opt_len, state.ts.static_len);
/* At this point, opt_len and static_len are the total bit lengths of
* the compressed block data, excluding the tree representations.
*/
/* Build the bit length tree for the above two trees, and get the index
* in bl_order of the last bit length code to send.
*/
max_blindex = build_bl_tree(state);
/* Determine the best encoding. Compute first the block length in bytes */
opt_lenb = (state.ts.opt_len+3+7)>>3;
static_lenb = (state.ts.static_len+3+7)>>3;
state.ts.input_len += stored_len; /* for debugging only */
Trace("\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u dist %u ",
opt_lenb, state.ts.opt_len, static_lenb, state.ts.static_len, stored_len,
state.ts.last_lit, state.ts.last_dist);
if (static_lenb <= opt_lenb) opt_lenb = static_lenb;
// Originally, zip allowed the file to be transformed from a compressed
// into a stored file in the case where compression failed, there
// was only one block, and it was allowed to change. I've removed this
// possibility since the code's cleaner if no changes are allowed.
//if (stored_len <= opt_lenb && eof && state.ts.cmpr_bytelen == 0L
// && state.ts.cmpr_len_bits == 0L && state.seekable)
//{ // && state.ts.file_method != NULL
// // Since LIT_BUFSIZE <= 2*WSIZE, the input data must be there:
// Assert(state,buf!=NULL,"block vanished");
// copy_block(state,buf, (unsigned)stored_len, 0); // without header
// state.ts.cmpr_bytelen = stored_len;
// Assert(state,false,"unimplemented *state.ts.file_method = STORE;");
// //*state.ts.file_method = STORE;
//}
//else
if (stored_len+4 <= opt_lenb && buf != (char*)NULL) {
/* 4: two words for the lengths */
/* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
* Otherwise we can't have processed more than WSIZE input bytes since
* the last block flush, because compression would have been
* successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
* transform a block into a stored block.
*/
send_bits(state,(STORED_BLOCK<<1)+eof, 3); /* send block type */
state.ts.cmpr_bytelen += ((state.ts.cmpr_len_bits + 3 + 7) >> 3) + stored_len + 4;
state.ts.cmpr_len_bits = 0L;
copy_block(state,buf, (unsigned)stored_len, 1); /* with header */
}
else if (static_lenb == opt_lenb) {
send_bits(state,(STATIC_TREES<<1)+eof, 3);
compress_block(state,(ct_data *)state.ts.static_ltree, (ct_data *)state.ts.static_dtree);
state.ts.cmpr_len_bits += 3 + state.ts.static_len;
state.ts.cmpr_bytelen += state.ts.cmpr_len_bits >> 3;
state.ts.cmpr_len_bits &= 7L;
}
else {
send_bits(state,(DYN_TREES<<1)+eof, 3);
send_all_trees(state,state.ts.l_desc.max_code+1, state.ts.d_desc.max_code+1, max_blindex+1);
compress_block(state,(ct_data *)state.ts.dyn_ltree, (ct_data *)state.ts.dyn_dtree);
state.ts.cmpr_len_bits += 3 + state.ts.opt_len;
state.ts.cmpr_bytelen += state.ts.cmpr_len_bits >> 3;
state.ts.cmpr_len_bits &= 7L;
}
Assert(state,((state.ts.cmpr_bytelen << 3) + state.ts.cmpr_len_bits) == state.bs.bits_sent, "bad compressed size");
init_block(state);
if (eof) {
// Assert(state,input_len == isize, "bad input size");
bi_windup(state);
state.ts.cmpr_len_bits += 7; /* align on byte boundary */
}
Trace("\n");
return state.ts.cmpr_bytelen + (state.ts.cmpr_len_bits >> 3);
}
/* ===========================================================================
* Save the match info and tally the frequency counts. Return true if
* the current block must be flushed.
*/
int ct_tally (TState &state,int dist, int lc)
{
state.ts.l_buf[state.ts.last_lit++] = (uch)lc;
if (dist == 0) {
/* lc is the unmatched char */
state.ts.dyn_ltree[lc].fc.freq++;
} else {
/* Here, lc is the match length - MIN_MATCH */
dist--; /* dist = match distance - 1 */
Assert(state,(ush)dist < (ush)MAX_DIST &&
(ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
(ush)d_code(dist) < (ush)D_CODES, "ct_tally: bad match");
state.ts.dyn_ltree[state.ts.length_code[lc]+LITERALS+1].fc.freq++;
state.ts.dyn_dtree[d_code(dist)].fc.freq++;
state.ts.d_buf[state.ts.last_dist++] = (ush)dist;
state.ts.flags |= state.ts.flag_bit;
}
state.ts.flag_bit <<= 1;
/* Output the flags if they fill a byte: */
if ((state.ts.last_lit & 7) == 0) {
state.ts.flag_buf[state.ts.last_flags++] = state.ts.flags;
state.ts.flags = 0, state.ts.flag_bit = 1;
}
/* Try to guess if it is profitable to stop the current block here */
if (state.level > 2 && (state.ts.last_lit & 0xfff) == 0) {
/* Compute an upper bound for the compressed length */
ulg out_length = (ulg)state.ts.last_lit*8L;
ulg in_length = (ulg)state.ds.strstart-state.ds.block_start;
int dcode;
for (dcode = 0; dcode < D_CODES; dcode++) {
out_length += (ulg)state.ts.dyn_dtree[dcode].fc.freq*(5L+extra_dbits[dcode]);
}
out_length >>= 3;
Trace("\nlast_lit %u, last_dist %u, in %ld, out ~%ld(%ld%%) ",
state.ts.last_lit, state.ts.last_dist, in_length, out_length,
100L - out_length*100L/in_length);
if (state.ts.last_dist < state.ts.last_lit/2 && out_length < in_length/2) return 1;
}
return (state.ts.last_lit == LIT_BUFSIZE-1 || state.ts.last_dist == DIST_BUFSIZE);
/* We avoid equality with LIT_BUFSIZE because of wraparound at 64K
* on 16 bit machines and because stored blocks are restricted to
* 64K-1 bytes.
*/
}
/* ===========================================================================
* Send the block data compressed using the given Huffman trees
*/
void compress_block(TState &state,ct_data *ltree, ct_data *dtree)
{
unsigned dist; /* distance of matched string */
int lc; /* match length or unmatched char (if dist == 0) */
unsigned lx = 0; /* running index in l_buf */
unsigned dx = 0; /* running index in d_buf */
unsigned fx = 0; /* running index in flag_buf */
uch flag = 0; /* current flags */
unsigned code; /* the code to send */
int extra; /* number of extra bits to send */
if (state.ts.last_lit != 0) do {
if ((lx & 7) == 0) flag = state.ts.flag_buf[fx++];
lc = state.ts.l_buf[lx++];
if ((flag & 1) == 0) {
send_code(state,lc, ltree); /* send a literal byte */
} else {
/* Here, lc is the match length - MIN_MATCH */
code = state.ts.length_code[lc];
send_code(state,code+LITERALS+1, ltree); /* send the length code */
extra = extra_lbits[code];
if (extra != 0) {
lc -= state.ts.base_length[code];
send_bits(state,lc, extra); /* send the extra length bits */
}
dist = state.ts.d_buf[dx++];
/* Here, dist is the match distance - 1 */
code = d_code(dist);
Assert(state,code < D_CODES, "bad d_code");
send_code(state,code, dtree); /* send the distance code */
extra = extra_dbits[code];
if (extra != 0) {
dist -= state.ts.base_dist[code];
send_bits(state,dist, extra); /* send the extra distance bits */
}
} /* literal or match pair ? */
flag >>= 1;
} while (lx < state.ts.last_lit);
send_code(state,END_BLOCK, ltree);
}
/* ===========================================================================
* Set the file type to ASCII or BINARY, using a crude approximation:
* binary if more than 20% of the bytes are <= 6 or >= 128, ascii otherwise.
* IN assertion: the fields freq of dyn_ltree are set and the total of all
* frequencies does not exceed 64K (to fit in an int on 16 bit machines).
*/
void set_file_type(TState &state)
{
int n = 0;
unsigned ascii_freq = 0;
unsigned bin_freq = 0;
while (n < 7) bin_freq += state.ts.dyn_ltree[n++].fc.freq;
while (n < 128) ascii_freq += state.ts.dyn_ltree[n++].fc.freq;
while (n < LITERALS) bin_freq += state.ts.dyn_ltree[n++].fc.freq;
*state.ts.file_type = (ush)(bin_freq > (ascii_freq >> 2) ? BINARY : ASCII);
}
/* ===========================================================================
* Initialize the bit string routines.
*/
void bi_init (TState &state,char *tgt_buf, unsigned tgt_size, int flsh_allowed)
{
state.bs.out_buf = tgt_buf;
state.bs.out_size = tgt_size;
state.bs.out_offset = 0;
state.bs.flush_flg = flsh_allowed;
state.bs.bi_buf = 0;
state.bs.bi_valid = 0;
state.bs.bits_sent = 0L;
}
/* ===========================================================================
* Send a value on a given number of bits.
* IN assertion: length <= 16 and value fits in length bits.
*/
void send_bits(TState &state,int value, int length)
{
Assert(state,length > 0 && length <= 15, "invalid length");
state.bs.bits_sent += (ulg)length;
/* If not enough room in bi_buf, use (bi_valid) bits from bi_buf and
* (Buf_size - bi_valid) bits from value to flush the filled bi_buf,
* then fill in the rest of (value), leaving (length - (Buf_size-bi_valid))
* unused bits in bi_buf.
*/
state.bs.bi_buf |= (value << state.bs.bi_valid);
state.bs.bi_valid += length;
if (state.bs.bi_valid > (int)Buf_size) {
PUTSHORT(state,state.bs.bi_buf);
state.bs.bi_valid -= Buf_size;
state.bs.bi_buf = (unsigned)value >> (length - state.bs.bi_valid);
}
}
/* ===========================================================================
* Reverse the first len bits of a code, using straightforward code (a faster
* method would use a table)
* IN assertion: 1 <= len <= 15
*/
unsigned bi_reverse(unsigned code, int len)
{
unsigned res = 0;
do {
res |= code & 1;
code >>= 1, res <<= 1;
} while (--len > 0);
return res >> 1;
}
/* ===========================================================================
* Write out any remaining bits in an incomplete byte.
*/
void bi_windup(TState &state)
{
if (state.bs.bi_valid > 8) {
PUTSHORT(state,state.bs.bi_buf);
} else if (state.bs.bi_valid > 0) {
PUTBYTE(state,state.bs.bi_buf);
}
if (state.bs.flush_flg) {
state.flush_outbuf(state.param, state.bs.out_buf, &state.bs.out_offset);
}
state.bs.bi_buf = 0;
state.bs.bi_valid = 0;
state.bs.bits_sent = (state.bs.bits_sent+7) & ~7;
}
/* ===========================================================================
* Copy a stored block to the zip file, storing first the length and its
* one's complement if requested.
*/
void copy_block(TState &state, char *block, unsigned len, int header)
{
bi_windup(state); /* align on byte boundary */
if (header) {
PUTSHORT(state,(ush)len);
PUTSHORT(state,(ush)~len);
state.bs.bits_sent += 2*16;
}
if (state.bs.flush_flg) {
state.flush_outbuf(state.param, state.bs.out_buf, &state.bs.out_offset);
state.bs.out_offset = len;
state.flush_outbuf(state.param, block, &state.bs.out_offset);
} else if (state.bs.out_offset + len > state.bs.out_size) {
Assert(state,false,"output buffer too small for in-memory compression");
} else {
memcpy(state.bs.out_buf + state.bs.out_offset, block, len);
state.bs.out_offset += len;
}
state.bs.bits_sent += (ulg)len<<3;
}
/* ===========================================================================
* Prototypes for functions.
*/
void fill_window (TState &state);
ulg deflate_fast (TState &state);
int longest_match (TState &state,IPos cur_match);
/* ===========================================================================
* Update a hash value with the given input byte
* IN assertion: all calls to to UPDATE_HASH are made with consecutive
* input characters, so that a running hash key can be computed from the
* previous key instead of complete recalculation each time.
*/
#define UPDATE_HASH(h,c) (h = (((h)<<H_SHIFT) ^ (c)) & HASH_MASK)
/* ===========================================================================
* Insert string s in the dictionary and set match_head to the previous head
* of the hash chain (the most recent string with same hash key). Return
* the previous length of the hash chain.
* IN assertion: all calls to to INSERT_STRING are made with consecutive
* input characters and the first MIN_MATCH bytes of s are valid
* (except for the last MIN_MATCH-1 bytes of the input file).
*/
#define INSERT_STRING(s, match_head) \
(UPDATE_HASH(state.ds.ins_h, state.ds.window[(s) + (MIN_MATCH-1)]), \
state.ds.prev[(s) & WMASK] = match_head = state.ds.head[state.ds.ins_h], \
state.ds.head[state.ds.ins_h] = (s))
/* ===========================================================================
* Initialize the "longest match" routines for a new file
*
* IN assertion: window_size is > 0 if the input file is already read or
* mmap'ed in the window[] array, 0 otherwise. In the first case,
* window_size is sufficient to contain the whole input file plus
* MIN_LOOKAHEAD bytes (to avoid referencing memory beyond the end
* of window[] when looking for matches towards the end).
*/
void lm_init (TState &state, int pack_level, ush *flags)
{
unsigned j;
Assert(state,pack_level>=1 && pack_level<=8,"bad pack level");
/* Do not slide the window if the whole input is already in memory
* (window_size > 0)
*/
state.ds.sliding = 0;
if (state.ds.window_size == 0L) {
state.ds.sliding = 1;
state.ds.window_size = (ulg)2L*WSIZE;
}
/* Initialize the hash table (avoiding 64K overflow for 16 bit systems).
* prev[] will be initialized on the fly.
*/
state.ds.head[HASH_SIZE-1] = NIL;
memset((char*)state.ds.head, NIL, (unsigned)(HASH_SIZE-1)*sizeof(*state.ds.head));
/* Set the default configuration parameters:
*/
state.ds.max_lazy_match = configuration_table[pack_level].max_lazy;
state.ds.good_match = configuration_table[pack_level].good_length;
state.ds.nice_match = configuration_table[pack_level].nice_length;
state.ds.max_chain_length = configuration_table[pack_level].max_chain;
if (pack_level <= 2) {
*flags |= FAST;
} else if (pack_level >= 8) {
*flags |= SLOW;
}
/* ??? reduce max_chain_length for binary files */
state.ds.strstart = 0;
state.ds.block_start = 0L;
j = WSIZE;
j <<= 1; // Can read 64K in one step
state.ds.lookahead = state.readfunc(state, (char*)state.ds.window, j);
if (state.ds.lookahead == 0 || state.ds.lookahead == (unsigned)EOF) {
state.ds.eofile = 1, state.ds.lookahead = 0;
return;
}
state.ds.eofile = 0;
/* Make sure that we always have enough lookahead. This is important
* if input comes from a device such as a tty.
*/
if (state.ds.lookahead < MIN_LOOKAHEAD) fill_window(state);
state.ds.ins_h = 0;
for (j=0; j<MIN_MATCH-1; j++) UPDATE_HASH(state.ds.ins_h, state.ds.window[j]);
/* If lookahead < MIN_MATCH, ins_h is garbage, but this is
* not important since only literal bytes will be emitted.
*/
}
/* ===========================================================================
* Set match_start to the longest match starting at the given string and
* return its length. Matches shorter or equal to prev_length are discarded,
* in which case the result is equal to prev_length and match_start is
* garbage.
* IN assertions: cur_match is the head of the hash chain for the current
* string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
*/
// For 80x86 and 680x0 and ARM, an optimized version is in match.asm or
// match.S. The code is functionally equivalent, so you can use the C version
// if desired. Which I do so desire!
int longest_match(TState &state,IPos cur_match)
{
unsigned chain_length = state.ds.max_chain_length; /* max hash chain length */
uch far *scan = state.ds.window + state.ds.strstart; /* current string */
uch far *match; /* matched string */
int len; /* length of current match */
int best_len = state.ds.prev_length; /* best match length so far */
IPos limit = state.ds.strstart > (IPos)MAX_DIST ? state.ds.strstart - (IPos)MAX_DIST : NIL;
/* Stop when cur_match becomes <= limit. To simplify the code,
* we prevent matches with the string of window index 0.
*/
// The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
// It is easy to get rid of this optimization if necessary.
Assert(state,HASH_BITS>=8 && MAX_MATCH==258,"Code too clever");
uch far *strend = state.ds.window + state.ds.strstart + MAX_MATCH;
uch scan_end1 = scan[best_len-1];
uch scan_end = scan[best_len];
/* Do not waste too much time if we already have a good match: */
if (state.ds.prev_length >= state.ds.good_match) {
chain_length >>= 2;
}
Assert(state,state.ds.strstart <= state.ds.window_size-MIN_LOOKAHEAD, "insufficient lookahead");
do {
Assert(state,cur_match < state.ds.strstart, "no future");
match = state.ds.window + cur_match;
/* Skip to next match if the match length cannot increase
* or if the match length is less than 2:
*/
if (match[best_len] != scan_end ||
match[best_len-1] != scan_end1 ||
*match != *scan ||
*++match != scan[1]) continue;
/* The check at best_len-1 can be removed because it will be made
* again later. (This heuristic is not always a win.)
* It is not necessary to compare scan[2] and match[2] since they
* are always equal when the other bytes match, given that
* the hash keys are equal and that HASH_BITS >= 8.
*/
scan += 2, match++;
/* We check for insufficient lookahead only every 8th comparison;
* the 256th check will be made at strstart+258.
*/
do {
} while (*++scan == *++match && *++scan == *++match &&
*++scan == *++match && *++scan == *++match &&
*++scan == *++match && *++scan == *++match &&
*++scan == *++match && *++scan == *++match &&
scan < strend);
Assert(state,scan <= state.ds.window+(unsigned)(state.ds.window_size-1), "wild scan");
len = MAX_MATCH - (int)(strend - scan);
scan = strend - MAX_MATCH;
if (len > best_len) {
state.ds.match_start = cur_match;
best_len = len;
if (len >= state.ds.nice_match) break;
scan_end1 = scan[best_len-1];
scan_end = scan[best_len];
}
} while ((cur_match = state.ds.prev[cur_match & WMASK]) > limit
&& --chain_length != 0);
return best_len;
}
#define check_match(state,start, match, length)
// or alternatively...
//void check_match(TState &state,IPos start, IPos match, int length)
//{ // check that the match is indeed a match
// if (memcmp((char*)state.ds.window + match,
// (char*)state.ds.window + start, length) != EQUAL) {
// fprintf(stderr,
// " start %d, match %d, length %d\n",
// start, match, length);
// error("invalid match");
// }
// if (state.verbose > 1) {
// fprintf(stderr,"\\[%d,%d]", start-match, length);
// do { fprintf(stdout,"%c",state.ds.window[start++]); } while (--length != 0);
// }
//}
/* ===========================================================================
* Fill the window when the lookahead becomes insufficient.
* Updates strstart and lookahead, and sets eofile if end of input file.
*
* IN assertion: lookahead < MIN_LOOKAHEAD && strstart + lookahead > 0
* OUT assertions: strstart <= window_size-MIN_LOOKAHEAD
* At least one byte has been read, or eofile is set; file reads are
* performed for at least two bytes (required for the translate_eol option).
*/
void fill_window(TState &state)
{
unsigned n, m;
unsigned more; /* Amount of free space at the end of the window. */
do {
more = (unsigned)(state.ds.window_size - (ulg)state.ds.lookahead - (ulg)state.ds.strstart);
/* If the window is almost full and there is insufficient lookahead,
* move the upper half to the lower one to make room in the upper half.
*/
if (more == (unsigned)EOF) {
/* Very unlikely, but possible on 16 bit machine if strstart == 0
* and lookahead == 1 (input done one byte at time)
*/
more--;
/* For MMAP or BIG_MEM, the whole input file is already in memory so
* we must not perform sliding. We must however call (*read_buf)() in
* order to compute the crc, update lookahead and possibly set eofile.
*/
} else if (state.ds.strstart >= WSIZE+MAX_DIST && state.ds.sliding) {
/* By the IN assertion, the window is not empty so we can't confuse
* more == 0 with more == 64K on a 16 bit machine.
*/
memcpy((char*)state.ds.window, (char*)state.ds.window+WSIZE, (unsigned)WSIZE);
state.ds.match_start -= WSIZE;
state.ds.strstart -= WSIZE; /* we now have strstart >= MAX_DIST: */
state.ds.block_start -= (long) WSIZE;
for (n = 0; n < HASH_SIZE; n++) {
m = state.ds.head[n];
state.ds.head[n] = (Pos)(m >= WSIZE ? m-WSIZE : NIL);
}
for (n = 0; n < WSIZE; n++) {
m = state.ds.prev[n];
state.ds.prev[n] = (Pos)(m >= WSIZE ? m-WSIZE : NIL);
/* If n is not on any hash chain, prev[n] is garbage but
* its value will never be used.
*/
}
more += WSIZE;
}
if (state.ds.eofile) return;
/* If there was no sliding:
* strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 &&
* more == window_size - lookahead - strstart
* => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1)
* => more >= window_size - 2*WSIZE + 2
* In the MMAP or BIG_MEM case (not yet supported in gzip),
* window_size == input_size + MIN_LOOKAHEAD &&
* strstart + lookahead <= input_size => more >= MIN_LOOKAHEAD.
* Otherwise, window_size == 2*WSIZE so more >= 2.
* If there was sliding, more >= WSIZE. So in all cases, more >= 2.
*/
Assert(state,more >= 2, "more < 2");
n = state.readfunc(state, (char*)state.ds.window+state.ds.strstart+state.ds.lookahead, more);
if (n == 0 || n == (unsigned)EOF) {
state.ds.eofile = 1;
} else {
state.ds.lookahead += n;
}
} while (state.ds.lookahead < MIN_LOOKAHEAD && !state.ds.eofile);
}
/* ===========================================================================
* Flush the current block, with given end-of-file flag.
* IN assertion: strstart is set to the end of the current match.
*/
#define FLUSH_BLOCK(state,eof) \
flush_block(state,state.ds.block_start >= 0L ? (char*)&state.ds.window[(unsigned)state.ds.block_start] : \
(char*)NULL, (long)state.ds.strstart - state.ds.block_start, (eof))
/* ===========================================================================
* Processes a new input file and return its compressed length. This
* function does not perform lazy evaluation of matches and inserts
* new strings in the dictionary only for unmatched strings or for short
* matches. It is used only for the fast compression options.
*/
ulg deflate_fast(TState &state)
{
IPos hash_head = NIL; /* head of the hash chain */
int flush; /* set if current block must be flushed */
unsigned match_length = 0; /* length of best match */
state.ds.prev_length = MIN_MATCH-1;
while (state.ds.lookahead != 0) {
/* Insert the string window[strstart .. strstart+2] in the
* dictionary, and set hash_head to the head of the hash chain:
*/
if (state.ds.lookahead >= MIN_MATCH)
INSERT_STRING(state.ds.strstart, hash_head);
/* Find the longest match, discarding those <= prev_length.
* At this point we have always match_length < MIN_MATCH
*/
if (hash_head != NIL && state.ds.strstart - hash_head <= MAX_DIST) {
/* To simplify the code, we prevent matches with the string
* of window index 0 (in particular we have to avoid a match
* of the string with itself at the start of the input file).
*/
/* Do not look for matches beyond the end of the input.
* This is necessary to make deflate deterministic.
*/
if ((unsigned)state.ds.nice_match > state.ds.lookahead) state.ds.nice_match = (int)state.ds.lookahead;
match_length = longest_match (state,hash_head);
/* longest_match() sets match_start */
if (match_length > state.ds.lookahead) match_length = state.ds.lookahead;
}
if (match_length >= MIN_MATCH) {
check_match(state,state.ds.strstart, state.ds.match_start, match_length);
flush = ct_tally(state,state.ds.strstart-state.ds.match_start, match_length - MIN_MATCH);
state.ds.lookahead -= match_length;
/* Insert new strings in the hash table only if the match length
* is not too large. This saves time but degrades compression.
*/
if (match_length <= state.ds.max_insert_length
&& state.ds.lookahead >= MIN_MATCH) {
match_length--; /* string at strstart already in hash table */
do {
state.ds.strstart++;
INSERT_STRING(state.ds.strstart, hash_head);
/* strstart never exceeds WSIZE-MAX_MATCH, so there are
* always MIN_MATCH bytes ahead.
*/
} while (--match_length != 0);
state.ds.strstart++;
} else {
state.ds.strstart += match_length;
match_length = 0;
state.ds.ins_h = state.ds.window[state.ds.strstart];
UPDATE_HASH(state.ds.ins_h, state.ds.window[state.ds.strstart+1]);
Assert(state,MIN_MATCH==3,"Call UPDATE_HASH() MIN_MATCH-3 more times");
}
} else {
/* No match, output a literal byte */
flush = ct_tally (state,0, state.ds.window[state.ds.strstart]);
state.ds.lookahead--;
state.ds.strstart++;
}
if (flush) FLUSH_BLOCK(state,0), state.ds.block_start = state.ds.strstart;
/* Make sure that we always have enough lookahead, except
* at the end of the input file. We need MAX_MATCH bytes
* for the next match, plus MIN_MATCH bytes to insert the
* string following the next match.
*/
if (state.ds.lookahead < MIN_LOOKAHEAD) fill_window(state);
}
return FLUSH_BLOCK(state,1); /* eof */
}
/* ===========================================================================
* Same as above, but achieves better compression. We use a lazy
* evaluation for matches: a match is finally adopted only if there is
* no better match at the next window position.
*/
ulg deflate(TState &state)
{
IPos hash_head = NIL; /* head of hash chain */
IPos prev_match; /* previous match */
int flush; /* set if current block must be flushed */
int match_available = 0; /* set if previous match exists */
unsigned match_length = MIN_MATCH-1; /* length of best match */
if (state.level <= 3) return deflate_fast(state); /* optimized for speed */
/* Process the input block. */
while (state.ds.lookahead != 0) {
/* Insert the string window[strstart .. strstart+2] in the
* dictionary, and set hash_head to the head of the hash chain:
*/
if (state.ds.lookahead >= MIN_MATCH)
INSERT_STRING(state.ds.strstart, hash_head);
/* Find the longest match, discarding those <= prev_length.
*/
state.ds.prev_length = match_length, prev_match = state.ds.match_start;
match_length = MIN_MATCH-1;
if (hash_head != NIL && state.ds.prev_length < state.ds.max_lazy_match &&
state.ds.strstart - hash_head <= MAX_DIST) {
/* To simplify the code, we prevent matches with the string
* of window index 0 (in particular we have to avoid a match
* of the string with itself at the start of the input file).
*/
/* Do not look for matches beyond the end of the input.
* This is necessary to make deflate deterministic.
*/
if ((unsigned)state.ds.nice_match > state.ds.lookahead) state.ds.nice_match = (int)state.ds.lookahead;
match_length = longest_match (state,hash_head);
/* longest_match() sets match_start */
if (match_length > state.ds.lookahead) match_length = state.ds.lookahead;
/* Ignore a length 3 match if it is too distant: */
if (match_length == MIN_MATCH && state.ds.strstart-state.ds.match_start > TOO_FAR){
/* If prev_match is also MIN_MATCH, match_start is garbage
* but we will ignore the current match anyway.
*/
match_length = MIN_MATCH-1;
}
}
/* If there was a match at the previous step and the current
* match is not better, output the previous match:
*/
if (state.ds.prev_length >= MIN_MATCH && match_length <= state.ds.prev_length) {
unsigned max_insert = state.ds.strstart + state.ds.lookahead - MIN_MATCH;
check_match(state,state.ds.strstart-1, prev_match, state.ds.prev_length);
flush = ct_tally(state,state.ds.strstart-1-prev_match, state.ds.prev_length - MIN_MATCH);
/* Insert in hash table all strings up to the end of the match.
* strstart-1 and strstart are already inserted.
*/
state.ds.lookahead -= state.ds.prev_length-1;
state.ds.prev_length -= 2;
do {
if (++state.ds.strstart <= max_insert) {
INSERT_STRING(state.ds.strstart, hash_head);
/* strstart never exceeds WSIZE-MAX_MATCH, so there are
* always MIN_MATCH bytes ahead.
*/
}
} while (--state.ds.prev_length != 0);
state.ds.strstart++;
match_available = 0;
match_length = MIN_MATCH-1;
if (flush) FLUSH_BLOCK(state,0), state.ds.block_start = state.ds.strstart;
} else if (match_available) {
/* If there was no match at the previous position, output a
* single literal. If there was a match but the current match
* is longer, truncate the previous match to a single literal.
*/
if (ct_tally (state,0, state.ds.window[state.ds.strstart-1])) {
FLUSH_BLOCK(state,0), state.ds.block_start = state.ds.strstart;
}
state.ds.strstart++;
state.ds.lookahead--;
} else {
/* There is no previous match to compare with, wait for
* the next step to decide.
*/
match_available = 1;
state.ds.strstart++;
state.ds.lookahead--;
}
// Assert(state,strstart <= isize && lookahead <= isize, "a bit too far");
/* Make sure that we always have enough lookahead, except
* at the end of the input file. We need MAX_MATCH bytes
* for the next match, plus MIN_MATCH bytes to insert the
* string following the next match.
*/
if (state.ds.lookahead < MIN_LOOKAHEAD) fill_window(state);
}
if (match_available) ct_tally (state,0, state.ds.window[state.ds.strstart-1]);
return FLUSH_BLOCK(state,1); /* eof */
}
int putlocal(struct zlist far *z, WRITEFUNC wfunc,void *param)
{ // Write a local header described by *z to file *f. Return a ZE_ error code.
PUTLG(LOCSIG, f);
PUTSH(z->ver, f);
PUTSH(z->lflg, f);
PUTSH(z->how, f);
PUTLG(z->tim, f);
PUTLG(z->crc, f);
PUTLG(z->siz, f);
PUTLG(z->len, f);
PUTSH(z->nam, f);
PUTSH(z->ext, f);
size_t res = (size_t)wfunc(param, z->iname, (unsigned int)z->nam);
if (res!=z->nam) return ZE_TEMP;
if (z->ext)
{ res = (size_t)wfunc(param, z->extra, (unsigned int)z->ext);
if (res!=z->ext) return ZE_TEMP;
}
return ZE_OK;
}
int putextended(struct zlist far *z, WRITEFUNC wfunc, void *param)
{ // Write an extended local header described by *z to file *f. Returns a ZE_ code
PUTLG(EXTLOCSIG, f);
PUTLG(z->crc, f);
PUTLG(z->siz, f);
PUTLG(z->len, f);
return ZE_OK;
}
int putcentral(struct zlist far *z, WRITEFUNC wfunc, void *param)
{ // Write a central header entry of *z to file *f. Returns a ZE_ code.
PUTLG(CENSIG, f);
PUTSH(z->vem, f);
PUTSH(z->ver, f);
PUTSH(z->flg, f);
PUTSH(z->how, f);
PUTLG(z->tim, f);
PUTLG(z->crc, f);
PUTLG(z->siz, f);
PUTLG(z->len, f);
PUTSH(z->nam, f);
PUTSH(z->cext, f);
PUTSH(z->com, f);
PUTSH(z->dsk, f);
PUTSH(z->att, f);
PUTLG(z->atx, f);
PUTLG(z->off, f);
if ((size_t)wfunc(param, z->iname, (unsigned int)z->nam) != z->nam ||
(z->cext && (size_t)wfunc(param, z->cextra, (unsigned int)z->cext) != z->cext) ||
(z->com && (size_t)wfunc(param, z->comment, (unsigned int)z->com) != z->com))
return ZE_TEMP;
return ZE_OK;
}
int putend(int n, ulg s, ulg c, extent m, char *z, WRITEFUNC wfunc, void *param)
{ // write the end of the central-directory-data to file *f.
PUTLG(ENDSIG, f);
PUTSH(0, f);
PUTSH(0, f);
PUTSH(n, f);
PUTSH(n, f);
PUTLG(s, f);
PUTLG(c, f);
PUTSH(m, f);
// Write the comment, if any
if (m && wfunc(param, z, (unsigned int)m) != m) return ZE_TEMP;
return ZE_OK;
}
const ulg crc_table[256] = {
0x00000000L, 0x77073096L, 0xee0e612cL, 0x990951baL, 0x076dc419L,
0x706af48fL, 0xe963a535L, 0x9e6495a3L, 0x0edb8832L, 0x79dcb8a4L,
0xe0d5e91eL, 0x97d2d988L, 0x09b64c2bL, 0x7eb17cbdL, 0xe7b82d07L,
0x90bf1d91L, 0x1db71064L, 0x6ab020f2L, 0xf3b97148L, 0x84be41deL,
0x1adad47dL, 0x6ddde4ebL, 0xf4d4b551L, 0x83d385c7L, 0x136c9856L,
0x646ba8c0L, 0xfd62f97aL, 0x8a65c9ecL, 0x14015c4fL, 0x63066cd9L,
0xfa0f3d63L, 0x8d080df5L, 0x3b6e20c8L, 0x4c69105eL, 0xd56041e4L,
0xa2677172L, 0x3c03e4d1L, 0x4b04d447L, 0xd20d85fdL, 0xa50ab56bL,
0x35b5a8faL, 0x42b2986cL, 0xdbbbc9d6L, 0xacbcf940L, 0x32d86ce3L,
0x45df5c75L, 0xdcd60dcfL, 0xabd13d59L, 0x26d930acL, 0x51de003aL,
0xc8d75180L, 0xbfd06116L, 0x21b4f4b5L, 0x56b3c423L, 0xcfba9599L,
0xb8bda50fL, 0x2802b89eL, 0x5f058808L, 0xc60cd9b2L, 0xb10be924L,
0x2f6f7c87L, 0x58684c11L, 0xc1611dabL, 0xb6662d3dL, 0x76dc4190L,
0x01db7106L, 0x98d220bcL, 0xefd5102aL, 0x71b18589L, 0x06b6b51fL,
0x9fbfe4a5L, 0xe8b8d433L, 0x7807c9a2L, 0x0f00f934L, 0x9609a88eL,
0xe10e9818L, 0x7f6a0dbbL, 0x086d3d2dL, 0x91646c97L, 0xe6635c01L,
0x6b6b51f4L, 0x1c6c6162L, 0x856530d8L, 0xf262004eL, 0x6c0695edL,
0x1b01a57bL, 0x8208f4c1L, 0xf50fc457L, 0x65b0d9c6L, 0x12b7e950L,
0x8bbeb8eaL, 0xfcb9887cL, 0x62dd1ddfL, 0x15da2d49L, 0x8cd37cf3L,
0xfbd44c65L, 0x4db26158L, 0x3ab551ceL, 0xa3bc0074L, 0xd4bb30e2L,
0x4adfa541L, 0x3dd895d7L, 0xa4d1c46dL, 0xd3d6f4fbL, 0x4369e96aL,
0x346ed9fcL, 0xad678846L, 0xda60b8d0L, 0x44042d73L, 0x33031de5L,
0xaa0a4c5fL, 0xdd0d7cc9L, 0x5005713cL, 0x270241aaL, 0xbe0b1010L,
0xc90c2086L, 0x5768b525L, 0x206f85b3L, 0xb966d409L, 0xce61e49fL,
0x5edef90eL, 0x29d9c998L, 0xb0d09822L, 0xc7d7a8b4L, 0x59b33d17L,
0x2eb40d81L, 0xb7bd5c3bL, 0xc0ba6cadL, 0xedb88320L, 0x9abfb3b6L,
0x03b6e20cL, 0x74b1d29aL, 0xead54739L, 0x9dd277afL, 0x04db2615L,
0x73dc1683L, 0xe3630b12L, 0x94643b84L, 0x0d6d6a3eL, 0x7a6a5aa8L,
0xe40ecf0bL, 0x9309ff9dL, 0x0a00ae27L, 0x7d079eb1L, 0xf00f9344L,
0x8708a3d2L, 0x1e01f268L, 0x6906c2feL, 0xf762575dL, 0x806567cbL,
0x196c3671L, 0x6e6b06e7L, 0xfed41b76L, 0x89d32be0L, 0x10da7a5aL,
0x67dd4accL, 0xf9b9df6fL, 0x8ebeeff9L, 0x17b7be43L, 0x60b08ed5L,
0xd6d6a3e8L, 0xa1d1937eL, 0x38d8c2c4L, 0x4fdff252L, 0xd1bb67f1L,
0xa6bc5767L, 0x3fb506ddL, 0x48b2364bL, 0xd80d2bdaL, 0xaf0a1b4cL,
0x36034af6L, 0x41047a60L, 0xdf60efc3L, 0xa867df55L, 0x316e8eefL,
0x4669be79L, 0xcb61b38cL, 0xbc66831aL, 0x256fd2a0L, 0x5268e236L,
0xcc0c7795L, 0xbb0b4703L, 0x220216b9L, 0x5505262fL, 0xc5ba3bbeL,
0xb2bd0b28L, 0x2bb45a92L, 0x5cb36a04L, 0xc2d7ffa7L, 0xb5d0cf31L,
0x2cd99e8bL, 0x5bdeae1dL, 0x9b64c2b0L, 0xec63f226L, 0x756aa39cL,
0x026d930aL, 0x9c0906a9L, 0xeb0e363fL, 0x72076785L, 0x05005713L,
0x95bf4a82L, 0xe2b87a14L, 0x7bb12baeL, 0x0cb61b38L, 0x92d28e9bL,
0xe5d5be0dL, 0x7cdcefb7L, 0x0bdbdf21L, 0x86d3d2d4L, 0xf1d4e242L,
0x68ddb3f8L, 0x1fda836eL, 0x81be16cdL, 0xf6b9265bL, 0x6fb077e1L,
0x18b74777L, 0x88085ae6L, 0xff0f6a70L, 0x66063bcaL, 0x11010b5cL,
0x8f659effL, 0xf862ae69L, 0x616bffd3L, 0x166ccf45L, 0xa00ae278L,
0xd70dd2eeL, 0x4e048354L, 0x3903b3c2L, 0xa7672661L, 0xd06016f7L,
0x4969474dL, 0x3e6e77dbL, 0xaed16a4aL, 0xd9d65adcL, 0x40df0b66L,
0x37d83bf0L, 0xa9bcae53L, 0xdebb9ec5L, 0x47b2cf7fL, 0x30b5ffe9L,
0xbdbdf21cL, 0xcabac28aL, 0x53b39330L, 0x24b4a3a6L, 0xbad03605L,
0xcdd70693L, 0x54de5729L, 0x23d967bfL, 0xb3667a2eL, 0xc4614ab8L,
0x5d681b02L, 0x2a6f2b94L, 0xb40bbe37L, 0xc30c8ea1L, 0x5a05df1bL,
0x2d02ef8dL
};
#define CRC32(c, b) (crc_table[((int)(c) ^ (b)) & 0xff] ^ ((c) >> 8))
#define DO1(buf) crc = CRC32(crc, *buf++)
#define DO2(buf) DO1(buf); DO1(buf)
#define DO4(buf) DO2(buf); DO2(buf)
#define DO8(buf) DO4(buf); DO4(buf)
ulg crc32(ulg crc, const uch *buf, extent len)
{ if (buf==NULL) return 0L;
crc = crc ^ 0xffffffffL;
while (len >= 8) {DO8(buf); len -= 8;}
if (len) do {DO1(buf);} while (--len);
return crc ^ 0xffffffffL; // (instead of ~c for 64-bit machines)
}
bool HasZipSuffix(const char *fn)
{ const char *ext = fn+strlen(fn);
while (ext>fn && *ext!='.') ext--;
if (ext==fn && *ext!='.') return false;
if (_stricmp(ext,".Z")==0) return true;
if (_stricmp(ext,".zip")==0) return true;
if (_stricmp(ext,".zoo")==0) return true;
if (_stricmp(ext,".arc")==0) return true;
if (_stricmp(ext,".lzh")==0) return true;
if (_stricmp(ext,".arj")==0) return true;
if (_stricmp(ext,".gz")==0) return true;
if (_stricmp(ext,".tgz")==0) return true;
return false;
}
#ifdef _WIN32
time_t filetime2timet(const FILETIME ft)
{ SYSTEMTIME st; FileTimeToSystemTime(&ft,&st);
if (st.wYear<1970) {st.wYear=1970; st.wMonth=1; st.wDay=1;}
if (st.wYear>=2038) {st.wYear=2037; st.wMonth=12; st.wDay=31;}
struct tm tm;
tm.tm_sec = st.wSecond;
tm.tm_min = st.wMinute;
tm.tm_hour = st.wHour;
tm.tm_mday = st.wDay;
tm.tm_mon = st.wMonth-1;
tm.tm_year = st.wYear-1900;
tm.tm_isdst = 0;
time_t t = mktime(&tm);
return t;
}
ZRESULT GetFileInfo(HANDLE hf, ulg *attr, long *size, iztimes *times, ulg *timestamp)
{
DWORD type=GetFileType(hf);
if (type!=FILE_TYPE_DISK)
return ZR_NOTINITED;
// The handle must be a handle to a file
// The date and time is returned in a long with the date most significant to allow
// unsigned integer comparison of absolute times. The attributes have two
// high bytes unix attr, and two low bytes a mapping of that to DOS attr.
//struct stat s; int res=stat(fn,&s); if (res!=0) return false;
// translate windows file attributes into zip ones.
BY_HANDLE_FILE_INFORMATION bhi;
BOOL res=GetFileInformationByHandle(hf,&bhi);
if (!res)
return ZR_NOFILE;
FileTimeToLocalFileTime( &bhi.ftLastAccessTime, &bhi.ftLastAccessTime );
FileTimeToLocalFileTime( &bhi.ftLastWriteTime, &bhi.ftLastWriteTime );
FileTimeToLocalFileTime( &bhi.ftCreationTime, &bhi.ftCreationTime );
DWORD fa=bhi.dwFileAttributes;
ulg a=0;
// Zip uses the lower word for its interpretation of windows stuff
if (fa&FILE_ATTRIBUTE_READONLY) a|=0x01;
if (fa&FILE_ATTRIBUTE_HIDDEN) a|=0x02;
if (fa&FILE_ATTRIBUTE_SYSTEM) a|=0x04;
if (fa&FILE_ATTRIBUTE_DIRECTORY)a|=0x10;
if (fa&FILE_ATTRIBUTE_ARCHIVE) a|=0x20;
// It uses the upper word for standard unix attr, which we must manually construct
if (fa&FILE_ATTRIBUTE_DIRECTORY)a|=0x40000000; // directory
else a|=0x80000000; // normal file
a|=0x01000000; // readable
if (fa&FILE_ATTRIBUTE_READONLY) {}
else a|=0x00800000; // writeable
// now just a small heuristic to check if it's an executable:
DWORD red, hsize=GetFileSize(hf,NULL); if (hsize>40)
{ SetFilePointer(hf,0,NULL,FILE_BEGIN); unsigned short magic; ReadFile(hf,&magic,sizeof(magic),&red,NULL);
SetFilePointer(hf,36,NULL,FILE_BEGIN); unsigned long hpos; ReadFile(hf,&hpos,sizeof(hpos),&red,NULL);
if (magic==0x54AD && hsize>hpos+4+20+28)
{ SetFilePointer(hf,hpos,NULL,FILE_BEGIN); unsigned long signature; ReadFile(hf,&signature,sizeof(signature),&red,NULL);
if (signature==IMAGE_DOS_SIGNATURE || signature==IMAGE_OS2_SIGNATURE
|| signature==IMAGE_OS2_SIGNATURE_LE || signature==IMAGE_NT_SIGNATURE)
{ a |= 0x00400000; // executable
}
}
}
//
if (attr!=NULL) *attr = a;
if (size!=NULL) *size = hsize;
if (times!=NULL)
{ // time_t is 32bit number of seconds elapsed since 0:0:0GMT, Jan1, 1970.
// but FILETIME is 64bit number of 100-nanosecs since Jan1, 1601
times->atime = filetime2timet(bhi.ftLastAccessTime);
times->mtime = filetime2timet(bhi.ftLastWriteTime);
times->ctime = filetime2timet(bhi.ftCreationTime);
}
if (timestamp!=NULL)
{ WORD dosdate,dostime;
FileTimeToDosDateTime(&bhi.ftLastWriteTime,&dosdate,&dostime);
*timestamp = (WORD)dostime | (((DWORD)dosdate)<<16);
}
return ZR_OK;
}
#endif
#ifndef _WIN32
int timet_to_timestamp( time_t time )
{
struct tm *tm;
tm = localtime( &time );
if ( !tm )
return 0;
int date = 0;
date |= ( ( ( tm->tm_year & 0x7f ) + ( 1900 - 1980 ) ) << 9 );
date |= ( ( ( tm->tm_mon & 0x0f ) + 1 ) << 5 );
date |= ( ( ( tm->tm_mday & 0x1f ) ) );
int timepart = 0;
timepart |= ( ( ( tm->tm_hour & 0x1f ) ) << 11 );
timepart |= ( ( ( tm->tm_min & 0x3f ) ) << 5 );
timepart |= ( ( ( tm->tm_sec & 0x3e ) ) >> 1 );
return time | (date << 16 );
}
#endif
///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
class TZip
{ public:
TZip() : hfout(0),hmapout(0),zfis(0),obuf(0),hfin(0),writ(0),oerr(false),hasputcen(false),ooffset(0) {}
~TZip() {}
// These variables say about the file we're writing into
// We can write to pipe, file-by-handle, file-by-name, memory-to-memmapfile
HANDLE hfout; // if valid, we'll write here (for files or pipes)
HANDLE hmapout; // otherwise, we'll write here (for memmap)
unsigned ooffset; // for hfout, this is where the pointer was initially
ZRESULT oerr; // did a write operation give rise to an error?
unsigned writ; // how far have we written. This is maintained by Add, not write(), to avoid confusion over seeks
bool ocanseek; // can we seek?
char *obuf; // this is where we've locked mmap to view.
unsigned int opos; // current pos in the mmap
unsigned int mapsize; // the size of the map we created
bool hasputcen; // have we yet placed the central directory?
//
TZipFileInfo *zfis; // each file gets added onto this list, for writing the table at the end
ZRESULT Create(void *z,unsigned int len,DWORD flags);
static unsigned sflush(void *param,const char *buf, unsigned *size);
static unsigned swrite(void *param,const char *buf, unsigned size);
unsigned int write(const char *buf,unsigned int size);
bool oseek(unsigned int pos);
ZRESULT GetMemory(void **pbuf, unsigned long *plen);
ZRESULT Close();
// some variables to do with the file currently being read:
// I haven't done it object-orientedly here, just put them all
// together, since OO didn't seem to make the design any clearer.
ulg attr; iztimes times; ulg timestamp; // all open_* methods set these
bool iseekable; long isize,ired; // size is not set until close() on pips
ulg crc; // crc is not set until close(). iwrit is cumulative
HANDLE hfin; bool selfclosehf; // for input files and pipes
const char *bufin; unsigned int lenin,posin; // for memory
// and a variable for what we've done with the input: (i.e. compressed it!)
ulg csize; // compressed size, set by the compression routines
// and this is used by some of the compression routines
char buf[16384];
ZRESULT open_file(const TCHAR *fn);
ZRESULT open_handle(HANDLE hf,unsigned int len);
ZRESULT open_mem(void *src,unsigned int len);
ZRESULT open_dir();
static unsigned sread(TState &s,char *buf,unsigned size);
unsigned read(char *buf, unsigned size);
ZRESULT iclose();
ZRESULT ideflate(TZipFileInfo *zfi);
ZRESULT istore();
ZRESULT Add(const char *odstzn, void *src,unsigned int len, DWORD flags);
ZRESULT AddCentral();
};
ZRESULT TZip::Create(void *z,unsigned int len,DWORD flags)
{
if (hfout!=0 || hmapout!=0 || obuf!=0 || writ!=0 || oerr!=ZR_OK || hasputcen)
return ZR_NOTINITED;
//
if (flags==ZIP_MEMORY)
{
if (len==0)
return ZR_MEMSIZE;
if (z!=0)
obuf=(char*)z;
else
{
#ifdef _WIN32
hmapout = CreateFileMapping(INVALID_HANDLE_VALUE,NULL,PAGE_READWRITE,0,len,NULL);
if (hmapout==NULL)
return ZR_NOALLOC;
obuf = (char*)MapViewOfFile(hmapout,FILE_MAP_ALL_ACCESS,0,0,len);
if (obuf==0)
{
CloseHandle(hmapout);
hmapout=0;
return ZR_NOALLOC;
}
#endif
#ifdef POSIX
obuf = (char*) calloc( len, 1 );
hmapout = (void*)-1; // sentinel to let close know it's a file in posix.
if ( !obuf )
return ZR_NOALLOC;
#endif
}
ocanseek=true;
opos=0;
mapsize=len;
return ZR_OK;
}
#ifdef _WIN32
else if (flags==ZIP_HANDLE)
{
HANDLE hf = (HANDLE)z;
BOOL res = DuplicateHandle(GetCurrentProcess(),hf,GetCurrentProcess(),&hfout,0,FALSE,DUPLICATE_SAME_ACCESS);
if (!res)
return ZR_NODUPH;
// now we have our own hfout, which we must close. And the caller will close hf
DWORD type = GetFileType(hfout);
ocanseek = (type==FILE_TYPE_DISK);
if (type==FILE_TYPE_DISK)
ooffset=SetFilePointer(hfout,0,NULL,FILE_CURRENT);
else
ooffset=0;
return ZR_OK;
}
else if (flags==ZIP_FILENAME)
{
#ifdef _UNICODE
const TCHAR *fn = (const TCHAR*)z;
hfout = CreateFileW(fn,GENERIC_WRITE,0,NULL,CREATE_ALWAYS,FILE_ATTRIBUTE_NORMAL,NULL);
#else
const char *fn = (const char*)z;
hfout = CreateFileA(fn,GENERIC_WRITE,0,NULL,CREATE_ALWAYS,FILE_ATTRIBUTE_NORMAL,NULL);
#endif
if (hfout==INVALID_HANDLE_VALUE)
{
hfout=0;
return ZR_NOFILE;
}
ocanseek=true;
ooffset=0;
return ZR_OK;
}
#endif
else
return ZR_ARGS;
}
unsigned TZip::sflush(void *param,const char *buf, unsigned *size)
{ // static
if (*size==0) return 0;
TZip *zip = (TZip*)param;
unsigned int writ = zip->write(buf,*size);
if (writ!=0) *size=0;
return writ;
}
unsigned TZip::swrite(void *param,const char *buf, unsigned size)
{ // static
if (size==0) return 0;
TZip *zip=(TZip*)param; return zip->write(buf,size);
}
unsigned int TZip::write(const char *pBuf,unsigned int size)
{ if (obuf!=0)
{ if (opos+size>=mapsize) {oerr=ZR_MEMSIZE; return 0;}
memcpy(obuf+opos, pBuf, size);
opos+=size;
return size;
}
#ifdef _WIN32
else if (hfout!=0)
{ DWORD writF; WriteFile(hfout, pBuf,size,&writF,NULL);
return writF;
}
#endif
oerr=ZR_NOTINITED; return 0;
}
bool TZip::oseek(unsigned int pos)
{ if (!ocanseek) {oerr=ZR_SEEK; return false;}
if (obuf!=0)
{ if (pos>=mapsize) {oerr=ZR_MEMSIZE; return false;}
opos=pos;
return true;
}
#ifdef _WIN32
else if (hfout!=0)
{ SetFilePointer(hfout,pos+ooffset,NULL,FILE_BEGIN);
return true;
}
#endif
oerr=ZR_NOTINITED; return 0;
}
ZRESULT TZip::GetMemory(void **pbuf, unsigned long *plen)
{ // When the user calls GetMemory, they're presumably at the end
// of all their adding. In any case, we have to add the central
// directory now, otherwise the memory we tell them won't be complete.
if (!hasputcen) AddCentral(); hasputcen=true;
if (pbuf!=NULL) *pbuf=(void*)obuf;
if (plen!=NULL) *plen=writ;
if (obuf==NULL) return ZR_NOTMMAP;
return ZR_OK;
}
ZRESULT TZip::Close()
{ // if the directory hadn't already been added through a call to GetMemory,
// then we do it now
ZRESULT res=ZR_OK; if (!hasputcen) res=AddCentral(); hasputcen=true;
if (obuf!=0 && hmapout!=0)
#ifdef _WIN32
UnmapViewOfFile(obuf);
#elif defined( POSIX )
free(obuf);
#endif
obuf=0;
#ifdef _WIN32
if (hmapout!=0) CloseHandle(hmapout); hmapout=0;
if (hfout!=0) CloseHandle(hfout); hfout=0;
#endif
return res;
}
ZRESULT TZip::open_file(const TCHAR *fn)
{ hfin=0; bufin=0; selfclosehf=false; crc=CRCVAL_INITIAL; isize=0; csize=0; ired=0;
if (fn==0) return ZR_ARGS;
HANDLE hf = INVALID_HANDLE_VALUE;
#ifdef _WIN32
hf = CreateFile(fn,GENERIC_READ,FILE_SHARE_READ,NULL,OPEN_EXISTING,0,NULL);
#endif
if (hf==INVALID_HANDLE_VALUE) return ZR_NOFILE;
ZRESULT res = open_handle(hf,0);
if (res!=ZR_OK) {
#ifdef _WIN32
CloseHandle(hf);
#endif
return res;
}
selfclosehf=true;
return ZR_OK;
}
ZRESULT TZip::open_handle(HANDLE hf,unsigned int len)
{ hfin=0; bufin=0; selfclosehf=false; crc=CRCVAL_INITIAL; isize=0; csize=0; ired=0;
if (hf==0 || hf==INVALID_HANDLE_VALUE) return ZR_ARGS;
#ifdef _WIN32
DWORD type = GetFileType(hf);
if (type==FILE_TYPE_DISK)
{ ZRESULT res = GetFileInfo(hf,&attr,&isize,&times,&timestamp);
if (res!=ZR_OK) return res;
SetFilePointer(hf,0,NULL,FILE_BEGIN); // because GetFileInfo will have screwed it up
iseekable=true; hfin=hf;
return ZR_OK;
}
else
{ attr= 0x80000000; // just a normal file
isize = -1; // can't know size until at the end
if (len!=0) isize=len; // unless we were told explicitly!
iseekable=false;
SYSTEMTIME st; GetLocalTime(&st);
FILETIME ft; SystemTimeToFileTime(&st,&ft);
WORD dosdate,dostime; FileTimeToDosDateTime(&ft,&dosdate,&dostime);
times.atime = filetime2timet(ft);
times.mtime = times.atime;
times.ctime = times.atime;
timestamp = (WORD)dostime | (((DWORD)dosdate)<<16);
hfin=hf;
return ZR_OK;
}
#else
return ZR_FAILED;
#endif
}
ZRESULT TZip::open_mem(void *src,unsigned int len)
{ hfin=0; bufin=(const char*)src; selfclosehf=false; crc=CRCVAL_INITIAL; ired=0; csize=0; ired=0;
lenin=len; posin=0;
if (src==0 || len==0) return ZR_ARGS;
#ifdef _WIN32
attr= 0x80000000; // just a normal file
isize = len;
iseekable=true;
SYSTEMTIME st; GetLocalTime(&st);
FILETIME ft; SystemTimeToFileTime(&st,&ft);
WORD dosdate,dostime; FileTimeToDosDateTime(&ft,&dosdate,&dostime);
times.atime = filetime2timet(ft);
times.mtime = times.atime;
times.ctime = times.atime;
timestamp = (WORD)dostime | (((DWORD)dosdate)<<16);
return ZR_OK;
#else
times.atime = time(NULL);
times.mtime = times.atime;
times.ctime = times.atime;
timestamp = timet_to_timestamp( times.atime );
return ZR_OK;
#endif
}
ZRESULT TZip::open_dir()
{ hfin=0; bufin=0; selfclosehf=false; crc=CRCVAL_INITIAL; isize=0; csize=0; ired=0;
#ifdef _WIN32
attr= 0x41C00010; // a readable writable directory, and again directory
isize = 0;
iseekable=false;
SYSTEMTIME st; GetLocalTime(&st);
FILETIME ft; SystemTimeToFileTime(&st,&ft);
WORD dosdate,dostime; FileTimeToDosDateTime(&ft,&dosdate,&dostime);
times.atime = filetime2timet(ft);
times.mtime = times.atime;
times.ctime = times.atime;
timestamp = (WORD)dostime | (((DWORD)dosdate)<<16);
return ZR_OK;
#else
times.atime = time(NULL);
times.mtime = times.atime;
times.ctime = times.atime;
timestamp = timet_to_timestamp( times.atime );
return ZR_OK;
#endif
}
unsigned TZip::sread(TState &s,char *buf,unsigned size)
{ // static
TZip *zip = (TZip*)s.param;
return zip->read(buf,size);
}
unsigned TZip::read(char *pBuf, unsigned size)
{ if (bufin!=0)
{ if (posin>=lenin) return 0; // end of input
ulg red = lenin-posin;
if (red>size) red=size;
memcpy( pBuf, bufin+posin, red);
posin += red;
ired += red;
crc = crc32(crc, (uch*)pBuf, red);
return red;
}
#ifdef _WIN32
else if (hfin!=0)
{ DWORD red;
BOOL ok = ReadFile(hfin, pBuf,size,&red,NULL);
if (!ok) return 0;
ired += red;
crc = crc32(crc, (uch*)pBuf, red);
return red;
}
#endif
else {oerr=ZR_NOTINITED; return 0;}
}
ZRESULT TZip::iclose()
{
#ifdef _WIN32
if (selfclosehf && hfin!=0) CloseHandle(hfin);
#endif
hfin=0;
bool mismatch = (isize!=-1 && isize!=ired);
isize=ired; // and crc has been being updated anyway
if (mismatch) return ZR_MISSIZE;
else return ZR_OK;
}
ZRESULT TZip::ideflate(TZipFileInfo *zfi)
{ TState state;
state.readfunc=sread; state.flush_outbuf=sflush;
state.param=this; state.level=8; state.seekable=iseekable; state.err=NULL;
// the following line will make ct_init realise it has to perform the init
state.ts.static_dtree[0].dl.len = 0;
// It would be nicer if I could figure out precisely which data had to
// be initted each time, and which didn't, but that's kind of difficult.
// Maybe for the next version...
//
bi_init(state,buf, sizeof(buf), TRUE); // it used to be just 1024-size, not 16384 as here
ct_init(state,&zfi->att);
lm_init(state,state.level, &zfi->flg);
ulg sz = deflate(state);
csize=sz;
if (state.err!=NULL) return ZR_FLATE;
else return ZR_OK;
}
ZRESULT TZip::istore()
{ ulg size=0;
for (;;)
{ unsigned int cin=read(buf,16384); if (cin<=0 || cin==(unsigned int)EOF) break;
unsigned int cout = write(buf,cin); if (cout!=cin) return ZR_MISSIZE;
size += cin;
}
csize=size;
return ZR_OK;
}
ZRESULT TZip::Add(const char *odstzn, void *src,unsigned int len, DWORD flags)
{
if (oerr)
return ZR_FAILED;
if (hasputcen)
return ZR_ENDED;
// zip has its own notion of what its names should look like: i.e. dir/file.stuff
char dstzn[MAX_PATH];
strcpy(dstzn, odstzn);
if (*dstzn == 0)
return ZR_ARGS;
char *d=dstzn;
while (*d != 0)
{
if (*d == '\\')
*d = '/';
d++;
}
bool isdir = (flags==ZIP_FOLDER);
bool needs_trailing_slash = (isdir && dstzn[strlen(dstzn)-1]!='/');
int method=DEFLATE;
if (isdir || HasZipSuffix(dstzn))
method=STORE;
// now open whatever was our input source:
ZRESULT openres;
if (flags==ZIP_FILENAME)
openres=open_file((const TCHAR*)src);
else if (flags==ZIP_HANDLE)
openres=open_handle((HANDLE)src,len);
else if (flags==ZIP_MEMORY)
openres=open_mem(src,len);
else if (flags==ZIP_FOLDER)
openres=open_dir();
else return ZR_ARGS;
if (openres!=ZR_OK)
return openres;
// A zip "entry" consists of a local header (which includes the file name),
// then the compressed data, and possibly an extended local header.
// Initialize the local header
TZipFileInfo zfi; zfi.nxt=NULL;
strcpy(zfi.name,"");
strcpy(zfi.iname,dstzn);
zfi.nam=strlen(zfi.iname);
if (needs_trailing_slash)
{
strcat(zfi.iname,"/");
zfi.nam++;
}
strcpy(zfi.zname,"");
zfi.extra=NULL; zfi.ext=0; // extra header to go after this compressed data, and its length
zfi.cextra=NULL; zfi.cext=0; // extra header to go in the central end-of-zip directory, and its length
zfi.comment=NULL; zfi.com=0; // comment, and its length
zfi.mark = 1;
zfi.dosflag = 0;
zfi.att = (ush)BINARY;
zfi.vem = (ush)0xB17; // 0xB00 is win32 os-code. 0x17 is 23 in decimal: zip 2.3
zfi.ver = (ush)20; // Needs PKUNZIP 2.0 to unzip it
zfi.tim = timestamp;
// Even though we write the header now, it will have to be rewritten, since we don't know compressed size or crc.
zfi.crc = 0; // to be updated later
zfi.flg = 8; // 8 means 'there is an extra header'. Assume for the moment that we need it.
zfi.lflg = zfi.flg; // to be updated later
zfi.how = (ush)method; // to be updated later
zfi.siz = (ulg)(method==STORE && isize>=0 ? isize : 0); // to be updated later
zfi.len = (ulg)(isize); // to be updated later
zfi.dsk = 0;
zfi.atx = attr;
zfi.off = writ+ooffset; // offset within file of the start of this local record
// stuff the 'times' structure into zfi.extra
char xloc[EB_L_UT_SIZE];
zfi.extra=xloc;
zfi.ext=EB_L_UT_SIZE;
char xcen[EB_C_UT_SIZE];
zfi.cextra=xcen;
zfi.cext=EB_C_UT_SIZE;
xloc[0] = 'U';
xloc[1] = 'T';
xloc[2] = EB_UT_LEN(3); // length of data part of e.f.
xloc[3] = 0;
xloc[4] = EB_UT_FL_MTIME | EB_UT_FL_ATIME | EB_UT_FL_CTIME;
xloc[5] = (char)(times.mtime);
xloc[6] = (char)(times.mtime >> 8);
xloc[7] = (char)(times.mtime >> 16);
xloc[8] = (char)(times.mtime >> 24);
xloc[9] = (char)(times.atime);
xloc[10] = (char)(times.atime >> 8);
xloc[11] = (char)(times.atime >> 16);
xloc[12] = (char)(times.atime >> 24);
xloc[13] = (char)(times.ctime);
xloc[14] = (char)(times.ctime >> 8);
xloc[15] = (char)(times.ctime >> 16);
xloc[16] = (char)(times.ctime >> 24);
memcpy(zfi.cextra,zfi.extra,EB_C_UT_SIZE);
zfi.cextra[EB_LEN] = EB_UT_LEN(1);
// (1) Start by writing the local header:
int r = putlocal(&zfi,swrite,this);
if (r!=ZE_OK)
{
iclose();
return ZR_WRITE;
}
writ += 4 + LOCHEAD + (unsigned int)zfi.nam + (unsigned int)zfi.ext;
if (oerr!=ZR_OK)
{
iclose();
return oerr;
}
//(2) Write deflated/stored file to zip file
ZRESULT writeres=ZR_OK;
if (!isdir && method==DEFLATE)
writeres=ideflate(&zfi);
else if (!isdir && method==STORE)
writeres=istore();
else if (isdir)
csize=0;
iclose();
writ += csize;
if (oerr!=ZR_OK)
return oerr;
if (writeres!=ZR_OK)
return ZR_WRITE;
// (3) Either rewrite the local header with correct information...
bool first_header_has_size_right = (zfi.siz==csize);
zfi.crc = crc;
zfi.siz = csize;
zfi.len = isize;
if (ocanseek)
{
zfi.how = (ush)method;
if ((zfi.flg & 1) == 0)
zfi.flg &= ~8; // clear the extended local header flag
zfi.lflg = zfi.flg;
// rewrite the local header:
if (!oseek(zfi.off-ooffset))
return ZR_SEEK;
if ((r = putlocal(&zfi, swrite,this)) != ZE_OK)
return ZR_WRITE;
if (!oseek(writ))
return ZR_SEEK;
}
else
{
// (4) ... or put an updated header at the end
if (zfi.how != (ush) method)
return ZR_NOCHANGE;
if (method==STORE && !first_header_has_size_right)
return ZR_NOCHANGE;
if ((r = putextended(&zfi, swrite,this)) != ZE_OK)
return ZR_WRITE;
writ += 16L;
zfi.flg = zfi.lflg; // if flg modified by inflate, for the central index
}
if (oerr!=ZR_OK)
return oerr;
// Keep a copy of the zipfileinfo, for our end-of-zip directory
char *cextra = new char[zfi.cext];
memcpy(cextra,zfi.cextra,zfi.cext); zfi.cextra=cextra;
TZipFileInfo *pzfi = new TZipFileInfo;
memcpy(pzfi,&zfi,sizeof(zfi));
if (zfis==NULL)
zfis=pzfi;
else
{
TZipFileInfo *z=zfis;
while (z->nxt!=NULL)
z=z->nxt;
z->nxt=pzfi;
}
return ZR_OK;
}
ZRESULT TZip::AddCentral()
{ // write central directory
int numentries = 0;
ulg pos_at_start_of_central = writ;
//ulg tot_unc_size=0, tot_compressed_size=0;
bool okay=true;
for (TZipFileInfo *zfi=zfis; zfi!=NULL; )
{ if (okay)
{ int res = putcentral(zfi, swrite,this);
if (res!=ZE_OK) okay=false;
}
writ += 4 + CENHEAD + (unsigned int)zfi->nam + (unsigned int)zfi->cext + (unsigned int)zfi->com;
//tot_unc_size += zfi->len;
//tot_compressed_size += zfi->siz;
numentries++;
//
TZipFileInfo *zfinext = zfi->nxt;
if (zfi->cextra!=0) delete[] zfi->cextra;
delete zfi;
zfi = zfinext;
}
ulg center_size = writ - pos_at_start_of_central;
if (okay)
{ int res = putend(numentries, center_size, pos_at_start_of_central+ooffset, 0, NULL, swrite,this);
if (res!=ZE_OK) okay=false;
writ += 4 + ENDHEAD + 0;
}
if (!okay) return ZR_WRITE;
return ZR_OK;
}
unsigned int FormatZipMessageZ(ZRESULT code, char *buf,unsigned int len)
{ if (code==ZR_RECENT) code=lasterrorZ;
const char *msg="unknown zip result code";
switch (code)
{ case ZR_OK: msg="Success"; break;
case ZR_NODUPH: msg="Culdn't duplicate handle"; break;
case ZR_NOFILE: msg="Couldn't create/open file"; break;
case ZR_NOALLOC: msg="Failed to allocate memory"; break;
case ZR_WRITE: msg="Error writing to file"; break;
case ZR_NOTFOUND: msg="File not found in the zipfile"; break;
case ZR_MORE: msg="Still more data to unzip"; break;
case ZR_CORRUPT: msg="Zipfile is corrupt or not a zipfile"; break;
case ZR_READ: msg="Error reading file"; break;
case ZR_ARGS: msg="Caller: faulty arguments"; break;
case ZR_PARTIALUNZ: msg="Caller: the file had already been partially unzipped"; break;
case ZR_NOTMMAP: msg="Caller: can only get memory of a memory zipfile"; break;
case ZR_MEMSIZE: msg="Caller: not enough space allocated for memory zipfile"; break;
case ZR_FAILED: msg="Caller: there was a previous error"; break;
case ZR_ENDED: msg="Caller: additions to the zip have already been ended"; break;
case ZR_ZMODE: msg="Caller: mixing creation and opening of zip"; break;
case ZR_NOTINITED: msg="Zip-bug: internal initialisation not completed"; break;
case ZR_SEEK: msg="Zip-bug: trying to seek the unseekable"; break;
case ZR_MISSIZE: msg="Zip-bug: the anticipated size turned out wrong"; break;
case ZR_NOCHANGE: msg="Zip-bug: tried to change mind, but not allowed"; break;
case ZR_FLATE: msg="Zip-bug: an internal error during flation"; break;
}
unsigned int mlen=(unsigned int)strlen(msg);
if (buf==0 || len==0) return mlen;
unsigned int n=mlen; if (n+1>len) n=len-1;
memcpy(buf,msg,n); buf[n]=0;
return mlen;
}
typedef struct
{ DWORD flag;
TZip *zip;
} TZipHandleData;
HZIP CreateZipZ(void *z,unsigned int len,DWORD flags)
{
_tzset();
TZip *zip = new TZip();
lasterrorZ = zip->Create(z,len,flags);
if (lasterrorZ != ZR_OK)
{
delete zip;
return 0;
}
TZipHandleData *han = new TZipHandleData;
han->flag = 2;
han->zip = zip;
return (HZIP)han;
}
ZRESULT ZipAdd(HZIP hz, const TCHAR *dstzn, void *src, unsigned int len, DWORD flags)
{
if (hz == 0)
{
lasterrorZ = ZR_ARGS;
return ZR_ARGS;
}
TZipHandleData *han = (TZipHandleData*)hz;
if (han->flag != 2)
{
lasterrorZ = ZR_ZMODE;
return ZR_ZMODE;
}
TZip *zip = han->zip;
if (flags == ZIP_FILENAME)
{
char szDest[MAX_PATH*2];
memset(szDest, 0, sizeof(szDest));
#ifdef _UNICODE
// need to convert Unicode dest to ANSI
int nActualChars = WideCharToMultiByte(CP_ACP, // code page
0, // performance and mapping flags
(LPCWSTR) dstzn, // wide-character string
-1, // number of chars in string
szDest, // buffer for new string
MAX_PATH*2-2, // size of buffer
NULL, // default for unmappable chars
NULL); // set when default char used
if (nActualChars == 0)
return ZR_ARGS;
#else
strcpy(szDest, dstzn);
#endif
lasterrorZ = zip->Add(szDest, src, len, flags);
}
else
{
lasterrorZ = zip->Add((char *)dstzn, src, len, flags);
}
return lasterrorZ;
}
ZRESULT ZipGetMemory(HZIP hz, void **buf, unsigned long *len)
{ if (hz==0) {if (buf!=0) *buf=0; if (len!=0) *len=0; lasterrorZ=ZR_ARGS;return ZR_ARGS;}
TZipHandleData *han = (TZipHandleData*)hz;
if (han->flag!=2) {lasterrorZ=ZR_ZMODE;return ZR_ZMODE;}
TZip *zip = han->zip;
lasterrorZ = zip->GetMemory(buf,len);
return lasterrorZ;
}
ZRESULT CloseZipZ(HZIP hz)
{ if (hz==0) {lasterrorZ=ZR_ARGS;return ZR_ARGS;}
TZipHandleData *han = (TZipHandleData*)hz;
if (han->flag!=2) {lasterrorZ=ZR_ZMODE;return ZR_ZMODE;}
TZip *zip = han->zip;
lasterrorZ = zip->Close();
delete zip;
delete han;
return lasterrorZ;
}
bool IsZipHandleZ(HZIP hz)
{ if (hz==0) return true;
TZipHandleData *han = (TZipHandleData*)hz;
return (han->flag==2);
}