/* Copyright (c) 2007-2008 CSIRO Copyright (c) 2007-2009 Xiph.Org Foundation Copyright (c) 2008-2009 Gregory Maxwell Written by Jean-Marc Valin and Gregory Maxwell */ /* Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: - Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. - Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include #include "bands.h" #include "modes.h" #include "vq.h" #include "cwrs.h" #include "stack_alloc.h" #include "os_support.h" #include "mathops.h" #include "rate.h" celt_uint32 lcg_rand(celt_uint32 seed) { return 1664525 * seed + 1013904223; } /* This is a cos() approximation designed to be bit-exact on any platform. Bit exactness with this approximation is important because it has an impact on the bit allocation */ static celt_int16 bitexact_cos(celt_int16 x) { celt_int32 tmp; celt_int16 x2; tmp = (4096+((celt_int32)(x)*(x)))>>13; if (tmp > 32767) tmp = 32767; x2 = tmp; x2 = (32767-x2) + FRAC_MUL16(x2, (-7651 + FRAC_MUL16(x2, (8277 + FRAC_MUL16(-626, x2))))); if (x2 > 32766) x2 = 32766; return 1+x2; } static int bitexact_log2tan(int isin,int icos) { int lc; int ls; lc=EC_ILOG(icos); ls=EC_ILOG(isin); icos<<=15-lc; isin<<=15-ls; return (ls-lc<<11) +FRAC_MUL16(isin, FRAC_MUL16(isin, -2597) + 7932) -FRAC_MUL16(icos, FRAC_MUL16(icos, -2597) + 7932); } #ifdef FIXED_POINT /* Compute the amplitude (sqrt energy) in each of the bands */ void compute_band_energies(const CELTMode *m, const celt_sig *X, celt_ener *bank, int end, int _C, int M) { int i, c, N; const celt_int16 *eBands = m->eBands; const int C = CHANNELS(_C); N = M*m->shortMdctSize; c=0; do { for (i=0;i 0) { int shift = celt_ilog2(maxval)-10; j=M*eBands[i]; do { sum = MAC16_16(sum, EXTRACT16(VSHR32(X[j+c*N],shift)), EXTRACT16(VSHR32(X[j+c*N],shift))); } while (++jnbEBands] = EPSILON+VSHR32(EXTEND32(celt_sqrt(sum)),-shift); } else { bank[i+c*m->nbEBands] = EPSILON; } /*printf ("%f ", bank[i+c*m->nbEBands]);*/ } } while (++ceBands; const int C = CHANNELS(_C); N = M*m->shortMdctSize; c=0; do { i=0; do { celt_word16 g; int j,shift; celt_word16 E; shift = celt_zlog2(bank[i+c*m->nbEBands])-13; E = VSHR32(bank[i+c*m->nbEBands], shift); g = EXTRACT16(celt_rcp(SHL32(E,3))); j=M*eBands[i]; do { X[j+c*N] = MULT16_16_Q15(VSHR32(freq[j+c*N],shift-1),g); } while (++jeBands; const int C = CHANNELS(_C); N = M*m->shortMdctSize; c=0; do { for (i=0;inbEBands] = celt_sqrt(sum); /*printf ("%f ", bank[i+c*m->nbEBands]);*/ } } while (++ceBands; const int C = CHANNELS(_C); N = M*m->shortMdctSize; c=0; do { for (i=0;inbEBands]); for (j=M*eBands[i];jeBands; const int C = CHANNELS(_C); N = M*m->shortMdctSize; celt_assert2(C<=2, "denormalise_bands() not implemented for >2 channels"); c=0; do { celt_sig * restrict f; const celt_norm * restrict x; f = freq+c*N; x = X+c*N; for (i=0;inbEBands],1); j=M*eBands[i]; band_end = M*eBands[i+1]; do { *f++ = SHL32(MULT16_32_Q15(*x, g),2); x++; } while (++jeBands[i+1]-m->eBands[i]; /* depth in 1/8 bits */ depth = (1+pulses[i])/(m->eBands[i+1]-m->eBands[i]<>1; t = SHL32(t, (7-shift)<<1); sqrt_1 = celt_rsqrt_norm(t); } #else thresh = .5f*celt_exp2(-.125f*depth); sqrt_1 = celt_rsqrt(N0<nbEBands+i]; prev2 = prev2logE[c*m->nbEBands+i]; if (CnbEBands+i]); prev2 = MAX16(prev2,prev2logE[m->nbEBands+i]); } Ediff = logE[c*m->nbEBands+i]-MIN16(prev1,prev2); Ediff = MAX16(0, Ediff); #ifdef FIXED_POINT if (Ediff < 16384) r = 2*MIN16(16383,SHR32(celt_exp2(-Ediff),1)); else r = 0; if (LM==3) r = MULT16_16_Q14(23170, MIN32(23169, r)); r = SHR16(MIN16(thresh, r),1); r = SHR32(MULT16_16_Q15(sqrt_1, r),shift); #else /* r needs to be multiplied by 2 or 2*sqrt(2) depending on LM because short blocks don't have the same energy as long */ r = 2.f*celt_exp2(-Ediff); if (LM==3) r *= 1.41421356f; r = MIN16(thresh, r); r = r*sqrt_1; #endif X = _X+c*size+(m->eBands[i]<nbEBands]))-13; #endif left = VSHR32(bank[i],shift); right = VSHR32(bank[i+m->nbEBands],shift); norm = EPSILON + celt_sqrt(EPSILON+MULT16_16(left,left)+MULT16_16(right,right)); a1 = DIV32_16(SHL32(EXTEND32(left),14),norm); a2 = DIV32_16(SHL32(EXTEND32(right),14),norm); for (j=0;j>1; kr = celt_ilog2(Er)>>1; #endif t = VSHR32(El, (kl-7)<<1); lgain = celt_rsqrt_norm(t); t = VSHR32(Er, (kr-7)<<1); rgain = celt_rsqrt_norm(t); #ifdef FIXED_POINT if (kl < 7) kl = 7; if (kr < 7) kr = 7; #endif for (j=0;jeBands; int decision; int hf_sum=0; N0 = M*m->shortMdctSize; if (M*(eBands[end]-eBands[end-1]) <= 8) return SPREAD_NONE; c=0; do { for (i=0;im->nbEBands-4) hf_sum += 32*(tcount[1]+tcount[0])/N; tmp = (2*tcount[2] >= N) + (2*tcount[1] >= N) + (2*tcount[0] >= N); sum += tmp*256; nbBands++; } } while (++cnbEBands+end); *hf_average = (*hf_average+hf_sum)>>1; hf_sum = *hf_average; if (*tapset_decision==2) hf_sum += 4; else if (*tapset_decision==0) hf_sum -= 4; if (hf_sum > 22) *tapset_decision=2; else if (hf_sum > 18) *tapset_decision=1; else *tapset_decision=0; } /*printf("%d %d %d\n", hf_sum, *hf_average, *tapset_decision);*/ sum /= nbBands; /* Recursive averaging */ sum = (sum+*average)>>1; *average = sum; /* Hysteresis */ sum = (3*sum + (((3-last_decision)<<7) + 64) + 2)>>2; if (sum < 80) { decision = SPREAD_AGGRESSIVE; } else if (sum < 256) { decision = SPREAD_NORMAL; } else if (sum < 384) { decision = SPREAD_LIGHT; } else { decision = SPREAD_NONE; } return decision; } #ifdef MEASURE_NORM_MSE float MSE[30] = {0}; int nbMSEBands = 0; int MSECount[30] = {0}; void dump_norm_mse(void) { int i; for (i=0;inbEBands;i++) { int j; int c; float g; if (bandE0[i]<10 || (C==2 && bandE0[i+m->nbEBands]<1)) continue; c=0; do { g = bandE[i+c*m->nbEBands]/(1e-15+bandE0[i+c*m->nbEBands]); for (j=M*m->eBands[i];jeBands[i+1];j++) MSE[i] += (g*X[j+c*N]-X0[j+c*N])*(g*X[j+c*N]-X0[j+c*N]); } while (++cnbEBands; } #endif /* Indexing table for converting from natural Hadamard to ordery Hadamard This is essentially a bit-reversed Gray, on top of which we've added an inversion of the order because we want the DC at the end rather than the beginning. The lines are for N=2, 4, 8, 16 */ static const int ordery_table[] = { 1, 0, 3, 0, 2, 1, 7, 0, 4, 3, 6, 1, 5, 2, 15, 0, 8, 7, 12, 3, 11, 4, 14, 1, 9, 6, 13, 2, 10, 5, }; static void deinterleave_hadamard(celt_norm *X, int N0, int stride, int hadamard) { int i,j; VARDECL(celt_norm, tmp); int N; SAVE_STACK; N = N0*stride; ALLOC(tmp, N, celt_norm); if (hadamard) { const int *ordery = ordery_table+stride-2; for (i=0;i>= 1; for (i=0;i>1)) { qn = 1; } else { qn = exp2_table8[qb&0x7]>>(14-(qb>>BITRES)); qn = (qn+1)>>1<<1; } celt_assert(qn <= 256); return qn; } /* This function is responsible for encoding and decoding a band for both the mono and stereo case. Even in the mono case, it can split the band in two and transmit the energy difference with the two half-bands. It can be called recursively so bands can end up being split in 8 parts. */ static unsigned quant_band(int encode, const CELTMode *m, int i, celt_norm *X, celt_norm *Y, int N, int b, int spread, int B, int intensity, int tf_change, celt_norm *lowband, int resynth, ec_ctx *ec, celt_int32 *remaining_bits, int LM, celt_norm *lowband_out, const celt_ener *bandE, int level, celt_uint32 *seed, celt_word16 gain, celt_norm *lowband_scratch, int fill) { const unsigned char *cache; int q; int curr_bits; int stereo, split; int imid=0, iside=0; int N0=N; int N_B=N; int N_B0; int B0=B; int time_divide=0; int recombine=0; int inv = 0; celt_word16 mid=0, side=0; int longBlocks; unsigned cm=0; longBlocks = B0==1; N_B /= B; N_B0 = N_B; split = stereo = Y != NULL; /* Special case for one sample */ if (N==1) { int c; celt_norm *x = X; c=0; do { int sign=0; if (*remaining_bits>=1<0) recombine = tf_change; /* Band recombining to increase frequency resolution */ if (lowband && (recombine || ((N_B&1) == 0 && tf_change<0) || B0>1)) { int j; for (j=0;j>k, 1<>k, 1<>4]<<2; } B>>=recombine; N_B<<=recombine; /* Increasing the time resolution */ while ((N_B&1) == 0 && tf_change<0) { if (encode) haar1(X, N_B, B); if (lowband) haar1(lowband, N_B, B); fill |= fill<>= 1; time_divide++; tf_change++; } B0=B; N_B0 = N_B; /* Reorganize the samples in time order instead of frequency order */ if (B0>1) { if (encode) deinterleave_hadamard(X, N_B>>recombine, B0<>recombine, B0<cache.bits + m->cache.index[(LM+1)*m->nbEBands+i]; if (!stereo && LM != -1 && b > cache[cache[0]]+12 && N>2) { if (LM>0 || (N&1)==0) { N >>= 1; Y = X+N; split = 1; LM -= 1; if (B==1) fill = fill&1|fill<<1; B = (B+1)>>1; } } if (split) { int qn; int itheta=0; int mbits, sbits, delta; int qalloc; int pulse_cap; int offset; int orig_fill; celt_int32 tell; /* Decide on the resolution to give to the split parameter theta */ pulse_cap = m->logN[i]+(LM<>1) - (stereo&&N==2 ? QTHETA_OFFSET_TWOPHASE : QTHETA_OFFSET); qn = compute_qn(N, b, offset, pulse_cap, stereo); if (stereo && i>=intensity) qn = 1; if (encode) { /* theta is the atan() of the ratio between the (normalized) side and mid. With just that parameter, we can re-scale both mid and side because we know that 1) they have unit norm and 2) they are orthogonal. */ itheta = stereo_itheta(X, Y, stereo, N); } tell = ec_tell_frac(ec); if (qn!=1) { if (encode) itheta = (itheta*qn+8192)>>14; /* Entropy coding of the angle. We use a uniform pdf for the time split, a step for stereo, and a triangular one for the rest. */ if (stereo && N>2) { int p0 = 3; int x = itheta; int x0 = qn/2; int ft = p0*(x0+1) + x0; /* Use a probability of p0 up to itheta=8192 and then use 1 after */ if (encode) { ec_encode(ec,x<=x0?p0*x:(x-1-x0)+(x0+1)*p0,x<=x0?p0*(x+1):(x-x0)+(x0+1)*p0,ft); } else { int fs; fs=ec_decode(ec,ft); if (fs<(x0+1)*p0) x=fs/p0; else x=x0+1+(fs-(x0+1)*p0); ec_dec_update(ec,x<=x0?p0*x:(x-1-x0)+(x0+1)*p0,x<=x0?p0*(x+1):(x-x0)+(x0+1)*p0,ft); itheta = x; } } else if (B0>1 || stereo) { /* Uniform pdf */ if (encode) ec_enc_uint(ec, itheta, qn+1); else itheta = ec_dec_uint(ec, qn+1); } else { int fs=1, ft; ft = ((qn>>1)+1)*((qn>>1)+1); if (encode) { int fl; fs = itheta <= (qn>>1) ? itheta + 1 : qn + 1 - itheta; fl = itheta <= (qn>>1) ? itheta*(itheta + 1)>>1 : ft - ((qn + 1 - itheta)*(qn + 2 - itheta)>>1); ec_encode(ec, fl, fl+fs, ft); } else { /* Triangular pdf */ int fl=0; int fm; fm = ec_decode(ec, ft); if (fm < ((qn>>1)*((qn>>1) + 1)>>1)) { itheta = (isqrt32(8*(celt_uint32)fm + 1) - 1)>>1; fs = itheta + 1; fl = itheta*(itheta + 1)>>1; } else { itheta = (2*(qn + 1) - isqrt32(8*(celt_uint32)(ft - fm - 1) + 1))>>1; fs = qn + 1 - itheta; fl = ft - ((qn + 1 - itheta)*(qn + 2 - itheta)>>1); } ec_dec_update(ec, fl, fl+fs, ft); } } itheta = (celt_int32)itheta*16384/qn; if (encode && stereo) { if (itheta==0) intensity_stereo(m, X, Y, bandE, i, N); else stereo_split(X, Y, N); } /* TODO: Renormalising X and Y *may* help fixed-point a bit at very high rate. Let's do that at higher complexity */ } else if (stereo) { if (encode) { inv = itheta > 8192; if (inv) { int j; for (j=0;j2< 2< 8192; *remaining_bits -= qalloc+sbits; x2 = c ? Y : X; y2 = c ? X : Y; if (sbits) { if (encode) { /* Here we only need to encode a sign for the side */ sign = x2[0]*y2[1] - x2[1]*y2[0] < 0; ec_enc_bits(ec, sign, 1); } else { sign = ec_dec_bits(ec, 1); } } sign = 1-2*sign; /* We use orig_fill here because we want to fold the side, but if itheta==16384, we'll have cleared the low bits of fill. */ cm = quant_band(encode, m, i, x2, NULL, N, mbits, spread, B, intensity, tf_change, lowband, resynth, ec, remaining_bits, LM, lowband_out, NULL, level, seed, gain, lowband_scratch, orig_fill); /* We don't split N=2 bands, so cm is either 1 or 0 (for a fold-collapse), and there's no need to worry about mixing with the other channel. */ y2[0] = -sign*x2[1]; y2[1] = sign*x2[0]; if (resynth) { celt_norm tmp; X[0] = MULT16_16_Q15(mid, X[0]); X[1] = MULT16_16_Q15(mid, X[1]); Y[0] = MULT16_16_Q15(side, Y[0]); Y[1] = MULT16_16_Q15(side, Y[1]); tmp = X[0]; X[0] = SUB16(tmp,Y[0]); Y[0] = ADD16(tmp,Y[0]); tmp = X[1]; X[1] = SUB16(tmp,Y[1]); Y[1] = ADD16(tmp,Y[1]); } } else { /* "Normal" split code */ celt_norm *next_lowband2=NULL; celt_norm *next_lowband_out1=NULL; int next_level=0; celt_int32 rebalance; /* Give more bits to low-energy MDCTs than they would otherwise deserve */ if (B0>1 && !stereo && (itheta&0x3fff)) { if (itheta > 8192) /* Rough approximation for pre-echo masking */ delta -= delta>>(4-LM); else /* Corresponds to a forward-masking slope of 1.5 dB per 10 ms */ delta = IMIN(0, delta + (N<>(5-LM))); } mbits = IMAX(0, IMIN(b, (b-delta)/2)); sbits = b-mbits; *remaining_bits -= qalloc; if (lowband && !stereo) next_lowband2 = lowband+N; /* >32-bit split case */ /* Only stereo needs to pass on lowband_out. Otherwise, it's handled at the end */ if (stereo) next_lowband_out1 = lowband_out; else next_level = level+1; rebalance = *remaining_bits; if (mbits >= sbits) { /* In stereo mode, we do not apply a scaling to the mid because we need the normalized mid for folding later */ cm = quant_band(encode, m, i, X, NULL, N, mbits, spread, B, intensity, tf_change, lowband, resynth, ec, remaining_bits, LM, next_lowband_out1, NULL, next_level, seed, stereo ? Q15ONE : MULT16_16_P15(gain,mid), lowband_scratch, fill); rebalance = mbits - (rebalance-*remaining_bits); if (rebalance > 3<>B)<<(B0>>1&stereo-1); } else { /* For a stereo split, the high bits of fill are always zero, so no folding will be done to the side. */ cm = quant_band(encode, m, i, Y, NULL, N, sbits, spread, B, intensity, tf_change, next_lowband2, resynth, ec, remaining_bits, LM, NULL, NULL, next_level, seed, MULT16_16_P15(gain,side), NULL, fill>>B)<<(B0>>1&stereo-1); rebalance = sbits - (rebalance-*remaining_bits); if (rebalance > 3< 0) { *remaining_bits += curr_bits; q--; curr_bits = pulses2bits(m, i, LM, q); *remaining_bits -= curr_bits; } if (q!=0) { int K = get_pulses(q); /* Finally do the actual quantization */ if (encode) cm = alg_quant(X, N, K, spread, B, resynth, ec, gain); else cm = alg_unquant(X, N, K, spread, B, ec, gain); } else { /* If there's no pulse, fill the band anyway */ int j; if (resynth) { unsigned cm_mask; /*B can be as large as 16, so this shift might overflow an int on a 16-bit platform; use a long to get defined behavior.*/ cm_mask = (unsigned)(1UL<>20; } cm = cm_mask; } else { /* Folded spectrum */ for (j=0;j1) interleave_hadamard(X, N_B>>recombine, B0<>= 1; N_B <<= 1; cm |= cm>>B; haar1(X, N_B, B); } for (k=0;k>k, 1<eBands; celt_norm * restrict norm, * restrict norm2; VARDECL(celt_norm, _norm); VARDECL(celt_norm, lowband_scratch); int B; int M; int lowband_offset; int update_lowband = 1; int C = _Y != NULL ? 2 : 1; SAVE_STACK; M = 1<nbEBands], celt_norm); ALLOC(lowband_scratch, M*(eBands[m->nbEBands]-eBands[m->nbEBands-1]), celt_norm); norm = _norm; norm2 = norm + M*eBands[m->nbEBands]; lowband_offset = 0; for (i=start;i= M*eBands[start] && (update_lowband || lowband_offset==0)) lowband_offset = i; tf_change = tf_res[i]; if (i>=m->effEBands) { X=norm; if (_Y!=NULL) Y = norm; } /* Get a conservative estimate of the collapse_mask's for the bands we're going to be folding from. */ if (lowband_offset != 0 && (spread!=SPREAD_AGGRESSIVE || B>1 || tf_change<0)) { int fold_start; int fold_end; int fold_i; /* This ensures we never repeat spectral content within one band */ effective_lowband = IMAX(M*eBands[start], M*eBands[lowband_offset]-N); fold_start = lowband_offset; while(M*eBands[--fold_start] > effective_lowband); fold_end = lowband_offset-1; while(M*eBands[++fold_end] < effective_lowband+N); x_cm = y_cm = 0; fold_i = fold_start; do { x_cm |= collapse_masks[fold_i*C+0]; y_cm |= collapse_masks[fold_i*C+C-1]; } while (++fold_i(N<