hl2_src-leak-2017/src/utils/scenemanager/sound.cpp

1183 lines
25 KiB
C++

//========= Copyright Valve Corporation, All rights reserved. ============//
//
// Purpose:
//
//=============================================================================//
#include "cbase.h"
#define WIN32_LEAN_AND_MEAN
#include <windows.h>
#include <mmsystem.h>
#include <stdio.h>
#include <math.h>
#include "snd_audio_source.h"
#include "AudioWaveOutput.h"
#include "ISceneManagerSound.h"
#include "utlvector.h"
#include "filesystem.h"
#include "sentence.h"
typedef struct channel_s
{
int leftvol;
int rightvol;
int rleftvol;
int rrightvol;
float pitch;
} channel_t;
#define INPUT_BUFFER_COUNT 32
class CAudioWaveInput : public CAudioInput
{
public:
CAudioWaveInput( void );
~CAudioWaveInput( void );
// Returns the current count of available samples
int SampleCount( void );
// returns the size of each sample in bytes
int SampleSize( void ) { return m_sampleSize; }
// returns the sampling rate of the data
int SampleRate( void ) { return m_sampleRate; }
// returns a pointer to the actual data
void *SampleData( void );
// release the available data (mark as done)
void SampleRelease( void );
// returns the mono/stereo status of this device (true if stereo)
bool IsStereo( void ) { return m_isStereo; }
// begin sampling
void Start( void );
// stop sampling
void Stop( void );
void WaveMessage( HWAVEIN hdevice, UINT uMsg, DWORD dwParam1, DWORD dwParam2 );
private:
void OpenDevice( void );
bool ValidDevice( void ) { return m_deviceId >= 0; }
void ClearDevice( void ) { m_deviceId = (UINT)-1; }
// returns true if the new format is better
bool BetterFormat( DWORD dwNewFormat, DWORD dwOldFormat );
void InitReadyList( void );
void AddToReadyList( WAVEHDR *pBuffer );
void PopReadyList( void );
WAVEHDR *m_pReadyList;
int m_sampleSize;
int m_sampleRate;
bool m_isStereo;
UINT m_deviceId;
HWAVEIN m_deviceHandle;
WAVEHDR *m_buffers[ INPUT_BUFFER_COUNT ];
};
extern "C" void CALLBACK WaveData( HWAVEIN hwi, UINT uMsg, CAudioWaveInput *pAudio, DWORD dwParam1, DWORD dwParam2 );
CAudioWaveInput::CAudioWaveInput( void )
{
memset( m_buffers, 0, sizeof( m_buffers ) );
int deviceCount = (int)waveInGetNumDevs();
UINT deviceId = (UINT)-1;
DWORD deviceFormat = 0;
int i;
for ( i = 0; i < deviceCount; i++ )
{
WAVEINCAPS waveCaps;
MMRESULT errorCode = waveInGetDevCaps( (UINT)i, &waveCaps, sizeof(waveCaps) );
if ( errorCode == MMSYSERR_NOERROR )
{
// valid device
if ( BetterFormat( waveCaps.dwFormats, deviceFormat ) )
{
deviceId = i;
deviceFormat = waveCaps.dwFormats;
}
}
}
if ( !deviceFormat )
{
m_deviceId = (UINT)-1;
m_sampleSize = 0;
m_sampleRate = 0;
m_isStereo = false;
}
else
{
m_deviceId = deviceId;
m_sampleRate = 44100;
m_isStereo = false;
if ( deviceFormat & WAVE_FORMAT_4M16 )
{
m_sampleSize = 2;
}
else if ( deviceFormat & WAVE_FORMAT_4M08 )
{
m_sampleSize = 1;
}
else
{
// ERROR!
}
OpenDevice();
}
InitReadyList();
}
CAudioWaveInput::~CAudioWaveInput( void )
{
if ( ValidDevice() )
{
Stop();
waveInReset( m_deviceHandle );
waveInClose( m_deviceHandle );
for ( int i = 0; i < INPUT_BUFFER_COUNT; i++ )
{
if ( m_buffers[i] )
{
waveInUnprepareHeader( m_deviceHandle, m_buffers[i], sizeof( *m_buffers[i] ) );
delete[] m_buffers[i]->lpData;
delete m_buffers[i];
}
m_buffers[i] = NULL;
}
ClearDevice();
}
}
void CALLBACK WaveData( HWAVEIN hwi, UINT uMsg, CAudioWaveInput *pAudio, DWORD dwParam1, DWORD dwParam2 )
{
if ( pAudio )
{
pAudio->WaveMessage( hwi, uMsg, dwParam1, dwParam2 );
}
}
void CAudioWaveInput::WaveMessage( HWAVEIN hdevice, UINT uMsg, DWORD dwParam1, DWORD dwParam2 )
{
if ( hdevice != m_deviceHandle )
return;
switch( uMsg )
{
case WIM_DATA:
WAVEHDR *pHeader = (WAVEHDR *)dwParam1;
AddToReadyList( pHeader );
break;
}
}
void CAudioWaveInput::OpenDevice( void )
{
if ( !ValidDevice() )
return;
WAVEFORMATEX format;
memset( &format, 0, sizeof(format) );
format.nAvgBytesPerSec = m_sampleRate * m_sampleSize;
format.nChannels = 1;
format.wBitsPerSample = m_sampleSize * 8;
format.nSamplesPerSec = m_sampleRate;
format.wFormatTag = WAVE_FORMAT_PCM;
format.nBlockAlign = m_sampleSize;
MMRESULT errorCode = waveInOpen( &m_deviceHandle, m_deviceId, &format, (DWORD)WaveData, (DWORD)this, CALLBACK_FUNCTION );
if ( errorCode == MMSYSERR_NOERROR )
{
// valid device opened
int bufferSize = m_sampleSize * m_sampleRate / INPUT_BUFFER_COUNT; // total of one second of data
// allocate buffers
for ( int i = 0; i < INPUT_BUFFER_COUNT; i++ )
{
m_buffers[i] = new WAVEHDR;
m_buffers[i]->lpData = new char[ bufferSize ];
m_buffers[i]->dwBufferLength = bufferSize;
m_buffers[i]->dwUser = 0;
m_buffers[i]->dwFlags = 0;
waveInPrepareHeader( m_deviceHandle, m_buffers[i], sizeof( *m_buffers[i] ) );
waveInAddBuffer( m_deviceHandle, m_buffers[i], sizeof( *m_buffers[i] ) );
}
}
else
{
ClearDevice();
}
}
void CAudioWaveInput::Start( void )
{
if ( !ValidDevice() )
return;
waveInStart( m_deviceHandle );
}
void CAudioWaveInput::Stop( void )
{
if ( !ValidDevice() )
return;
waveInStop( m_deviceHandle );
}
void CAudioWaveInput::InitReadyList( void )
{
m_pReadyList = NULL;
}
void CAudioWaveInput::AddToReadyList( WAVEHDR *pBuffer )
{
WAVEHDR **pList = &m_pReadyList;
waveInUnprepareHeader( m_deviceHandle, pBuffer, sizeof(*pBuffer) );
// insert at the tail of the list
while ( *pList )
{
pList = reinterpret_cast<WAVEHDR **>(&((*pList)->dwUser));
}
pBuffer->dwUser = NULL;
*pList = pBuffer;
}
void CAudioWaveInput::PopReadyList( void )
{
if ( m_pReadyList )
{
WAVEHDR *pBuffer = m_pReadyList;
m_pReadyList = reinterpret_cast<WAVEHDR *>(m_pReadyList->dwUser);
waveInPrepareHeader( m_deviceHandle, pBuffer, sizeof(*pBuffer) );
waveInAddBuffer( m_deviceHandle, pBuffer, sizeof(*pBuffer) );
}
}
#define WAVE_FORMAT_STEREO (WAVE_FORMAT_1S08|WAVE_FORMAT_1S16|WAVE_FORMAT_2S08|WAVE_FORMAT_2S16|WAVE_FORMAT_4S08|WAVE_FORMAT_4S16)
#define WAVE_FORMATS_UNDERSTOOD (0xFFF)
#define WAVE_FORMAT_11K (WAVE_FORMAT_1M08|WAVE_FORMAT_1M16)
#define WAVE_FORMAT_22K (WAVE_FORMAT_2M08|WAVE_FORMAT_2M16)
#define WAVE_FORMAT_44K (WAVE_FORMAT_4M08|WAVE_FORMAT_4M16)
static int HighestBit( DWORD dwFlags )
{
int i = 31;
while ( i )
{
if ( dwFlags & (1<<i) )
return i;
i--;
}
return 0;
}
bool CAudioWaveInput::BetterFormat( DWORD dwNewFormat, DWORD dwOldFormat )
{
dwNewFormat &= WAVE_FORMATS_UNDERSTOOD & (~WAVE_FORMAT_STEREO);
dwOldFormat &= WAVE_FORMATS_UNDERSTOOD & (~WAVE_FORMAT_STEREO);
// our target format is 44.1KHz, mono, 16-bit
if ( HighestBit(dwOldFormat) >= HighestBit(dwNewFormat) )
return false;
return true;
}
int CAudioWaveInput::SampleCount( void )
{
if ( !ValidDevice() )
return 0;
if ( m_pReadyList )
{
switch( SampleSize() )
{
case 2:
return m_pReadyList->dwBytesRecorded >> 1;
case 1:
return m_pReadyList->dwBytesRecorded;
default:
break;
}
}
return 0;
}
void *CAudioWaveInput::SampleData( void )
{
if ( !ValidDevice() )
return NULL;
if ( m_pReadyList )
{
return m_pReadyList->lpData;
}
return NULL;
}
// release the available data (mark as done)
void CAudioWaveInput::SampleRelease( void )
{
PopReadyList();
}
// factory to create a suitable audio input for this system
CAudioInput *CAudioInput::Create( void )
{
// sound source is a singleton for now
static CAudioInput *pSource = NULL;
if ( !pSource )
{
pSource = new CAudioWaveInput;
}
return pSource;
}
void CAudioDeviceSWMix::Mix8Mono( channel_t *pChannel, char *pData, int outputOffset, int inputOffset, int rateScaleFix, int outCount, int timecompress, bool forward )
{
int sampleIndex = 0;
fixedint sampleFrac = inputOffset;
int fixup = 0;
int fixupstep = 1;
if ( !forward )
{
fixup = outCount - 1;
fixupstep = -1;
}
for ( int i = 0; i < outCount; i++, fixup += fixupstep )
{
int dest = max( outputOffset + fixup, 0 );
m_paintbuffer[ dest ].left += pChannel->leftvol * pData[sampleIndex];
m_paintbuffer[ dest ].right += pChannel->rightvol * pData[sampleIndex];
sampleFrac += rateScaleFix;
sampleIndex += FIX_INTPART(sampleFrac);
sampleFrac = FIX_FRACPART(sampleFrac);
}
}
void CAudioDeviceSWMix::Mix8Stereo( channel_t *pChannel, char *pData, int outputOffset, int inputOffset, int rateScaleFix, int outCount, int timecompress, bool forward )
{
int sampleIndex = 0;
fixedint sampleFrac = inputOffset;
int fixup = 0;
int fixupstep = 1;
if ( !forward )
{
fixup = outCount - 1;
fixupstep = -1;
}
for ( int i = 0; i < outCount; i++, fixup += fixupstep )
{
int dest = max( outputOffset + fixup, 0 );
m_paintbuffer[ dest ].left += pChannel->leftvol * pData[sampleIndex];
m_paintbuffer[ dest ].right += pChannel->rightvol * pData[sampleIndex+1];
sampleFrac += rateScaleFix;
sampleIndex += FIX_INTPART(sampleFrac)<<1;
sampleFrac = FIX_FRACPART(sampleFrac);
}
}
void CAudioDeviceSWMix::Mix16Mono( channel_t *pChannel, short *pData, int outputOffset, int inputOffset, int rateScaleFix, int outCount, int timecompress, bool forward )
{
int sampleIndex = 0;
fixedint sampleFrac = inputOffset;
int fixup = 0;
int fixupstep = 1;
if ( !forward )
{
fixup = outCount - 1;
fixupstep = -1;
}
for ( int i = 0; i < outCount; i++, fixup += fixupstep )
{
int dest = max( outputOffset + fixup, 0 );
m_paintbuffer[ dest ].left += (pChannel->leftvol * pData[sampleIndex])>>8;
m_paintbuffer[ dest ].right += (pChannel->rightvol * pData[sampleIndex])>>8;
sampleFrac += rateScaleFix;
sampleIndex += FIX_INTPART(sampleFrac);
sampleFrac = FIX_FRACPART(sampleFrac);
}
}
void CAudioDeviceSWMix::Mix16Stereo( channel_t *pChannel, short *pData, int outputOffset, int inputOffset, int rateScaleFix, int outCount, int timecompress, bool forward )
{
int sampleIndex = 0;
fixedint sampleFrac = inputOffset;
int fixup = 0;
int fixupstep = 1;
if ( !forward )
{
fixup = outCount - 1;
fixupstep = -1;
}
for ( int i = 0; i < outCount; i++, fixup += fixupstep )
{
int dest = max( outputOffset + fixup, 0 );
m_paintbuffer[ dest ].left += (pChannel->leftvol * pData[sampleIndex])>>8;
m_paintbuffer[ dest ].right += (pChannel->rightvol * pData[sampleIndex+1])>>8;
sampleFrac += rateScaleFix;
sampleIndex += FIX_INTPART(sampleFrac)<<1;
sampleFrac = FIX_FRACPART(sampleFrac);
}
}
int CAudioDeviceSWMix::MaxSampleCount( void )
{
return PAINTBUFFER_SIZE;
}
void CAudioDeviceSWMix::MixBegin( void )
{
memset( m_paintbuffer, 0, sizeof(m_paintbuffer) );
}
void CAudioDeviceSWMix::TransferBufferStereo16( short *pOutput, int sampleCount )
{
for ( int i = 0; i < sampleCount; i++ )
{
if ( m_paintbuffer[i].left > 32767 )
m_paintbuffer[i].left = 32767;
else if ( m_paintbuffer[i].left < -32768 )
m_paintbuffer[i].left = -32768;
if ( m_paintbuffer[i].right > 32767 )
m_paintbuffer[i].right = 32767;
else if ( m_paintbuffer[i].right < -32768 )
m_paintbuffer[i].right = -32768;
*pOutput++ = (short)m_paintbuffer[i].left;
*pOutput++ = (short)m_paintbuffer[i].right;
}
}
CAudioWaveOutput::CAudioWaveOutput( void )
{
for ( int i = 0; i < OUTPUT_BUFFER_COUNT; i++ )
{
CAudioBuffer *buffer = &m_buffers[ i ];
Assert( buffer );
buffer->hdr = NULL;
buffer->submitted = false;
buffer->submit_sample_count = false;
}
ClearDevice();
OpenDevice();
m_mixTime = -1;
m_sampleIndex = 0;
memset( m_sourceList, 0, sizeof(m_sourceList) );
m_nEstimatedSamplesAhead = (int)( ( float ) OUTPUT_SAMPLE_RATE / 10.0f );
}
void CAudioWaveOutput::RemoveMixerChannelReferences( CAudioMixer *mixer )
{
for ( int i = 0; i < OUTPUT_BUFFER_COUNT; i++ )
{
RemoveFromReferencedList( mixer, &m_buffers[ i ] );
}
}
void CAudioWaveOutput::AddToReferencedList( CAudioMixer *mixer, CAudioBuffer *buffer )
{
// Already in list
for ( int i = 0; i < buffer->m_Referenced.Size(); i++ )
{
if ( buffer->m_Referenced[ i ].mixer == mixer )
{
return;
}
}
// Just remove it
int idx = buffer->m_Referenced.AddToTail();
CAudioMixerState *state = &buffer->m_Referenced[ idx ];
state->mixer = mixer;
state->submit_mixer_sample = mixer->GetSamplePosition();
}
void CAudioWaveOutput::RemoveFromReferencedList( CAudioMixer *mixer, CAudioBuffer *buffer )
{
for ( int i = 0; i < buffer->m_Referenced.Size(); i++ )
{
if ( buffer->m_Referenced[ i ].mixer == mixer )
{
buffer->m_Referenced.Remove( i );
break;
}
}
}
bool CAudioWaveOutput::IsSoundInReferencedList( CAudioMixer *mixer, CAudioBuffer *buffer )
{
for ( int i = 0; i < buffer->m_Referenced.Size(); i++ )
{
if ( buffer->m_Referenced[ i ].mixer == mixer )
{
return true;
}
}
return false;
}
bool CAudioWaveOutput::IsSourceReferencedByActiveBuffer( CAudioMixer *mixer )
{
if ( !ValidDevice() )
return false;
CAudioBuffer *buffer;
for ( int i = 0; i < OUTPUT_BUFFER_COUNT; i++ )
{
buffer = &m_buffers[ i ];
if ( !buffer->submitted )
continue;
if ( buffer->hdr->dwFlags & WHDR_DONE )
continue;
// See if it's referenced
if ( IsSoundInReferencedList( mixer, buffer ) )
return true;
}
return false;
}
CAudioWaveOutput::~CAudioWaveOutput( void )
{
if ( ValidDevice() )
{
waveOutReset( m_deviceHandle );
for ( int i = 0; i < OUTPUT_BUFFER_COUNT; i++ )
{
if ( m_buffers[i].hdr )
{
waveOutUnprepareHeader( m_deviceHandle, m_buffers[i].hdr, sizeof(*m_buffers[i].hdr) );
delete[] m_buffers[i].hdr->lpData;
delete m_buffers[i].hdr;
}
m_buffers[i].hdr = NULL;
m_buffers[i].submitted = false;
m_buffers[i].submit_sample_count = 0;
m_buffers[i].m_Referenced.Purge();
}
waveOutClose( m_deviceHandle );
ClearDevice();
}
}
CAudioBuffer *CAudioWaveOutput::GetEmptyBuffer( void )
{
CAudioBuffer *pOutput = NULL;
if ( ValidDevice() )
{
for ( int i = 0; i < OUTPUT_BUFFER_COUNT; i++ )
{
if ( !(m_buffers[ i ].submitted ) ||
m_buffers[i].hdr->dwFlags & WHDR_DONE )
{
pOutput = &m_buffers[i];
pOutput->submitted = true;
pOutput->m_Referenced.Purge();
break;
}
}
}
return pOutput;
}
void CAudioWaveOutput::SilenceBuffer( short *pSamples, int sampleCount )
{
int i;
for ( i = 0; i < sampleCount; i++ )
{
// left
*pSamples++ = 0;
// right
*pSamples++ = 0;
}
}
void CAudioWaveOutput::Flush( void )
{
waveOutReset( m_deviceHandle );
}
// mix a buffer up to time (time is absolute)
void CAudioWaveOutput::Update( float time )
{
channel_t channel;
channel.leftvol = 200;
channel.rightvol = 200;
channel.pitch = 1.0;
if ( !ValidDevice() )
return;
// reset the system
if ( m_mixTime < 0 || time < m_baseTime )
{
m_baseTime = time;
m_mixTime = 0;
}
// put time in our coordinate frame
time -= m_baseTime;
if ( time > m_mixTime )
{
CAudioBuffer *pBuffer = GetEmptyBuffer();
// no free buffers, mixing is ahead of the playback!
if ( !pBuffer || !pBuffer->hdr )
{
//Con_Printf( "out of buffers\n" );
return;
}
// UNDONE: These numbers are constants
// calc number of samples (2 channels * 2 bytes per sample)
int sampleCount = pBuffer->hdr->dwBufferLength >> 2;
//float oldTime = m_mixTime;
m_mixTime += sampleCount * (1.0f / OUTPUT_SAMPLE_RATE);
short *pSamples = reinterpret_cast<short *>(pBuffer->hdr->lpData);
SilenceBuffer( pSamples, sampleCount );
int tempCount = sampleCount;
while ( tempCount > 0 )
{
if ( tempCount > m_audioDevice.MaxSampleCount() )
sampleCount = m_audioDevice.MaxSampleCount();
else
sampleCount = tempCount;
m_audioDevice.MixBegin();
for ( int i = 0; i < MAX_CHANNELS; i++ )
{
CAudioMixer *pSource = m_sourceList[i];
if ( !pSource )
continue;
int currentsample = pSource->GetSamplePosition();
bool forward = pSource->GetDirection();
if ( pSource->GetActive() )
{
if ( !pSource->MixDataToDevice( &m_audioDevice, &channel, currentsample, sampleCount, SampleRate(), forward ) )
{
// Source becomes inactive when last submitted sample is finally
// submitted. But it lingers until it's no longer referenced
pSource->SetActive( false );
}
else
{
AddToReferencedList( pSource, pBuffer );
}
}
else
{
if ( !IsSourceReferencedByActiveBuffer( pSource ) )
{
if ( !pSource->GetAutoDelete() )
{
FreeChannel( i );
}
}
else
{
pSource->IncrementSamples( &channel, currentsample, sampleCount, SampleRate(), forward );
}
}
}
m_audioDevice.TransferBufferStereo16( pSamples, sampleCount );
m_sampleIndex += sampleCount;
tempCount -= sampleCount;
pSamples += sampleCount * 2;
}
// if the buffers aren't aligned on sample boundaries, this will hard-lock the machine!
pBuffer->submit_sample_count = GetOutputPosition();
waveOutWrite( m_deviceHandle, pBuffer->hdr, sizeof(*(pBuffer->hdr)) );
}
}
int CAudioWaveOutput::GetNumberofSamplesAhead( void )
{
ComputeSampleAheadAmount();
return m_nEstimatedSamplesAhead;
}
float CAudioWaveOutput::GetAmountofTimeAhead( void )
{
ComputeSampleAheadAmount();
return ( (float)m_nEstimatedSamplesAhead / (float)OUTPUT_SAMPLE_RATE );
}
// Find the most recent submitted sample that isn't flagged as whdr_done
void CAudioWaveOutput::ComputeSampleAheadAmount( void )
{
m_nEstimatedSamplesAhead = 0;
int newest_sample_index = -1;
int newest_sample_count = 0;
CAudioBuffer *buffer;
if ( ValidDevice() )
{
for ( int i = 0; i < OUTPUT_BUFFER_COUNT; i++ )
{
buffer = &m_buffers[ i ];
if ( !buffer->submitted )
continue;
if ( buffer->hdr->dwFlags & WHDR_DONE )
continue;
if ( buffer->submit_sample_count > newest_sample_count )
{
newest_sample_index = i;
newest_sample_count = buffer->submit_sample_count;
}
}
}
if ( newest_sample_index == -1 )
return;
buffer = &m_buffers[ newest_sample_index ];
int currentPos = GetOutputPosition() ;
m_nEstimatedSamplesAhead = currentPos - buffer->submit_sample_count;
}
int CAudioWaveOutput::FindSourceIndex( CAudioMixer *pSource )
{
for ( int i = 0; i < MAX_CHANNELS; i++ )
{
if ( pSource == m_sourceList[i] )
{
return i;
}
}
return -1;
}
CAudioMixer *CAudioWaveOutput::GetMixerForSource( CAudioSource *source )
{
for ( int i = 0; i < MAX_CHANNELS; i++ )
{
if ( !m_sourceList[i] )
continue;
if ( source == m_sourceList[i]->GetSource() )
{
return m_sourceList[i];
}
}
return NULL;
}
void CAudioWaveOutput::AddSource( CAudioMixer *pSource )
{
int slot = 0;
for ( int i = 0; i < MAX_CHANNELS; i++ )
{
if ( !m_sourceList[i] )
{
slot = i;
break;
}
}
if ( m_sourceList[slot] )
{
FreeChannel( slot );
}
SetChannel( slot, pSource );
pSource->SetActive( true );
}
void CAudioWaveOutput::StopSounds( void )
{
for ( int i = 0; i < MAX_CHANNELS; i++ )
{
if ( m_sourceList[i] )
{
FreeChannel( i );
}
}
}
void CAudioWaveOutput::SetChannel( int channelIndex, CAudioMixer *pSource )
{
if ( channelIndex < 0 || channelIndex >= MAX_CHANNELS )
return;
m_sourceList[channelIndex] = pSource;
}
void CAudioWaveOutput::FreeChannel( int channelIndex )
{
if ( channelIndex < 0 || channelIndex >= MAX_CHANNELS )
return;
if ( m_sourceList[channelIndex] )
{
RemoveMixerChannelReferences( m_sourceList[channelIndex] );
delete m_sourceList[channelIndex];
m_sourceList[channelIndex] = NULL;
}
}
int CAudioWaveOutput::GetOutputPosition( void )
{
if ( !m_deviceHandle )
return 0;
MMTIME mmtime;
mmtime.wType = TIME_SAMPLES;
waveOutGetPosition( m_deviceHandle, &mmtime, sizeof( MMTIME ) );
// Convert time to sample count
return ( mmtime.u.sample );
}
void CAudioWaveOutput::OpenDevice( void )
{
WAVEFORMATEX waveFormat;
memset( &waveFormat, 0, sizeof(waveFormat) );
// Select a PCM, 16-bit stereo playback device
waveFormat.cbSize = sizeof(waveFormat);
waveFormat.nAvgBytesPerSec = OUTPUT_SAMPLE_RATE * 2 * 2;
waveFormat.nBlockAlign = 2 * 2; // channels * sample size
waveFormat.nChannels = 2; // stereo
waveFormat.nSamplesPerSec = OUTPUT_SAMPLE_RATE;
waveFormat.wBitsPerSample = 16;
waveFormat.wFormatTag = WAVE_FORMAT_PCM;
MMRESULT errorCode = waveOutOpen( &m_deviceHandle, WAVE_MAPPER, &waveFormat, 0, 0, CALLBACK_NULL );
if ( errorCode == MMSYSERR_NOERROR )
{
int bufferSize = 4 * ( OUTPUT_SAMPLE_RATE / OUTPUT_BUFFER_COUNT ); // total of 1 second of data
// Got one!
for ( int i = 0; i < OUTPUT_BUFFER_COUNT; i++ )
{
m_buffers[i].hdr = new WAVEHDR;
m_buffers[i].hdr->lpData = new char[ bufferSize ];
long align = (long)m_buffers[i].hdr->lpData;
if ( align & 3 )
{
m_buffers[i].hdr->lpData = (char *) ( (align+3) &~3 );
}
m_buffers[i].hdr->dwBufferLength = bufferSize - (align&3);
m_buffers[i].hdr->dwFlags = 0;
if ( waveOutPrepareHeader( m_deviceHandle, m_buffers[i].hdr, sizeof(*m_buffers[i].hdr) ) != MMSYSERR_NOERROR )
{
ClearDevice();
return;
}
}
}
else
{
ClearDevice();
}
}
// factory to create a suitable audio output for this system
CAudioOutput *CAudioOutput::Create( void )
{
// sound device is a singleton for now
static CAudioOutput *pWaveOut = NULL;
if ( !pWaveOut )
{
pWaveOut = new CAudioWaveOutput;
}
return pWaveOut;
}
struct CSoundFile
{
char filename[ 512 ];
CAudioSource *source;
long filetime;
};
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
class CSceneManagerSound : public ISceneManagerSound
{
public:
~CSceneManagerSound( void );
void Init( void );
void Shutdown( void );
void Update( float dt );
void Flush( void );
CAudioSource *LoadSound( const char *wavfile );
void PlaySound( const char *wavfile, CAudioMixer **ppMixer );
void PlaySound( CAudioSource *source, CAudioMixer **ppMixer );
bool IsSoundPlaying( CAudioMixer *pMixer );
CAudioMixer *FindMixer( CAudioSource *source );
void StopAll( void );
void StopSound( CAudioMixer *mixer );
CAudioOuput *GetAudioOutput( void );
virtual CAudioSource *FindOrAddSound( const char *filename );
private:
CAudioOutput *m_pAudio;
float m_flElapsedTime;
CUtlVector < CSoundFile > m_ActiveSounds;
};
static CSceneManagerSound g_FacePoserSound;
ISceneManagerSound *sound = ( ISceneManagerSound * )&g_FacePoserSound;
CSceneManagerSound::~CSceneManagerSound( void )
{
OutputDebugString( va( "Removing %i sounds\n", m_ActiveSounds.Size() ) );
for ( int i = 0 ; i < m_ActiveSounds.Size(); i++ )
{
CSoundFile *p = &m_ActiveSounds[ i ];
OutputDebugString( va( "Removing sound: %s\n", p->filename ) );
delete p->source;
}
m_ActiveSounds.RemoveAll();
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
CAudioOuput *CSceneManagerSound::GetAudioOutput( void )
{
return (CAudioOuput *)m_pAudio;
}
CAudioSource *CSceneManagerSound::FindOrAddSound( const char *filename )
{
CSoundFile *s;
int i;
for ( i = 0; i < m_ActiveSounds.Size(); i++ )
{
s = &m_ActiveSounds[ i ];
Assert( s );
if ( !stricmp( s->filename, filename ) )
{
long filetime = filesystem->GetFileTime( filename );
if ( filetime != s->filetime )
{
Con_Printf( "Reloading sound %s\n", filename );
delete s->source;
s->source = LoadSound( filename );
s->filetime = filetime;
}
return s->source;
}
}
i = m_ActiveSounds.AddToTail();
s = &m_ActiveSounds[ i ];
strcpy( s->filename, filename );
s->source = LoadSound( filename );
s->filetime = filesystem->GetFileTime( filename );
return s->source;
}
void CSceneManagerSound::Init( void )
{
m_flElapsedTime = 0.0f;
m_pAudio = CAudioOutput::Create();
}
void CSceneManagerSound::Shutdown( void )
{
}
CAudioSource *CSceneManagerSound::LoadSound( const char *wavfile )
{
if ( !m_pAudio )
return NULL;
CAudioSource *wave = AudioSource_Create( wavfile );
return wave;
}
void CSceneManagerSound::PlaySound( const char *wavfile, CAudioMixer **ppMixer )
{
if ( m_pAudio )
{
CAudioSource *wave = FindOrAddSound( wavfile );
if ( !wave )
return;
CAudioMixer *pMixer = wave->CreateMixer();
if ( ppMixer )
{
*ppMixer = pMixer;
}
m_pAudio->AddSource( pMixer );
}
}
void CSceneManagerSound::PlaySound( CAudioSource *source, CAudioMixer **ppMixer )
{
if ( ppMixer )
{
*ppMixer = NULL;
}
if ( m_pAudio )
{
CAudioMixer *mixer = source->CreateMixer();
if ( ppMixer )
{
*ppMixer = mixer;
}
m_pAudio->AddSource( mixer );
}
}
void CSceneManagerSound::Update( float dt )
{
if ( m_pAudio )
{
m_pAudio->Update( m_flElapsedTime );
}
m_flElapsedTime += dt;
}
void CSceneManagerSound::Flush( void )
{
if ( m_pAudio )
{
m_pAudio->Flush();
}
}
void CSceneManagerSound::StopAll( void )
{
if ( m_pAudio )
{
m_pAudio->StopSounds();
}
}
void CSceneManagerSound::StopSound( CAudioMixer *mixer )
{
int idx = m_pAudio->FindSourceIndex( mixer );
if ( idx != -1 )
{
m_pAudio->FreeChannel( idx );
}
}
bool CSceneManagerSound::IsSoundPlaying( CAudioMixer *pMixer )
{
if ( !m_pAudio || !pMixer )
{
return false;
}
//
int index = m_pAudio->FindSourceIndex( pMixer );
if ( index != -1 )
return true;
return false;
}
CAudioMixer *CSceneManagerSound::FindMixer( CAudioSource *source )
{
if ( !m_pAudio )
return NULL;
return m_pAudio->GetMixerForSource( source );
}