hl2_src-leak-2017/src/tier1/pathmatch.cpp

909 lines
25 KiB
C++

//========= Copyright Valve Corporation, All rights reserved. ============//
//
// Purpose: Utility to interrogate and modify the data in the OSX IPC Server
//
// $NoKeywords: $
//=============================================================================
// README:README
//
// This file implements the --wrap for ld on linux that lets file i/o api's
// behave as if it were running on a case insensitive file system. Unfortunately,
// this is needed by both steam2 and steam3. It was decided to check the source
// into both locations, otherwise someone would find the .o and have no idea
// where to go for the source if it was in the 'other' tree. Also, because this
// needs to be linked into every elf binary, the .o is checked in for Steam3 so that it is
// always available. In Steam2 it sits with the PosixWin32.cpp implementation and gets
// compiled along side of it through the make system. If you are reading this in Steam3,
// you will probably want to actually make your changes in steam2 and do a baseless merge
// to the steam3 copy.
//
// HOWTO: Add a new function. Add the function with _WRAP to the makefiles as noted below.
// Add the implementation to pathmatch.cpp - probably mimicking the existing functions.
// Build steam2 and copy to matching steam3/client. Take the pathmatch.o from steam 2
// and check it in to steam3 (in the location noted below). Full rebuild (re-link really)
// of steam3. Test steam and check in.
//
// If you are looking at updating this file, please update the following as needed:
//
// STEAM2.../Projects/GazelleProto/Client/Engine/obj/RELEASE_NORMAL/libsteam_linux/Common/Misc/pathmatch.o
// This is where steam2 builds the pathmatch.o out to.
//
// STEAM2.../Projects/GazelleProto/Makefile.shlib.base - contains _WRAP references
// STEAM2.../Projects/Common/Misc/pathmatch.cpp - Where the source is checked in, keep in sync with:
// STEAM3.../src/common/pathmatch.cpp - should be identical to previous file, but discoverable in steam3.
// STEAM3.../src/lib/linux32/release/pathmatch.o - steam3 checked in version
// STEAM3.../src/devtools/makefile_base_posix.mak - look for the _WRAP references
#ifdef LINUX
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdint.h>
#include <strings.h>
#include <unistd.h>
#include <getopt.h>
#include <errno.h>
#include <signal.h>
#include <ctype.h>
#include <dirent.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/time.h>
#include <sys/mount.h>
#include <fcntl.h>
#include <utime.h>
#include <map>
#include <string>
#include <time.h>
// Enable to do pathmatch caching. Beware: this code isn't threadsafe.
// #define DO_PATHMATCH_CACHE
#ifdef UTF8_PATHMATCH
#define strcasecmp utf8casecmp
#endif
static bool s_bShowDiag;
#define DEBUG_MSG( ... ) if ( s_bShowDiag ) fprintf( stderr, ##__VA_ARGS__ )
#define DEBUG_BREAK() __asm__ __volatile__ ( "int $3" )
#define _COMPILE_TIME_ASSERT(pred) switch(0){case 0:case pred:;}
#define WRAP( fn, ret, ... ) \
ret __real_##fn(__VA_ARGS__); \
ret __wrap_##fn(__VA_ARGS__)
#define CALL( fn ) __real_##fn
// Needed by pathmatch code
extern "C" int __real_access(const char *pathname, int mode);
extern "C" DIR *__real_opendir(const char *name);
// UTF-8 work from PhysicsFS: http://icculus.org/physfs/
// Even if it wasn't under the zlib license, Ryan wrote all this code originally.
#define UNICODE_BOGUS_CHAR_VALUE 0xFFFFFFFF
#define UNICODE_BOGUS_CHAR_CODEPOINT '?'
inline __attribute__ ((always_inline)) static uint32_t utf8codepoint(const char **_str)
{
const char *str = *_str;
uint32_t retval = 0;
uint32_t octet = (uint32_t) ((uint8_t) *str);
uint32_t octet2, octet3, octet4;
if (octet == 0) // null terminator, end of string.
return 0;
else if (octet < 128) // one octet char: 0 to 127
{
(*_str)++; // skip to next possible start of codepoint.
return octet;
}
else if ((octet > 127) && (octet < 192)) // bad (starts with 10xxxxxx).
{
// Apparently each of these is supposed to be flagged as a bogus
// char, instead of just resyncing to the next valid codepoint.
(*_str)++; // skip to next possible start of codepoint.
return UNICODE_BOGUS_CHAR_VALUE;
}
else if (octet < 224) // two octets
{
octet -= (128+64);
octet2 = (uint32_t) ((uint8_t) *(++str));
if ((octet2 & (128+64)) != 128) // Format isn't 10xxxxxx?
return UNICODE_BOGUS_CHAR_VALUE;
*_str += 2; // skip to next possible start of codepoint.
retval = ((octet << 6) | (octet2 - 128));
if ((retval >= 0x80) && (retval <= 0x7FF))
return retval;
}
else if (octet < 240) // three octets
{
octet -= (128+64+32);
octet2 = (uint32_t) ((uint8_t) *(++str));
if ((octet2 & (128+64)) != 128) // Format isn't 10xxxxxx?
return UNICODE_BOGUS_CHAR_VALUE;
octet3 = (uint32_t) ((uint8_t) *(++str));
if ((octet3 & (128+64)) != 128) // Format isn't 10xxxxxx?
return UNICODE_BOGUS_CHAR_VALUE;
*_str += 3; // skip to next possible start of codepoint.
retval = ( ((octet << 12)) | ((octet2-128) << 6) | ((octet3-128)) );
// There are seven "UTF-16 surrogates" that are illegal in UTF-8.
switch (retval)
{
case 0xD800:
case 0xDB7F:
case 0xDB80:
case 0xDBFF:
case 0xDC00:
case 0xDF80:
case 0xDFFF:
return UNICODE_BOGUS_CHAR_VALUE;
}
// 0xFFFE and 0xFFFF are illegal, too, so we check them at the edge.
if ((retval >= 0x800) && (retval <= 0xFFFD))
return retval;
}
else if (octet < 248) // four octets
{
octet -= (128+64+32+16);
octet2 = (uint32_t) ((uint8_t) *(++str));
if ((octet2 & (128+64)) != 128) // Format isn't 10xxxxxx?
return UNICODE_BOGUS_CHAR_VALUE;
octet3 = (uint32_t) ((uint8_t) *(++str));
if ((octet3 & (128+64)) != 128) // Format isn't 10xxxxxx?
return UNICODE_BOGUS_CHAR_VALUE;
octet4 = (uint32_t) ((uint8_t) *(++str));
if ((octet4 & (128+64)) != 128) // Format isn't 10xxxxxx?
return UNICODE_BOGUS_CHAR_VALUE;
*_str += 4; // skip to next possible start of codepoint.
retval = ( ((octet << 18)) | ((octet2 - 128) << 12) |
((octet3 - 128) << 6) | ((octet4 - 128)) );
if ((retval >= 0x10000) && (retval <= 0x10FFFF))
return retval;
}
// Five and six octet sequences became illegal in rfc3629.
// We throw the codepoint away, but parse them to make sure we move
// ahead the right number of bytes and don't overflow the buffer.
else if (octet < 252) // five octets
{
octet = (uint32_t) ((uint8_t) *(++str));
if ((octet & (128+64)) != 128) // Format isn't 10xxxxxx?
return UNICODE_BOGUS_CHAR_VALUE;
octet = (uint32_t) ((uint8_t) *(++str));
if ((octet & (128+64)) != 128) // Format isn't 10xxxxxx?
return UNICODE_BOGUS_CHAR_VALUE;
octet = (uint32_t) ((uint8_t) *(++str));
if ((octet & (128+64)) != 128) // Format isn't 10xxxxxx?
return UNICODE_BOGUS_CHAR_VALUE;
octet = (uint32_t) ((uint8_t) *(++str));
if ((octet & (128+64)) != 128) // Format isn't 10xxxxxx?
return UNICODE_BOGUS_CHAR_VALUE;
*_str += 5; // skip to next possible start of codepoint.
return UNICODE_BOGUS_CHAR_VALUE;
}
else // six octets
{
octet = (uint32_t) ((uint8_t) *(++str));
if ((octet & (128+64)) != 128) // Format isn't 10xxxxxx?
return UNICODE_BOGUS_CHAR_VALUE;
octet = (uint32_t) ((uint8_t) *(++str));
if ((octet & (128+64)) != 128) // Format isn't 10xxxxxx?
return UNICODE_BOGUS_CHAR_VALUE;
octet = (uint32_t) ((uint8_t) *(++str));
if ((octet & (128+64)) != 128) // Format isn't 10xxxxxx?
return UNICODE_BOGUS_CHAR_VALUE;
octet = (uint32_t) ((uint8_t) *(++str));
if ((octet & (128+64)) != 128) // Format isn't 10xxxxxx?
return UNICODE_BOGUS_CHAR_VALUE;
octet = (uint32_t) ((uint8_t) *(++str));
if ((octet & (128+64)) != 128) // Format isn't 10xxxxxx?
return UNICODE_BOGUS_CHAR_VALUE;
*_str += 6; // skip to next possible start of codepoint.
return UNICODE_BOGUS_CHAR_VALUE;
}
return UNICODE_BOGUS_CHAR_VALUE;
}
typedef struct CaseFoldMapping
{
uint32_t from;
uint32_t to0;
uint32_t to1;
uint32_t to2;
} CaseFoldMapping;
typedef struct CaseFoldHashBucket
{
const uint8_t count;
const CaseFoldMapping *list;
} CaseFoldHashBucket;
#include "pathmatch_casefolding.h"
inline __attribute__ ((always_inline)) static void locate_case_fold_mapping(const uint32_t from, uint32_t *to)
{
const uint8_t hashed = ((from ^ (from >> 8)) & 0xFF);
const CaseFoldHashBucket *bucket = &case_fold_hash[hashed];
const CaseFoldMapping *mapping = bucket->list;
uint32_t i;
for (i = 0; i < bucket->count; i++, mapping++)
{
if (mapping->from == from)
{
to[0] = mapping->to0;
to[1] = mapping->to1;
to[2] = mapping->to2;
return;
}
}
// Not found...there's no remapping for this codepoint.
to[0] = from;
to[1] = 0;
to[2] = 0;
}
inline __attribute__ ((always_inline)) static uint32_t *fold_utf8(const char *str)
{
uint32_t *retval = new uint32_t[(strlen(str) * 3) + 1];
uint32_t *dst = retval;
while (*str)
{
const char ch = *str;
if (ch & 0x80) // high bit set? UTF-8 sequence!
{
uint32_t fold[3];
locate_case_fold_mapping(utf8codepoint(&str), fold);
*(dst++) = fold[0];
if (fold[1])
{
*(dst++) = fold[1];
if (fold[2])
*(dst++) = fold[2];
}
}
else // simple ASCII test.
{
*(dst++) = (uint32_t) (((ch >= 'A') && (ch <= 'Z')) ? ch + 32 : ch);
str++;
}
}
*dst = 0;
return retval;
}
inline __attribute__ ((always_inline)) static int utf8casecmp_loop(const uint32_t *folded1, const uint32_t *folded2)
{
while (true)
{
const uint32_t ch1 = *(folded1++);
const uint32_t ch2 = *(folded2++);
if (ch1 < ch2)
return -1;
else if (ch1 > ch2)
return 1;
else if (ch1 == 0)
return 0; // complete match.
}
}
#ifdef UTF8_PATHMATCH
static int utf8casecmp(const char *str1, const char *str2)
{
uint32_t *folded1 = fold_utf8(str1);
uint32_t *folded2 = fold_utf8(str2);
const int retval = utf8casecmp_loop(folded1, folded2);
delete[] folded1;
delete[] folded2;
return retval;
}
#endif
// Simple object to help make sure a DIR* from opendir
// gets closed when it goes out of scope.
class CDirPtr
{
public:
CDirPtr() { m_pDir = NULL; }
CDirPtr( DIR *pDir ) : m_pDir(pDir) {}
~CDirPtr() { Close(); }
void operator=(DIR *pDir) { Close(); m_pDir = pDir; }
operator DIR *() { return m_pDir; }
operator bool() { return m_pDir != NULL; }
private:
void Close() { if ( m_pDir ) closedir( m_pDir ); }
DIR *m_pDir;
};
// Object used to temporarily slice a path into a smaller componentent
// and then repair it when going out of scope. Typically used as an unnamed
// temp object that is a parameter to a function.
class CDirTrimmer
{
public:
CDirTrimmer( char * pPath, size_t nTrimIdx )
{
m_pPath = pPath;
m_idx = nTrimIdx;
m_c = m_pPath[nTrimIdx];
m_pPath[nTrimIdx] = '\0';
}
~CDirTrimmer() { m_pPath[m_idx] = m_c; }
operator const char *() { return m_pPath; }
private:
size_t m_idx;
char *m_pPath;
char m_c;
};
enum PathMod_t
{
kPathUnchanged,
kPathLowered,
kPathChanged,
kPathFailed,
};
static bool Descend( char *pPath, size_t nStartIdx, bool bAllowBasenameMismatch, size_t nLevel = 0 )
{
DEBUG_MSG( "(%zu) Descend: %s, (%s), %s\n", nLevel, pPath, pPath+nStartIdx, bAllowBasenameMismatch ? "true" : "false " );
// We assume up through nStartIdx is valid and matching
size_t nNextSlash = nStartIdx+1;
// path might be a dir
if ( pPath[nNextSlash] == '\0' )
{
return true;
}
bool bIsDir = false; // is the new component a directory for certain?
while ( pPath[nNextSlash] != '\0' && pPath[nNextSlash] != '/' )
{
nNextSlash++;
}
// Modify the pPath string
if ( pPath[nNextSlash] == '/' )
bIsDir = true;
// See if we have an immediate match
if ( __real_access( CDirTrimmer(pPath, nNextSlash), F_OK ) == 0 )
{
if ( !bIsDir )
return true;
bool bRet = Descend( pPath, nNextSlash, bAllowBasenameMismatch, nLevel+1 );
if ( bRet )
return true;
}
// Start enumerating dirents
CDirPtr spDir;
if ( nStartIdx )
{
// we have a path
spDir = __real_opendir( CDirTrimmer( pPath, nStartIdx ) );
nStartIdx++;
}
else
{
// we either start at root or cwd
const char *pRoot = ".";
if ( *pPath == '/' )
{
pRoot = "/";
nStartIdx++;
}
spDir = __real_opendir( pRoot );
}
errno = 0;
struct dirent *pEntry = spDir ? readdir( spDir ) : NULL;
char *pszComponent = pPath + nStartIdx;
size_t cbComponent = nNextSlash - nStartIdx;
while ( pEntry )
{
DEBUG_MSG( "\t(%zu) comparing %s with %s\n", nLevel, pEntry->d_name, (const char *)CDirTrimmer(pszComponent, cbComponent) );
// the candidate must match the target, but not be a case-identical match (we would
// have looked there in the short-circuit code above, so don't look again)
bool bMatches = ( strcasecmp( CDirTrimmer(pszComponent, cbComponent), pEntry->d_name ) == 0 &&
strcmp( CDirTrimmer(pszComponent, cbComponent), pEntry->d_name ) != 0 );
if ( bMatches )
{
char *pSrc = pEntry->d_name;
char *pDst = &pPath[nStartIdx];
// found a match; copy it in.
while ( *pSrc && (*pSrc != '/') )
{
*pDst++ = *pSrc++;
}
if ( !bIsDir )
return true;
if ( Descend( pPath, nNextSlash, bAllowBasenameMismatch, nLevel+1 ) )
return true;
// If descend fails, try more directories
}
pEntry = readdir( spDir );
}
if ( bIsDir )
{
DEBUG_MSG( "(%zu) readdir failed to find '%s' in '%s'\n", nLevel, (const char *)CDirTrimmer(pszComponent, cbComponent), (const char *)CDirTrimmer( pPath, nStartIdx ) );
}
// Sometimes it's ok for the filename portion to not match
// since we might be opening for write. Note that if
// the filename matches case insensitive, that will be
// preferred over preserving the input name
if ( !bIsDir && bAllowBasenameMismatch )
return true;
return false;
}
#ifdef DO_PATHMATCH_CACHE
typedef std::map<std::string, std::pair<std::string, time_t> > resultCache_t;
typedef std::map<std::string, std::pair<std::string, time_t> >::iterator resultCacheItr_t;
static resultCache_t resultCache;
static const int k_cMaxCacheLifetimeSeconds = 2;
#endif // DO_PATHMATCH_CACHE
PathMod_t pathmatch( const char *pszIn, char **ppszOut, bool bAllowBasenameMismatch, char *pszOutBuf, size_t OutBufLen )
{
// Path matching can be very expensive, and the cost is unpredictable because it
// depends on how many files are in directories on a user's machine. Therefore
// it should be disabled whenever possible, and only enabled in environments (such
// as running with loose files such as out of Perforce) where it is needed.
static const char *s_pszPathMatchEnabled = getenv("ENABLE_PATHMATCH");
if ( !s_pszPathMatchEnabled )
return kPathUnchanged;
static const char *s_pszDbgPathMatch = getenv("DBG_PATHMATCH");
s_bShowDiag = ( s_pszDbgPathMatch != NULL );
*ppszOut = NULL;
if ( __real_access( pszIn, F_OK ) == 0 )
return kPathUnchanged;
#ifdef DO_PATHMATCH_CACHE
resultCacheItr_t cachedResult = resultCache.find( pszIn );
if ( cachedResult != resultCache.end() )
{
unsigned int age = time( NULL ) - cachedResult->second.second;
const char *pszResult = cachedResult->second.first.c_str();
if ( pszResult[0] != '\0' || age <= k_cMaxCacheLifetimeSeconds )
{
if ( pszResult[0] != '\0' )
{
*ppszOut = strdup( pszResult );
DEBUG_MSG( "Cached '%s' -> '%s'\n", pszIn, *ppszOut );
return kPathChanged;
}
else
{
DEBUG_MSG( "Cached '%s' -> kPathFailed\n", pszIn );
return kPathFailed;
}
}
else if ( age <= k_cMaxCacheLifetimeSeconds )
{
DEBUG_MSG( "Rechecking '%s' - cache is %u seconds old\n", pszIn, age );
}
}
#endif // DO_PATHMATCH_CACHE
char *pPath;
if( strlen( pszIn ) >= OutBufLen )
{
pPath = strdup( pszIn );
}
else
{
strncpy( pszOutBuf, pszIn, OutBufLen );
pPath = pszOutBuf;
}
if ( pPath )
{
// I believe this code is broken. I'm guessing someone wanted to avoid lowercasing
// the path before the steam directory - but it's actually skipping lowercasing
// whenever steam is found anywhere - including the filename. For example,
// /home/mikesart/valvesrc/console/l4d2/game/left4dead2_dlc1/particles/steam_fx.pcf
// winds up only having the "steam_fx.pcf" portion lowercased.
#ifdef NEVER
// optimization, if the path contained steam somewhere
// assume the path up through the component with 'steam' in
// is valid (because we almost certainly obtained it
// progamatically
char *p = strcasestr( pPath, "steam" );
if ( p )
{
while ( p > pPath )
{
if ( p[-1] == '/' )
break;
p--;
}
if ( ( p == pPath+1 ) && ( *pPath != '/' ) )
p = pPath;
}
else
{
p = pPath;
}
#else
char *p = pPath;
#endif
// Try the lower casing of the remaining path
char *pBasename = p;
while ( *p )
{
if ( *p == '/' )
pBasename = p+1;
*p = tolower(*p);
p++;
}
if ( __real_access( pPath, F_OK ) == 0 )
{
*ppszOut = pPath;
DEBUG_MSG( "Lowered '%s' -> '%s'\n", pszIn, pPath );
return kPathLowered;
}
// path didn't match lowered successfully, restore the basename
// if bAllowBasenameMismatch was true
if ( bAllowBasenameMismatch )
{
const char *pSrc = pszIn + (pBasename - pPath);
while ( *pBasename )
{
*pBasename++ = *pSrc++;
}
}
if ( s_pszDbgPathMatch && strcasestr( s_pszDbgPathMatch, pszIn ) )
{
DEBUG_MSG( "Breaking '%s' in '%s'\n", pszIn, s_pszDbgPathMatch );
DEBUG_BREAK();
}
bool bSuccess = Descend( pPath, 0, bAllowBasenameMismatch );
if ( bSuccess )
{
*ppszOut = pPath;
DEBUG_MSG( "Matched '%s' -> '%s'\n", pszIn, pPath );
}
else
{
DEBUG_MSG( "Unmatched %s\n", pszIn );
}
#ifndef DO_PATHMATCH_CACHE
return bSuccess ? kPathChanged : kPathFailed;
#else
time_t now = time(NULL);
if ( bSuccess )
{
resultCache[ pszIn ] = std::make_pair( *ppszOut, now );
return kPathChanged;
}
else
{
resultCache[ pszIn ] = std::make_pair( "", now );
return kPathFailed;
}
#endif
}
return kPathFailed;
}
// Wrapper object that manages the 'typical' usage cases of pathmatch()
class CWrap
{
public:
CWrap( const char *pSuppliedPath, bool bAllowMismatchedBasename )
: m_pSuppliedPath( pSuppliedPath ), m_pBestMatch( NULL )
{
m_eResult = pathmatch( m_pSuppliedPath, &m_pBestMatch, bAllowMismatchedBasename, m_BestMatchBuf, sizeof( m_BestMatchBuf ) );
if ( m_pBestMatch == NULL )
{
m_pBestMatch = const_cast<char*>( m_pSuppliedPath );
}
}
~CWrap()
{
if ( ( m_pBestMatch != m_pSuppliedPath ) && ( m_pBestMatch != m_BestMatchBuf ) )
free( m_pBestMatch );
}
const char *GetBest() const { return m_pBestMatch; }
const char *GetOriginal() const { return m_pSuppliedPath; }
PathMod_t GetMatchResult() const { return m_eResult; }
operator const char*() { return GetBest(); }
private:
const char *m_pSuppliedPath;
char *m_pBestMatch;
char m_BestMatchBuf[ 512 ];
PathMod_t m_eResult;
};
#ifdef MAIN_TEST
void usage()
{
puts("pathmatch [options] <path>");
//puts("options:");
//puts("\t");
exit(-1);
}
void test( const char *pszFile, bool bAllowBasenameMismatch )
{
char *pNewPath;
char NewPathBuf[ 512 ];
PathMod_t nStat = pathmatch( pszFile, &pNewPath, bAllowBasenameMismatch, NewPathBuf, sizeof( NewPathBuf ) );
printf("AllowMismatchedBasename: %s\n", bAllowBasenameMismatch ? "true" : "false" );
printf("Path Was: ");
switch ( nStat )
{
case kPathUnchanged:
puts("kPathUnchanged");
break;
case kPathLowered:
puts("kPathLowered");
break;
case kPathChanged:
puts("kPathChanged");
break;
case kPathFailed:
puts("kPathFailed");
break;
}
printf(" Path In: %s\n", pszFile );
printf("Path Out: %s\n", nStat == kPathUnchanged ? pszFile : pNewPath );
if ( pNewPath )
free( pNewPath );
}
int
main(int argc, char **argv)
{
if ( argc <= 1 || argc > 2 )
usage();
test( argv[1], false );
test( argv[1], true );
return 0;
}
#endif
extern "C" {
WRAP(freopen, FILE *, const char *path, const char *mode, FILE *stream)
{
// if mode does not have w, a, or +, it's open for read.
bool bAllowBasenameMismatch = strpbrk( mode, "wa+" ) != NULL;
CWrap mpath( path, bAllowBasenameMismatch );
return CALL(freopen)( mpath, mode, stream );
}
WRAP(fopen, FILE *, const char *path, const char *mode)
{
// if mode does not have w, a, or +, it's open for read.
bool bAllowBasenameMismatch = strpbrk( mode, "wa+" ) != NULL;
CWrap mpath( path, bAllowBasenameMismatch );
return CALL(fopen)( mpath, mode );
}
WRAP(fopen64, FILE *, const char *path, const char *mode)
{
// if mode does not have w, a, or +, it's open for read.
bool bAllowBasenameMismatch = strpbrk( mode, "wa+" ) != NULL;
CWrap mpath( path, bAllowBasenameMismatch );
return CALL(fopen64)( mpath, mode );
}
WRAP(open, int, const char *pathname, int flags, mode_t mode)
{
bool bAllowBasenameMismatch = ((flags & (O_WRONLY | O_RDWR)) != 0);
CWrap mpath( pathname, bAllowBasenameMismatch );
return CALL(open)( mpath, flags, mode );
}
WRAP(open64, int, const char *pathname, int flags, mode_t mode)
{
bool bAllowBasenameMismatch = ((flags & (O_WRONLY | O_RDWR)) != 0);
CWrap mpath( pathname, bAllowBasenameMismatch );
return CALL(open64)( mpath, flags, mode );
}
int __wrap_creat(const char *pathname, mode_t mode)
{
return __wrap_open( pathname, O_CREAT|O_WRONLY|O_TRUNC, mode );
}
int __wrap_access(const char *pathname, int mode)
{
return __real_access( CWrap( pathname, false ), mode );
}
WRAP(stat, int, const char *path, struct stat *buf)
{
return CALL(stat)( CWrap( path, false ), buf );
}
WRAP(lstat, int, const char *path, struct stat *buf)
{
return CALL(lstat)( CWrap( path, false ), buf );
}
WRAP(scandir, int, const char *dirp, struct dirent ***namelist,
int (*filter)(const struct dirent *),
int (*compar)(const struct dirent **, const struct dirent **))
{
return CALL(scandir)( CWrap( dirp, false ), namelist, filter, compar );
}
WRAP(opendir, DIR*, const char *name)
{
return CALL(opendir)( CWrap( name, false ) );
}
WRAP(__xstat, int, int __ver, __const char *__filename, struct stat *__stat_buf)
{
return CALL(__xstat)( __ver, CWrap( __filename, false), __stat_buf );
}
WRAP(__lxstat, int, int __ver, __const char *__filename, struct stat *__stat_buf)
{
return CALL(__lxstat)( __ver, CWrap( __filename, false), __stat_buf );
}
WRAP(__xstat64, int, int __ver, __const char *__filename, struct stat *__stat_buf)
{
return CALL(__xstat64)( __ver, CWrap( __filename, false), __stat_buf );
}
WRAP(__lxstat64, int, int __ver, __const char *__filename, struct stat *__stat_buf)
{
return CALL(__lxstat64)( __ver, CWrap( __filename, false), __stat_buf );
}
WRAP(chmod, int, const char *path, mode_t mode)
{
return CALL(chmod)( CWrap( path, false), mode );
}
WRAP(chown, int, const char *path, uid_t owner, gid_t group)
{
return CALL(chown)( CWrap( path, false), owner, group );
}
WRAP(lchown, int, const char *path, uid_t owner, gid_t group)
{
return CALL(lchown)( CWrap( path, false), owner, group );
}
WRAP(symlink, int, const char *oldpath, const char *newpath)
{
return CALL(symlink)( CWrap( oldpath, false), CWrap( newpath, true ) );
}
WRAP(link, int, const char *oldpath, const char *newpath)
{
return CALL(link)( CWrap( oldpath, false), CWrap( newpath, true ) );
}
WRAP(mknod, int, const char *pathname, mode_t mode, dev_t dev)
{
return CALL(mknod)( CWrap( pathname, true), mode, dev );
}
WRAP(mount, int, const char *source, const char *target,
const char *filesystemtype, unsigned long mountflags,
const void *data)
{
return CALL(mount)( CWrap( source, false ), CWrap( target, false ), filesystemtype, mountflags, data );
}
WRAP(unlink, int, const char *pathname)
{
return CALL(unlink)( CWrap( pathname, false ) );
}
WRAP(mkfifo, int, const char *pathname, mode_t mode)
{
return CALL(mkfifo)( CWrap( pathname, true ), mode );
}
WRAP(rename, int, const char *oldpath, const char *newpath)
{
return CALL(rename)( CWrap( oldpath, false), CWrap( newpath, true ) );
}
WRAP(utime, int, const char *filename, const struct utimbuf *times)
{
return CALL(utime)( CWrap( filename, false), times );
}
WRAP(utimes, int, const char *filename, const struct timeval times[2])
{
return CALL(utimes)( CWrap( filename, false), times );
}
WRAP(realpath, char *, const char *path, char *resolved_path)
{
return CALL(realpath)( CWrap( path, true ), resolved_path );
}
WRAP(mkdir, int, const char *pathname, mode_t mode)
{
return CALL(mkdir)( CWrap( pathname, true ), mode );
}
WRAP(rmdir, char *, const char *pathname)
{
return CALL(rmdir)( CWrap( pathname, false ) );
}
};
#endif