hl2_src-leak-2017/src/utils/studiomdl/checkuv.cpp

460 lines
13 KiB
C++

//============ Copyright (c) Valve Corporation, All rights reserved. ==========
//
// Function which do validation tests on UVs values at the s_source_t level
//
//=============================================================================
#include "tier1/fmtstr.h"
#include "tier1/utlmap.h"
#include "studiomdl.h"
#include "checkuv.h"
// memdbgon must be the last include file in a .cpp file!!!
#include "tier0/memdbgon.h"
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
CCheckUVCmd::CCheckUVCmd()
{
Clear();
}
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
void CCheckUVCmd::Clear()
{
ClearCheck( CHECK_UV_ALL_FLAGS );
m_nOptGutterTexWidth = 512;
m_nOptGutterTexHeight = 512;
m_nOptGutterMin = 5;
}
//-----------------------------------------------------------------------------
// Dumps an s_soruce_t as an OBJ file
//-----------------------------------------------------------------------------
static void WriteOBJ( const char *pszFilename, const s_source_t *pSource )
{
FILE *pFile = fopen( pszFilename, "w" );
fprintf( pFile, "#\n" );
fprintf( pFile, "# s_source_t: %s\n", pSource->filename );
fprintf( pFile, "# Bone Count: %d\n", pSource->numbones );
for ( int i = 0; i < pSource->numbones; ++i )
{
if ( pSource->localBone[i].parent >= 0 )
{
fprintf( pFile, "# Bone %3d: %s Parent %3d: %s\n", i, pSource->localBone[i].name, pSource->localBone[i].parent, pSource->localBone[pSource->localBone[i].parent].name );
}
else
{
fprintf( pFile, "# Bone %3d: %s\n", i, pSource->localBone[i].name );
}
}
fprintf( pFile, "# Mesh Count: %d\n", pSource->nummeshes );
fprintf( pFile, "# Vertex Count: %d\n", pSource->numvertices );
fprintf( pFile, "# Face Count: %d\n", pSource->numfaces );
fprintf( pFile, "#\n" );
fprintf( pFile, "# positions\n" );
fprintf( pFile, "#\n" );
for ( int i = 0; i < pSource->numvertices; ++i )
{
const s_vertexinfo_t &v = pSource->vertex[i];
fprintf( pFile, "v %.4f %.4f %.4f\n", v.position.x, v.position.y, v.position.z );
}
fprintf( pFile, "#\n" );
fprintf( pFile, "# texture coordinates\n" );
fprintf( pFile, "#\n" );
for ( int i = 0; i < pSource->numvertices; ++i )
{
const s_vertexinfo_t &v = pSource->vertex[i];
fprintf( pFile, "vt %.4f %.4f\n", v.texcoord.x, v.texcoord.y );
}
fprintf( pFile, "#\n" );
fprintf( pFile, "# normals\n" );
fprintf( pFile, "#\n" );
for ( int i = 0; i < pSource->numvertices; ++i )
{
const s_vertexinfo_t &v = pSource->vertex[i];
fprintf( pFile, "vn %.4f %.4f %.4f\n", v.normal.x, v.normal.y, v.normal.z );
}
for ( int i = 0; i < pSource->nummeshes; ++i )
{
const s_mesh_t &m = pSource->mesh[i];
const s_texture_t &t = g_texture[pSource->meshindex[i]];
fprintf( pFile, "#\n" );
fprintf( pFile, "# mesh %d - %s\n", i, t.name );
fprintf( pFile, "# Face Count: %d\n", m.numfaces );
fprintf( pFile, "#\n" );
fprintf( pFile, "usemtl %s\n", t.name );
for ( int j = 0; j < m.numfaces; ++j )
{
const s_face_t &f = pSource->face[m.faceoffset + j];
fprintf( pFile, "f %d/%d/%d %d/%d/%d %d/%d/%d\n",
f.a, f.a, f.a,
f.b, f.b, f.b,
f.c, f.c, f.c );
}
}
fclose( pFile );
}
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
bool CCheckUVCmd::CheckUVs( const s_source_t *const *pSourceList, int nSourceCount ) const
{
if ( !DoAnyCheck() || nSourceCount <= 0 )
return true;
bool bRet = true;
for ( int i = 0; i < nSourceCount; ++i )
{
const s_source_t *pSource = pSourceList[i];
bRet &= CheckNormalized( pSource );
bRet &= CheckOverlap( pSource );
bRet &= CheckInverse( pSource );
bRet &= CheckGutter( pSource );
}
return bRet;
}
//-----------------------------------------------------------------------------
// Check that all UVs are in the [0, 1] range
//-----------------------------------------------------------------------------
bool CCheckUVCmd::CheckNormalized( const struct s_source_t *pSource ) const
{
if ( !DoCheck( CHECK_UV_FLAG_NORMALIZED ) )
return true;
CUtlRBTree< int > badVertexIndices( CDefOps< int >::LessFunc );
for ( int i = 0; i < pSource->numvertices; ++i )
{
const s_vertexinfo_t &v = pSource->vertex[i];
if (
v.texcoord.x < 0.0f || v.texcoord.x > 1.0f ||
v.texcoord.y < 0.0f || v.texcoord.y > 1.0f )
{
badVertexIndices.InsertIfNotFound( i );
}
}
if ( badVertexIndices.Count() <= 0 )
return true;
Msg( "Error! %s\n", pSource->filename );
Msg( " UVs outside of [0, 1] range\n" );
for ( int i = 0; i < pSource->nummeshes; ++i )
{
const s_mesh_t &m = pSource->mesh[i];
const s_texture_t &t = g_texture[pSource->meshindex[i]];
CUtlRBTree< int > badMeshVertexIndices( CDefOps< int >::LessFunc );
for ( int j = 0; j < m.numfaces; ++j )
{
const s_face_t &f = pSource->face[m.faceoffset + j];
if ( badVertexIndices.HasElement( f.a ) )
{
badMeshVertexIndices.InsertIfNotFound( f.a );
}
if ( badVertexIndices.HasElement( f.b ) )
{
badMeshVertexIndices.InsertIfNotFound( f.b );
}
if ( badVertexIndices.HasElement( f.c ) )
{
badMeshVertexIndices.InsertIfNotFound( f.c );
}
}
for ( auto vIt = badMeshVertexIndices.FirstInorder(); badMeshVertexIndices.IsValidIndex( vIt ); vIt = badMeshVertexIndices.NextInorder( vIt ) )
{
PrintVertex( pSource->vertex[badMeshVertexIndices.Element( vIt )], t );
}
}
return false;
}
//-----------------------------------------------------------------------------
// Check that all polygons in UV do not overlap
//-----------------------------------------------------------------------------
bool CCheckUVCmd::CheckOverlap( const struct s_source_t *pSource ) const
{
if ( !DoCheck( CHECK_UV_FLAG_OVERLAP ) )
return true;
bool bRet = true;
CUtlVector< CUtlVector< int > > faceOverlapMap;
faceOverlapMap.SetCount( pSource->numfaces );
for ( int i = 0; i < pSource->numfaces; ++i )
{
const s_face_t &fA = pSource->face[i];
const Vector2D &tAA = pSource->vertex[fA.a].texcoord;
const Vector2D &tAB = pSource->vertex[fA.b].texcoord;
const Vector2D &tAC = pSource->vertex[fA.c].texcoord;
for ( int j = i + 1; j < pSource->numfaces; ++j )
{
const s_face_t &fB = pSource->face[j];
const Vector2D tB[] = {
pSource->vertex[fB.a].texcoord,
pSource->vertex[fB.b].texcoord,
pSource->vertex[fB.c].texcoord };
for ( int k = 0; k < ARRAYSIZE( tB ); ++k )
{
const Vector vCheck = Barycentric( tB[k], tAA, tAB, tAC );
if ( vCheck.x > 0.0f && vCheck.y > 0.0f && vCheck.z > 0.0f )
{
if ( bRet )
{
Msg( "Error! %s\n", pSource->filename );
Msg( " Overlapping UV faces\n" );
bRet = false;
}
faceOverlapMap[i].AddToTail( j );
break;
}
}
}
}
for ( int i = 0; i < faceOverlapMap.Count(); ++i )
{
const CUtlVector< int > &overlapList = faceOverlapMap[i];
if ( overlapList.IsEmpty() )
continue;;
const int nFaceA = i;
const int nMeshA = FindMeshIndex( pSource, nFaceA );
PrintFace( pSource, nMeshA, nFaceA );
Msg( " Overlaps\n" );
for ( int j = 0; j < overlapList.Count(); ++j )
{
const int nFaceB = overlapList[j];
const int nMeshB = FindMeshIndex( pSource, nFaceB );
PrintFace( pSource, nMeshB, nFaceB, " " );
}
}
return bRet;
}
//-----------------------------------------------------------------------------
// Check that all polygons in UV have the correct winding, i.e. the cross
// product of edge AB x BC points the right direction
//-----------------------------------------------------------------------------
bool CCheckUVCmd::CheckInverse( const struct s_source_t *pSource ) const
{
if ( !DoCheck( CHECK_UV_FLAG_INVERSE ) )
return true;
bool bRetVal = true;
for ( int i = 0; i < pSource->nummeshes; ++i )
{
const s_mesh_t &m = pSource->mesh[i];
for ( int j = 0; j < m.numfaces; ++j )
{
const int nFaceIndex = m.faceoffset + j;
const s_face_t &f = pSource->face[nFaceIndex];
const Vector2D &tA = pSource->vertex[f.a].texcoord;
const Vector2D &tB = pSource->vertex[f.b].texcoord;
const Vector2D &tC = pSource->vertex[f.c].texcoord;
const Vector vA( tA.x, tA.y, 0.0f );
const Vector vB( tB.x, tB.y, 0.0f );
const Vector vC( tC.x, tC.y, 0.0f );
const Vector vAB = vB - vA;
const Vector vBC = vC - vB;
const Vector vUVNormal = CrossProduct( vAB, vBC );
const float flDot = DotProduct( vUVNormal, Vector( 0.0f, 0.0f, 1.0f ) );
if ( flDot < 0.0f )
{
if ( bRetVal )
{
Msg( "Error! %s\n", pSource->filename );
Msg( " Inverse UV faces\n" );
bRetVal = false;
}
PrintFace( pSource, i, nFaceIndex );
}
}
}
return bRetVal;
}
//-----------------------------------------------------------------------------
// Check that the distance between edges in UV islands is a minimum number of pixels for a given texture size
//-----------------------------------------------------------------------------
bool CCheckUVCmd::CheckGutter( const struct s_source_t *pSource ) const
{
if ( !DoCheck( CHECK_UV_FLAG_GUTTER ) )
return true;
// TODO: Implement me!
return true;
}
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
Vector CCheckUVCmd::Barycentric( const Vector2D &vP, const Vector2D &vA, const Vector2D &vB, const Vector2D &vC )
{
const Vector2D v0 = vB - vA;
const Vector2D v1 = vC - vA;
const Vector2D v2 = vP - vA;
const float d00 = DotProduct2D( v0, v0 );
const float d01 = DotProduct2D( v0, v1 );
const float d11 = DotProduct2D( v1, v1 );
const float d20 = DotProduct2D( v2, v0 );
const float d21 = DotProduct2D( v2, v1 );
const float flDenom = d00 * d11 - d01 * d01;
const float flV = ( d11 * d20 - d01 * d21 ) / flDenom;
const float flW = ( d00 * d21 - d01 * d20 ) / flDenom;
const float flU = 1.0f - flV - flW;
return Vector( flV, flW, flU );
}
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
Vector CCheckUVCmd::Barycentric( const Vector &vP, const Vector &vA, const Vector &vB, const Vector &vC )
{
const Vector v0 = vB - vA;
const Vector v1 = vC - vA;
const Vector v2 = vP - vA;
const float d00 = DotProduct( v0, v0 );
const float d01 = DotProduct( v0, v1 );
const float d11 = DotProduct( v1, v1 );
const float d20 = DotProduct( v2, v0 );
const float d21 = DotProduct( v2, v1 );
const float flDenom = d00 * d11 - d01 * d01;
const float flV = ( d11 * d20 - d01 * d21 ) / flDenom;
const float flW = ( d00 * d21 - d01 * d20 ) / flDenom;
const float flU = 1.0f - flV - flW;
return Vector( flV, flW, flU );
}
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
int CCheckUVCmd::FindMeshIndex( const struct s_source_t *pSource, int nFaceIndex )
{
for ( int i = 1; i < pSource->nummeshes; ++i )
{
if ( nFaceIndex <= pSource->mesh[i].faceoffset )
return i;
}
return 0;
}
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
void CCheckUVCmd::PrintVertex( const s_vertexinfo_t &v, const char *pszPrefix /* = " " */ )
{
Msg( "%sP: %8.4f %8.4f %8.4f T: %8.4f %8.4f\n",
pszPrefix,
v.position.x, v.position.y, v.position.z,
v.texcoord.x, v.texcoord.y );
}
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
void CCheckUVCmd::PrintVertex( const s_vertexinfo_t &v, const s_texture_t &t, const char *pszPrefix /* = " " */ )
{
Msg( "%sP: %8.4f %8.4f %8.4f T: %8.4f %8.4f M: %s\n",
pszPrefix,
v.position.x, v.position.y, v.position.z,
v.texcoord.x, v.texcoord.y,
t.name );
}
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
void CCheckUVCmd::PrintFace( const s_source_t *pSource, const int nMesh, const int nFace, const char *pszPrefix /* = " " */ )
{
const s_texture_t &t = g_texture[pSource->meshindex[nMesh]];
const s_face_t &f = pSource->face[nFace];
Msg( "%sF: %4d %s\n", pszPrefix, nFace, t.name );
PrintVertex( pSource->vertex[f.a], pszPrefix );
PrintVertex( pSource->vertex[f.b], pszPrefix );
PrintVertex( pSource->vertex[f.c], pszPrefix );
}