
Release v1.0.9

August 3, 2012 Copyright © 2009-2012, Skype Limited Page 1 of 10

SILK SDK API

Release v1.0.9

August 3, 2012 Copyright © 2009-2012, Skype Limited Page 2 of 10

Instructions for using the Skype SILK SDK API

The Application Programming Interface (API) is defined in four header files
located in the interface/ folder:

• SKP_Silk_SDK_API.h – function declarations for the SILK encoder and
decoder.

• SKP_Silk_control.h – declarations of structures for controlling the
encoder and for controlling and getting status information from the
decoder

• SKP_API_typedef.h – type definitions
• SKP_Silk_errors.h – error code descriptions for the SILK SDK

Advanced settings, that generally should only be changed to fit a special need,
can be made in a header file located in the src/ folder:

• SKP_Silk_define.h – various defines for controlling the SILK SDK.

Encoder Control Struct Description (SKP_Silk_control.h)

The encoder structure (SKP_SILK_SDK_EncControlStruct) has the following
members:

SKP_int32 API_sampleRate;

(I) API sampling frequency in Hertz of the encoder. Valid values are: 8000,
12000, 16000, 24000, 32000, 44100, and 48000. This sampling frequency
represents the sampling frequency of the input signal to the encoder.

SKP_int32 maxInternalSampleRate;

(I) Maximum internal sampling frequency in Hertz of the encoder. Valid
values are: 8000, 12000, 16000, and 24000. This sampling frequency
represents the sampling frequency of the encoded signal. Note, that the
encoder may automatically adapt the sampling frequency to a lower value.
maxInternalSampleRate must never exceed the RTP time stamp
clock rate negotiated during call setup.

SKP_int packetSize;

(I) Number of samples per packet. A number of samples corresponding to
20, 40, 60, 80 or 100 ms are supported at any of the above listed API
sampling frequencies, e.g., 480 samples for a 20 ms packet at 24000 Hz
API sampling frequency.

SKP_int32 bitRate;

Release v1.0.9

August 3, 2012 Copyright © 2009-2012, Skype Limited Page 3 of 10

(I) Target bitrate for active speech in the range 5000 – 100000 bits per
second (bps). The value is limited internally if the input value is not within
the supported range.

SKP_int packetLossPercentage;

(I) Estimated packet loss percentage in the uplink direction (0 – 100). This
controls the error propagation in case of a packet loss. If in-band forward
error correction is used, this information also determines how much
protection the encoder will add.

SKP_int complexity;

(I) Complexity setting. Supported values are 0, 1 and 2, where 0 is the
lowest and 2 is the highest complexity.

SKP_int useInBandFEC;

(I) Enables / disables use of in-band forward error correction (0 disables
and 1 enables).

SKP_int useDTX;

(I) Enables / disables use of discontinuous transmission (0 disables and 1
enables).

Decoder Control Struct Description (SKP_Silk_control.h)

The decoder structure (SKP_SILK_SDK_DecControlStruct) has the following
members:

SKP_int32 API_sampleRate;

(I) Sampling frequency in Hertz of the decoder output signal. This
sampling frequency is independent of the internal sampling frequency of
the received signal. To preserve all transmitted information it should be at
least the maximum internal sampling frequency, that is,
maxInternalSampleRate of the encoder. Valid values are 8000,
12000, 16000, 24000, 32000, 44100, and 48000.

SKP_int frameSize;

(O) Frames size in samples; always corresponds to 20 ms of data
sampled at API_sampleRate, that is, 160, 240, 320, 480, 640, 882, or
960.

SKP_int framesPerPacket;

(O) Number of 20 ms frames in the last decoded packet. Possible output
values are 1, 2, 3, 4 or 5.

SKP_int moreInternalDecoderFrames;

Release v1.0.9

August 3, 2012 Copyright © 2009-2012, Skype Limited Page 4 of 10

(O) Flag which when set signals that more output frames are available
from a multi-frame payload that has been buffered in the decoder (0 or 1).

SKP_int inBandFECOffset;

(O) Distance between main payload and redundant payload in packets (0,
1 or 2)

Comments:
The SILK decoder will always decode a 20 ms frame for each function call. If the
received packet contains more than one frame, the decoder must be called more
than once to fully decode that packet. To indicate when the decoding of the
packet has finished the moreInternalDecoderFrames flag is used. If
moreInternalDecoderFrames is 0, the last packet has been fully decoded
and the decoder is ready for the next packet. When
moreInternalDecoderFrames is 1, the decoder is not finished decoding all
the frames that were contained in the last packet, and the decoder should be
called until moreInternalDecoderFrames changes to 0. Also, when
moreInternalDecoderFrames is 1, the input inData to
SKP_Silk_SDK_Decode is ignored, as in this case the remaining part of the
last received packet is read from an internal buffer.

Functions (SKP_Silk_SDK_API.h)

All functions return an error code, which is 0 if no error was encountered during
function execution. A negative value is returned to indicate an error. The list of
error codes can be found in SKP_Silk_errors.h.

SKP_int SKP_Silk_SDK_Get_Encoder_Size(

SKP_int32 *encSizeBytes
);
*encSizeBytes: (O) Size of encoder state in bytes.

Description:
Writes the size of the SILK encoder state in number of bytes to
*encSizeBytes. Use this function to allocate the right amount of memory
space for the encoder state.

SKP_int SKP_Silk_SDK_InitEncoder(
 void *encState,
 SKP_SILK_SDK_EncControlStruct *encStatus
);

*encState: (I/O) Encoder state.

Release v1.0.9

August 3, 2012 Copyright © 2009-2012, Skype Limited Page 5 of 10

*encStatus: (O) Encoder status struct. Returns default encoder settings.

Description:
Initializes the encoder state, encState, and returns the default encoder status,
encStatus. This function has to be called before the first call to the encoder,
and may be called to reset the internal encoder state, for instance when initiating
a new voice call.

SKP_int SKP_Silk_SDK_QueryEncoder(
 const void *encState,
 SKP_SILK_SDK_EncControlStruct *encStatus
);

*encState: (I) Encoder state.
*encStatus: (O) Encoder status struct. Returns the current encoder

settings.

Description:
Returns the current encoder settings, encStatus. This function may be called to
check the settings of the encoder. The struct members are static in the sense
that they will hold the value that was passed as input to the encoder, except if
limited internally if exceeding the expected range.

SKP_int SKP_Silk_SDK_Encode(
 void *encState,
 const SKP_SILK_SDK_EncControlStruct *encControl,
 const SKP_int16 *samplesIn,
 SKP_int nSamplesIn,
 SKP_uint8 *outData,
 SKP_int16 *nBytesOut
);

*encState: (I/O) Encoder state.
*encControl: (I) Structure to hold encoder control.
*samplesIn: (I) Input vector with nSamplesIn of audio samples.
nSamplesIn: (I) Number of input samples. Must correspond to a multiple

of 10 ms, and be no higher than encControl-
>packetSize.

*outData: (O) Output payload.
*nBytesOut: (I/O) Input: Maximum number of bytes allowed in payload.

Output: Number of output bytes in the payload.

Description:

Release v1.0.9

August 3, 2012 Copyright © 2009-2012, Skype Limited Page 6 of 10

This is the main encoder function. The nSamplesIn input samples are read
from samplesIn and buffered internally until at least encControl-
>packetSize samples are available, at which point one payload is encoded
and written to outData. The parameter pointer nBytesOut serves as both
input and output. As input nBytesOut specifies the maximum number of bytes
the payload may consist of; this is (at most) the number of bytes your application
has allocated in the outData array. As output nBytesOut returns the actual
size of the payload in outData. All members of the encControl structure must
be set to valid values (see description of
SKP_SILK_SDK_EncControlStruct), otherwise errors are reported. The input
vector samplesIn must be sampled at the rate stored in encControl->
API_sampleRate. The input sampling frequency should be chosen equal or
higher than the maximum internal sampling frequency
maxInternalSampleRate and can be chosen from the valid choices
according to what best supports the integrating application.

SKP_int SKP_Silk_SDK_Get_Decoder_Size(

SKP_int32 *decSizeBytes
);

decSizeBytes: (O) Size in bytes of the decoder state.

Description:
Writes the size of the SILK decoder state in number of bytes to decSizeBytes.
Use this function to allocate the right amount memory space for the decoder
state.

SKP_int SKP_Silk_SDK_InitDecoder(

void *decState
);

*decState: (I/O) Encoder state.

Description:
Initializes the decoder state, decState. This function has to be called before first
call to the decoder and may be called to reset the internal decoder state, for
instance when initiating a new voice call.

SKP_int SKP_Silk_SDK_Decode(
 void* decState,

SKP_SILK_SDK_DecControlStruct* decStatus,
 SKP_int lostFlag,
 const SKP_uint8 *inData,

Release v1.0.9

August 3, 2012 Copyright © 2009-2012, Skype Limited Page 7 of 10

 const SKP_int nBytesIn,
 SKP_int16 *samplesOut,
 SKP_int16 *nSamplesOut
);

*decState: (I/O) Decoder state.
*decStatus: (I/O) Decoder status struct.
lostFlag: (I) Flag to activate packet loss concealment. 0 not lost 1 lost.
*inData: (I) Packet payload to be decoded.
nBytesIn: (I) Number of bytes in the payload (inData).
*samplesOut: (O) Decoded samples.
*nSamplesOut: (O) Number of decoded samples.

Description:
This is the main decoder function. When a payload was lost during transport, the
input lostFlag should be set to 1, otherwise set it to 0. The nBytesIn input
parameter must exactly match the number of bytes in the payload as it is used to
detect corrupted packets. The sampling rate (in Hertz) of the output signal is set
with decStatus->API_sampleRate. It should be ensured that the decoder
sampling rate matches or exceeds the internal sampling rate of the encoded
signal. This can be achieved either by setting the decoder sampling rate to at
least 24000 or by indicating a lower maximum sampling rate to the farend sender
during call setup. The decoder updates the decoder status decStatus, which
should be used to handle multiple frame packets. See the description of the
decoder status struct.

void SKP_Silk_SDK_search_for_LBRR(
 const SKP_uint8 *inData,
 const SKP_int nBytesIn,
 SKP_int lost_offset,
 SKP_uint8 *LBRRData,
 SKP_int16 *nLBRRBytes
);

*inData: (I) Future packet payload.
nBytesIn: (I) Number of bytes in packet payload.
lost_offset: (I) Distance in packets between lost packet and future

packet (1 or 2).
*LBRRData: (O) Extracted redundant LBRR payload.
*nLBRRBytes: (O) Number of bytes of LBRR payload.

Description:
Extracts low-bitrate redundant (LBRR) data. If a packet is lost during
transmission and future packets are available on the decoder side this function

Release v1.0.9

August 3, 2012 Copyright © 2009-2012, Skype Limited Page 8 of 10

can be used to extract any available in-band error correction data. If packet n is
lost and packet n + 1, and / or packet n + 2 are available on the decoder side, the
following should be done: First the payload from packet n + 1 should be input to
SKP_Silk_SDK_search_for_LBRR together with a lost_offset value of 1
which is the relative distance to the lost packet, that is, (n + 1) – n. If after the call
*nLBRRBytes is larger than zero it means that LBRR data was present in the
packet, and the decoder should be called with LBRRData as input payload
(inData) and nLBRRBytes as the payload length (nBytesIn). If nLBRRBytes
is zero, the packet n + 2 should be searched, but this time the lost_offset
should be set to 2, that is, (n+2) – n. If nLBRRBytes is zero also for packet n + 2
the decoder should be called with the lostFlag set to 1 to activate normal
packet loss concealment. For nLBRRBytes greater than zero, the decoder
should be called with LBRRData as input payload (inData) and nLBRRBytes
as the payload length (nBytesIn).

void SKP_Silk_SDK_get_TOC(
 const SKP_uint8 *inData,
 const SKP_int nBytesIn,
 SKP_Silk_TOC_struct *Silk_TOC
);

*inData: (I) Packet payload.
nBytesIn: (I) Number of bytes in packet.
*Silk_TOC: (O) Extracted table of contents information about the packet.

Description:
Returns a table of contents (TOC) structure for the packet.

SKP_INLINE const char *SKP_Silk_SDK_get_version();

Description:
Returns a string containing the Silk SDK version number.

Defines (SKP_Silk_define.h)

This file contains a number of defines that controls the operation of SILK. Most of
these should be left alone for ensuring proper operation. However, a few can be
changed if operation different from the default is desired. Those are:

#define LOW_COMPLEXITY_ONLY 0

Release v1.0.9

August 3, 2012 Copyright © 2009-2012, Skype Limited Page 9 of 10

Allowed values are 0 and 1, where 0 means unrestricted use the internal
complexity modes. If set to 1 SILK is only allowed to run in the lowest complexity
setting, and memory usage is reduced.

#define SWITCH_TRANSITION_FILTERING 1

Allowed values are 0 and 1, and if set to 0 the internal switches between modes
in SILK happen instantly, causing audio bandwidth to change from one frame to
the next. Computational complexity is slightly lower if set to 0. If set to 1 an
adaptive low-pass filter is applied to smoothen the switches for a more pleasantly
sounding output.

A Note on Sampling Rates

A total of four types of sampling frequencies are involved in a one-way SILK
voice call:

� RTP time stamp clock rate. This determines the update rate of the RTP
timestamps. It is negotiated during call setup and remains fixed thereafter
for the duration of the call.

� Internal sampling rate. This determines the sampling rate at which the core
SILK codec runs. It can be limited through the maxInternalSampleRate
encoder parameter, which must never exceed the RTP time stamp clock
rate. The reason for this is that earlier versions of SILK could not decode
signals with higher internal sampling rate then the decoder API sampling
rate.

� Encoder API sampling rate. This determines the sampling rate of the audio
signal passed into the SILK encoder. It may be changed at any time
between function calls to the encoder, although small audio glitches may
occur at the time of the switch.

� Decoder API sampling rate. This determines the sampling rate of the audio
signal delivered by the SILK decoder. It may be changed at any time
between function calls to the decoder, although small audio glitches may
occur at the time of the switch.

Reference Test Program

The SDK contains source code with implementations of test programs for the
SILK encoder (test/Encoder.c) and decoder (test/Decoder.c). This code
serves as a reference implementation of how the API can be used and provides
a quick way to compile, run and analyze the performance of SILK in its various
modes at any bit-rate.

To compile and generate the test programs for the SDK on Mac or Linux the
provided Makefile can be used. The targets for generating the encoder and

Release v1.0.9

August 3, 2012 Copyright © 2009-2012, Skype Limited Page 10 of 10

decoder test programs respectively are 'Encoder' and 'Decoder'. Similarly on
Windows the test programs can be generated through the provided Visual Studio
2005 or 2010 solution and projects. Running either executable without command
line arguments prints the command line options.

