hl2_src-leak-2017/src/utils/studiomdl/collisionmodel.cpp

2725 lines
74 KiB
C++

//========= Copyright Valve Corporation, All rights reserved. ============//
//
// Purpose: Builds physics collision models from studio model source
//
// $Workfile: $
// $Date: $
// $NoKeywords: $
//=============================================================================//
// NOTE: The term joint here is used to mean a bone, collision model, and a joint.
// Each "joint" is the collision geometry at a named bone (or set of bones that have been merged)
// and the joint (with constraints) between that set and its parent. The root "joint" has
// no constraints.
// I chose to refer to them as joints to avoid confusion. Yes they encompass bones and joints,
// but they use the same names, and the data is actually linked.
#include <stdio.h>
#include <stdlib.h>
#include <sys/stat.h>
#include <math.h>
#include "vphysics/constraints.h"
#include "collisionmodel.h"
#include "cmdlib.h"
#include "scriplib.h"
#include "mathlib/mathlib.h"
#include "studio.h"
#include "studiomdl.h"
#include "physdll.h"
#include "phyfile.h"
#include "utlvector.h"
#include "vcollide_parse.h"
#include "tier1/strtools.h"
#include "tier2/tier2.h"
#include "KeyValues.h"
#include "tier1/smartptr.h"
#include "tier2/p4helpers.h"
// these functions just wrap atoi/atof and check for NULL
static float Safe_atof( const char *pString );
static int Safe_atoi( const char *pString );
IPhysicsCollision *physcollision = NULL;
IPhysicsSurfaceProps *physprops = NULL;
float g_WeldVertEpsilon = 0.0f;
float g_WeldNormalEpsilon = 0.999f;
//-----------------------------------------------------------------------------
// Purpose: Contains a single convex element of a physical collision system
//-----------------------------------------------------------------------------
class CPhysCollisionModel
{
public:
CPhysCollisionModel( void )
{
memset( this, 0, sizeof(*this) );
}
const char *m_parent;
const char *m_name;
// physical properties stored on disk
float m_mass;
float m_volume;
float m_surfaceArea;
float m_damping;
float m_rotdamping;
float m_inertia;
float m_dragCoefficient;
// these tune the model building process, they don't go in the file
float m_massBias;
CPhysCollide *m_pCollisionData;
CPhysCollisionModel *m_pNext;
};
enum jointlimit_t
{
JOINT_FREE = 0,
JOINT_FIXED = 1,
JOINT_LIMIT = 2,
};
// list of vertex indices that form a convex element
struct convexlist_t
{
int firstVertIndex;
int numVertIndex;
};
//-----------------------------------------------------------------------------
// Purpose: element of a list of constraints for a jointed model
//-----------------------------------------------------------------------------
class CJointConstraint
{
public:
CJointConstraint( void )
{
m_pJointName = NULL;
}
CJointConstraint( const char *pName, int axis, jointlimit_t type, float min, float max, float friction )
: m_axis(axis), m_jointType(type), m_limitMin(min), m_limitMax(max), m_friction(friction)
{
m_pJointName = pName;
}
const char *m_pJointName;
int m_axis;
jointlimit_t m_jointType;
float m_limitMin;
float m_limitMax;
float m_friction;
CJointConstraint *m_pNext;
};
struct mergelist_t
{
char *pParent;
char *pChild;
};
struct collisionpair_t
{
int obj0;
int obj1;
const char *pName0;
const char *pName1;
collisionpair_t *pNext;
};
//-----------------------------------------------------------------------------
// Purpose: Search a source for a bone with a specified name
// Input : *pSource -
// *pName -
// Output : int boneIndex, -1 if none
//-----------------------------------------------------------------------------
int FindLocalBoneNamed( const s_source_t *pSource, const char *pName )
{
if ( pName )
{
int i;
for ( i = 0; i < pSource->numbones; i++ )
{
if ( !stricmp( pName, pSource->localBone[i].name ) )
return i;
}
pName = RenameBone( pName );
for ( i = 0; i < pSource->numbones; i++ )
{
if ( !stricmp( pName, pSource->localBone[i].name ) )
return i;
}
}
return -1;
}
// Returns the index to pName in g_bonetable
int FindBoneInTable( const char *pName )
{
return findGlobalBone( pName );
}
//-----------------------------------------------------------------------------
// Purpose: Contains a complete physical joint system with constraint relationships
//-----------------------------------------------------------------------------
// This class is really just a namespace for a set of globals...
class CJointedModel
{
public:
s_source_t *m_pModel;
int m_collisionCount;
CPhysCollisionModel *m_pCollisionList;
collisionpair_t *m_pCollisionPairs;
float m_totalMass;
int m_bonemap[MAXSTUDIOSRCBONES];
CJointConstraint *m_pConstraintList;
int m_constraintCount;
int m_totalVerts;
int m_maxConvex;
char m_rootName[128];
bool m_allowConcave;
bool m_allowConcaveJoints;
bool m_isMassCenterForced;
bool m_noSelfCollisions;
bool m_remove2d;
Vector m_massCenterForced;
float m_defaultDamping;
float m_defaultRotdamping;
float m_defaultInertia;
float m_defaultDrag;
CUtlVector<char> m_textCommands;
CUtlVector<mergelist_t> m_mergeList;
CJointedModel( void );
void SetSource( s_source_t *pmodel );
void InitBoneMap( void );
void SkipBone( int boneIndex );
void MergeBones( int parent, int child );
void AddMergeCommand( char const *pParent, char const *pChild );
bool ShouldProcessBone( int boneIndex );
int BoneIndex( const char *pName );
int RemapBone( int boneIndex ) const;
void AppendCollisionModel( CPhysCollisionModel *pCollide );
void UnlinkCollisionModel( CPhysCollisionModel *pCollide );
CPhysCollisionModel *GetCollisionModel( const char *pName );
void AppendCollisionPair( const char *pName0, const char *pName1 );
void AddConstraint( const char *pJointName, int axis, jointlimit_t jointType, float limitMin, float limitMax, float friction );
int CollisionIndex( const char *pName );
void SortCollisionList( void );
void ForceMassCenter( const Vector &centerOfMass );
void AllowConcave( void ) { m_allowConcave = true; }
void AllowConcaveJoints() { m_allowConcaveJoints = true; }
void Remove2DConvex() { m_remove2d = true; }
void SetMaxConvex( int newMax ) { m_maxConvex = newMax; }
void Simplify();
void DefaultDamping( float damping );
void DefaultRotdamping( float rotdamping );
void DefaultInertia( float inertia );
void DefaultDrag( float drag );
void SetTotalMass( float mass );
void SetAutoMass( void );
void SetNoSelfCollisions();
void SetCollisionModelDefaults( CPhysCollisionModel *pModel );
void JointDamping( const char *pJointName, float damping );
void JointRotdamping( const char *pJointName, float rotdamping );
void JointInertia( const char *pJointName, float inertia );
void JointMassBias( const char *pJointName, float massBias );
void AddText( const char *pText )
{
int len = strlen(pText);
int count = m_textCommands.Size();
m_textCommands.AddMultipleToTail( len );
memcpy( m_textCommands.Base() + count, pText, len );
}
void ComputeMass( void );
float m_flFrictionTimeIn;
float m_flFrictionTimeOut;
float m_flFrictionTimeHold;
int m_iMinAnimatedFriction;
int m_iMaxAnimatedFriction;
bool m_bHasAnimatedFriction;
bool m_bAssumeWorldspace; // assume the model is already declared in worldspace, regardless of bone names
};
CJointedModel g_JointedModel;
bool g_bJointed = false;
CJointedModel::CJointedModel( void )
{
m_pModel = NULL;
m_collisionCount = 0;
m_pCollisionList = NULL;
m_pCollisionPairs = NULL;
m_totalMass = 1.0;
memset( m_bonemap, 0, sizeof(m_bonemap) );
m_pConstraintList = NULL;
m_constraintCount = 0;
m_totalVerts = 0;
// UNDONE: Move these defaults elsewhere? They are all overrideable by the QC/script
m_defaultDamping = 0;
m_defaultRotdamping = 0;
m_defaultInertia = 1.0;
m_defaultDrag = -1;
m_allowConcave = false;
m_allowConcaveJoints = false;
m_remove2d = false;
m_maxConvex = 40;
m_isMassCenterForced = false;
m_noSelfCollisions = false;
m_massCenterForced.Init();
m_flFrictionTimeIn = 0.0f;
m_flFrictionTimeOut = 0.0f;
m_iMinAnimatedFriction = 1.0f;
m_iMaxAnimatedFriction = 1.0f;
m_bHasAnimatedFriction = false;
}
void CJointedModel::SetSource( s_source_t *pmodel )
{
m_pModel = pmodel;
InitBoneMap();
m_totalVerts = pmodel->numvertices;
}
void CJointedModel::InitBoneMap( void )
{
for ( int i = 0; i < m_pModel->numbones; i++ )
{
m_bonemap[i] = i;
}
}
void CJointedModel::SkipBone( int boneIndex )
{
if ( boneIndex >= 0 )
m_bonemap[boneIndex] = -1;
}
void CJointedModel::AddMergeCommand( char const *pParent, char const *pChild )
{
int i = m_mergeList.AddToTail();
m_mergeList[i].pParent = strdup(pParent);
m_mergeList[i].pChild = strdup(pChild);
}
void CJointedModel::MergeBones( int parent, int child )
{
if ( parent < 0 || child < 0 )
return;
int map = parent;
int safety = 0;
while ( m_bonemap[map] != map )
{
map = m_bonemap[map];
safety++;
// infinite loop?
if ( safety > m_pModel->numbones )
break;
if ( map < 0 )
break;
}
m_bonemap[child] = map;
}
bool CJointedModel::ShouldProcessBone( int boneIndex )
{
if ( boneIndex >= 0 )
{
if ( m_bonemap[boneIndex] == boneIndex )
return true;
}
return false;
}
int CJointedModel::BoneIndex( const char *pName )
{
pName = RenameBone( pName );
for ( int boneIndex = 0; boneIndex < m_pModel->numbones; boneIndex++ )
{
if ( !stricmp( m_pModel->localBone[boneIndex].name, pName ) )
return boneIndex;
}
return -1;
}
int CJointedModel::RemapBone( int boneIndex ) const
{
if ( boneIndex >= 0 )
return m_bonemap[boneIndex];
return boneIndex;
}
void CJointedModel::AppendCollisionModel( CPhysCollisionModel *pCollide )
{
if ( m_isMassCenterForced )
{
physcollision->CollideSetMassCenter( pCollide->m_pCollisionData, m_massCenterForced );
}
pCollide->m_pNext = m_pCollisionList;
m_pCollisionList = pCollide;
m_collisionCount++;
}
void CJointedModel::UnlinkCollisionModel( CPhysCollisionModel *pCollide )
{
CPhysCollisionModel **pList = &m_pCollisionList;
if ( !pCollide )
return;
while ( *pList )
{
CPhysCollisionModel *pNode = *pList;
if ( pNode == pCollide )
{
*pList = pCollide->m_pNext;
m_collisionCount--;
pCollide->m_pNext = NULL;
return;
}
pList = &pNode->m_pNext;
}
}
int CJointedModel::CollisionIndex( const char *pName )
{
CPhysCollisionModel *pList = m_pCollisionList;
int index = 0;
while ( pList )
{
if ( !stricmp( pName, pList->m_name ) )
return index;
pList = pList->m_pNext;
index++;
}
return -1;
}
//-----------------------------------------------------------------------------
// Purpose: Sort the list so that parents come before their children
//-----------------------------------------------------------------------------
void CJointedModel::SortCollisionList( void )
{
if ( !m_collisionCount )
return;
CPhysCollisionModel **pArray;
pArray = new CPhysCollisionModel *[m_collisionCount];
CPhysCollisionModel *pList = m_pCollisionList;
// make an array to make sorting easier
int i = 0;
while ( pList )
{
pArray[i++] = pList;
pList = pList->m_pNext;
}
// really stupid bubble sort!
// this is really inefficient but it was easy to code and there are never
// more than maxConvex elements.
bool swapped = true;
while ( swapped )
{
swapped = false;
// loop over all solids and swap any parent/child pairs that are out of order
for ( i = 0; i < m_collisionCount; i++ )
{
CPhysCollisionModel *pPhys = pArray[i];
if ( !pPhys->m_parent )
continue;
// Don't try to move ones where the pPhys and its parent have the same name
// otherwise an infinite loop results
if ( !Q_stricmp( pPhys->m_name, pPhys->m_parent ) )
continue;
// find the parent
int j;
for ( j = 0; j < m_collisionCount; j++ )
{
if ( j == i )
continue;
if ( !stricmp( pPhys->m_parent, pArray[j]->m_name ) )
break;
}
// if the child came before the parent, then swap the parent and child positions
if ( j > i && j < m_collisionCount )
{
swapped = true;
pArray[i] = pArray[j];
pArray[j] = pPhys;
}
}
}
// link up the sorted list
for ( i = 0; i < m_collisionCount-1; i++ )
{
pArray[i]->m_pNext = pArray[i+1];
}
// terminate
pArray[i]->m_pNext = NULL;
// point the list to first joint
m_pCollisionList = pArray[0];
// delete the working array
delete[] pArray;
}
void CJointedModel::AppendCollisionPair( const char *pName0, const char *pName1 )
{
collisionpair_t *pPair = new collisionpair_t;
pPair->obj0 = -1;
pPair->obj1 = -1;
int jointIndex0 = FindLocalBoneNamed( m_pModel, pName0 );
pPair->pName0 = (jointIndex0 >= 0) ? m_pModel->localBone[jointIndex0].name : NULL;
int jointIndex1 = FindLocalBoneNamed( m_pModel, pName1 );
pPair->pName1 = (jointIndex1 >= 0) ? m_pModel->localBone[jointIndex1].name : NULL;
pPair->pNext = m_pCollisionPairs;
m_pCollisionPairs = pPair;
}
void CJointedModel::ForceMassCenter( const Vector &centerOfMass )
{
m_isMassCenterForced = true;
m_massCenterForced = centerOfMass;
}
// called before processing, after the model has been simplified.
// Update internal state due to simplification
void CJointedModel::Simplify()
{
for ( int i = 0; i < m_pModel->numbones; i++ )
{
if ( m_pModel->boneLocalToGlobal[i] < 0 )
{
SkipBone(i);
}
}
extern int g_rootIndex;
const char *pAnimationRootBone = g_bonetable[g_rootIndex].name;
// merge this root bone with the root of animation
MergeBones( FindLocalBoneNamed( m_pModel, pAnimationRootBone ), FindLocalBoneNamed( m_pModel, m_rootName ) );
}
CPhysCollisionModel *CJointedModel::GetCollisionModel( const char *pName )
{
CPhysCollisionModel *pList = m_pCollisionList;
while ( pList )
{
if ( !stricmp( pName, pList->m_name ) )
return pList;
pList = pList->m_pNext;
}
return NULL;
}
void CJointedModel::AddConstraint( const char *pJointName, int axis, jointlimit_t jointType, float limitMin, float limitMax, float friction )
{
// In the editor/qc friction values are shown as 5X so 1.0 can be the default.
CJointConstraint *pConstraint = new CJointConstraint( pJointName, axis, jointType, limitMin, limitMax, friction * (1.0f/5.0f) );
// link it in
pConstraint->m_pNext = m_pConstraintList;
m_pConstraintList = pConstraint;
m_constraintCount++;
}
void CJointedModel::DefaultDamping( float damping )
{
m_defaultDamping = damping;
}
void CJointedModel::DefaultRotdamping( float rotdamping )
{
m_defaultRotdamping = rotdamping;
}
void CJointedModel::DefaultInertia( float inertia )
{
m_defaultInertia = inertia;
}
void CJointedModel::SetTotalMass( float mass )
{
m_totalMass = mass;
}
void CJointedModel::SetAutoMass( void )
{
m_totalMass = -1;
}
void CJointedModel::SetNoSelfCollisions()
{
m_noSelfCollisions = true;
}
void CJointedModel::SetCollisionModelDefaults( CPhysCollisionModel *pModel )
{
pModel->m_damping = m_defaultDamping;
pModel->m_inertia = m_defaultInertia;
pModel->m_rotdamping = m_defaultRotdamping;
pModel->m_massBias = 1.0;
// not written unless modified
pModel->m_dragCoefficient = m_defaultDrag;
}
void CJointedModel::ComputeMass( void )
{
// already set
if ( m_totalMass >= 0 )
return;
CPhysCollisionModel *pList = m_pCollisionList;
m_totalMass = 0;
while ( pList )
{
char* pSurfaceProps = GetSurfaceProp( pList->m_name );
int index = physprops->GetSurfaceIndex( pSurfaceProps );
float density, thickness;
physprops->GetPhysicsProperties( index, &density, &thickness, NULL, NULL );
if ( thickness > 0 )
{
m_totalMass += pList->m_surfaceArea * thickness * CUBIC_METERS_PER_CUBIC_INCH * density;
}
else
{
// density is in kg/m^3, volume is in in^3
m_totalMass += pList->m_volume * CUBIC_METERS_PER_CUBIC_INCH * density;
}
pList = pList->m_pNext;
}
if( !g_quiet )
{
printf("Computed Mass: %.2f kg\n", m_totalMass );
}
}
//-----------------------------------------------------------------------------
// Purpose: Creates a collision object using the defaults in joints
// Input : &joints - joint system to create the model in
// *pJointName - name to give this model
// Output : static CPhysCollisionModel
//-----------------------------------------------------------------------------
static CPhysCollisionModel *InitCollisionModel( CJointedModel &joints, const char *pJointName )
{
CPhysCollisionModel *pModel = joints.GetCollisionModel( pJointName );
if ( !pModel )
{
int boneIndex = joints.BoneIndex( pJointName );
if ( boneIndex < 0 )
return NULL;
pModel = new CPhysCollisionModel;
// this name is the same as pJointName, but guaranteed to be non-volatile (we'd have to copy pJointName)
pModel->m_name = joints.m_pModel->localBone[boneIndex].name;
if ( joints.m_pModel->localBone[boneIndex].parent >= 0 )
{
pModel->m_parent = joints.m_pModel->localBone[joints.m_pModel->localBone[boneIndex].parent].name;
}
else
{
pModel->m_parent = NULL;
}
joints.SetCollisionModelDefaults( pModel );
joints.AppendCollisionModel( pModel );
}
return pModel;
}
void CJointedModel::JointDamping( const char *pJointName, float damping )
{
CPhysCollisionModel *pModel = InitCollisionModel( *this, pJointName );
if ( pModel )
{
pModel->m_damping = damping;
}
}
void CJointedModel::JointRotdamping( const char *pJointName, float rotdamping )
{
CPhysCollisionModel *pModel = InitCollisionModel( *this, pJointName );
if ( pModel )
{
pModel->m_rotdamping = rotdamping;
}
}
void CJointedModel::JointMassBias( const char *pJointName, float massBias )
{
CPhysCollisionModel *pModel = InitCollisionModel( *this, pJointName );
if ( pModel )
{
pModel->m_massBias = massBias;
}
}
void CJointedModel::JointInertia( const char *pJointName, float inertia )
{
CPhysCollisionModel *pModel = InitCollisionModel( *this, pJointName );
if ( pModel )
{
pModel->m_inertia = inertia;
}
}
void CJointedModel::DefaultDrag( float drag )
{
m_defaultDrag = drag;
}
// ----------------------------------------------------------
//-----------------------------------------------------------------------------
// Purpose: Transforms the source's verts into "world" space
// Input : *psource -
// *worldVerts -
//-----------------------------------------------------------------------------
void ConvertToWorldSpace( CJointedModel &joints, s_source_t *psource, CUtlVector<Vector> &worldVerts )
{
int i, n;
if (!joints.m_bAssumeWorldspace)
{
matrix3x4_t boneToWorld[MAXSTUDIOSRCBONES]; // bone transformation matrix
CalcBoneTransforms( g_panimation[0], 0, boneToWorld );
for (i = 0; i < psource->numvertices; i++)
{
Vector tmp,tmp2;
worldVerts[i].Init( 0, 0, 0 );
int nBoneCount = psource->vertex[i].boneweight.numbones;
for (n = 0; n < nBoneCount; n++)
{
// convert to Half-Life world space
// convert vertex into original models' bone local space
int localBone = psource->vertex[i].boneweight.bone[n];
int globalBone = psource->boneLocalToGlobal[localBone];
Assert( localBone >= 0 );
Assert( globalBone >= 0 );
matrix3x4_t boneToPose;
ConcatTransforms( psource->boneToPose[localBone], g_bonetable[globalBone].srcRealign, boneToPose );
VectorITransform( psource->vertex[i].position, boneToPose, tmp2 );
// now transform to that bone's world-space position in this animation
VectorTransform(tmp2, boneToWorld[globalBone], tmp );
VectorMA( worldVerts[i], psource->vertex[i].boneweight.weight[n], tmp, worldVerts[i] );
}
}
}
else
{
matrix3x4_t srcBoneToWorld[MAXSTUDIOSRCBONES]; // bone transformation matrix
BuildRawTransforms( psource, "BindPose", 0, psource->scale, psource->adjust, psource->rotation, 0, srcBoneToWorld );
for (i = 0; i < psource->numvertices; i++)
{
Vector tmp;
worldVerts[i].Init( 0, 0, 0 );
int nBoneCount = psource->vertex[i].boneweight.numbones;
for (n = 0; n < nBoneCount; n++)
{
int localBone = psource->vertex[i].boneweight.bone[n];
Assert( localBone >= 0 );
// convert vertex into world space
VectorTransform( psource->vertex[i].position, srcBoneToWorld[localBone], tmp );
// just assume the model is in identity space
// FIXME: shouldn't this do an inverse xform of the default boneToWorld?
VectorMA( worldVerts[i], psource->vertex[i].boneweight.weight[n], tmp, worldVerts[i] );
}
}
}
}
//-----------------------------------------------------------------------------
// Purpose: Transforms the set of verts into the space of a particular bone
// Input : *psource -
// boneIndex -
// *boneVerts -
//-----------------------------------------------------------------------------
void ConvertToBoneSpace( s_source_t *psource, int boneIndex, CUtlVector<Vector> &boneVerts )
{
int i;
int remapIndex = psource->boneLocalToGlobal[boneIndex];
matrix3x4_t boneToPose;
if ( remapIndex < 0 )
{
MdlWarning("Error! physics for unused bone %s\n", psource->localBone[boneIndex].name );
MatrixCopy( psource->boneToPose[boneIndex], boneToPose );
}
else
{
ConcatTransforms( psource->boneToPose[boneIndex], g_bonetable[remapIndex].srcRealign, boneToPose );
}
for (i = 0; i < psource->numvertices; i++)
{
VectorITransform(psource->vertex[i].position, boneToPose, boneVerts[i] );
}
}
//-----------------------------------------------------------------------------
// Purpose: Test this face to see if any of its verts are assigned to a particular bone
// Input : &joints -
// *pmodel -
// *face -
// boneIndex -
// Output : Returns true if this face has a vert assigned to boneIndex
//-----------------------------------------------------------------------------
bool FaceHasVertOnBone( const CJointedModel &joints, s_source_t *pSource, s_face_t *face, int boneIndex )
{
if ( boneIndex < 0 )
return true;
int j;
s_boneweight_t *pweight;
pweight = &pSource->vertex[ face->a ].boneweight;
for ( j = 0; j < pweight->numbones; j++ )
{
// assigned to boneIndex?
if ( joints.RemapBone( pweight->bone[j] ) == boneIndex )
return true;
}
pweight = &pSource->vertex[ face->b ].boneweight;
for ( j = 0; j < pweight->numbones; j++ )
{
// assigned to boneIndex?
if ( joints.RemapBone( pweight->bone[j] ) == boneIndex )
return true;
}
pweight = &pSource->vertex[ face->c ].boneweight;
for ( j = 0; j < pweight->numbones; j++ )
{
// assigned to boneIndex?
if ( joints.RemapBone( pweight->bone[j] ) == boneIndex )
return true;
}
return false;
}
//-----------------------------------------------------------------------------
// Purpose: Fixup the pointers in this face to reference the mesh globally (source relative)
// (faces are mesh relative, each source has several meshes)
// Input : *pout -
// *pmesh -
// *pin -
//-----------------------------------------------------------------------------
void GlobalFace( s_face_t *pout, s_mesh_t *pmesh, s_face_t *pin )
{
pout->a = pmesh->vertexoffset + pin->a;
pout->b = pmesh->vertexoffset + pin->b;
pout->c = pmesh->vertexoffset + pin->c;
}
//-----------------------------------------------------------------------------
// Purpose: Copy all verts assigned to this bone.
// NOTE: Leaves gaps in the model around joints
// Input : **verts -
// *worldVerts -
// &joints -
// boneIndex -
// Output : int vertCount
//-----------------------------------------------------------------------------
int CopyVertsByBone( Vector **verts, Vector *worldVerts, const CJointedModel &joints, int boneIndex )
{
int vertCount = 0;
s_source_t *pmodel = joints.m_pModel;
// loop through each vert to find those assigned to this bone
for ( int i = 0; i < pmodel->numvertices; i++ )
{
s_boneweight_t *pweight = &pmodel->vertex[ i ].boneweight;
// look at each assignment for this vert
for ( int j = 0; j < pweight->numbones; j++ )
{
// Discover the local bone index for this bone
int localBone = pweight->bone[j];
// assigned to boneIndex?
if ( joints.RemapBone( localBone ) == boneIndex )
{
// add this vert to model
verts[vertCount++] = &worldVerts[i];
}
}
}
return vertCount;
}
//-----------------------------------------------------------------------------
// Purpose: Copy all verts that are referenced by a face which has a vert assigned
// to this bone.
// NOTE: convex hulls of each bone will overlap at the joints
// Input : **verts -
// *worldVerts -
// &joints -
// boneIndex -
// Output : int
//-----------------------------------------------------------------------------
int CopyFaceVertsByBone( Vector **verts, Vector *worldVerts, const CJointedModel &joints, int boneIndex )
{
int vertCount = 0;
s_source_t *pmodel = joints.m_pModel;
int *vertChecked = new int[pmodel->numvertices];
for ( int b = 0; b < pmodel->numvertices; b++ )
{
vertChecked[b] = 0;
}
for ( int i = 0; i < pmodel->nummeshes; i++ )
{
s_mesh_t *pmesh = pmodel->mesh + pmodel->meshindex[i];
for ( int j = 0; j < pmesh->numfaces; j++ )
{
s_face_t *face = pmodel->face + pmesh->faceoffset + j;
s_face_t globalFace;
GlobalFace( &globalFace, pmesh, face );
if ( FaceHasVertOnBone( joints, pmodel, &globalFace, boneIndex ) )
{
if ( !vertChecked[globalFace.a] )
{
// add this vert to model
verts[vertCount++] = &worldVerts[globalFace.a];
}
if ( !vertChecked[globalFace.b] )
{
// add this vert to model
verts[vertCount++] = &worldVerts[globalFace.b];
}
if ( !vertChecked[globalFace.c] )
{
// add this vert to model
verts[vertCount++] = &worldVerts[globalFace.c];
}
// mark these verts so you only add them once
vertChecked[globalFace.a] = 1;
vertChecked[globalFace.b] = 1;
vertChecked[globalFace.c] = 1;
}
}
}
delete[] vertChecked;
return vertCount;
}
//-----------------------------------------------------------------------------
// Purpose: Find all verts that differ only by texture coordinates - this allows
// us to ignore texture coordinates on collision models
// Input : *weldTable - output table
// *pmodel - input model
//-----------------------------------------------------------------------------
void BuildVertWeldTable( int *weldTable, s_source_t *pmodel )
{
for ( int i = 0; i < pmodel->numvertices; i++ )
{
bool found = false;
for ( int j = 0; j < i; j++ )
{
float dist = (pmodel->vertex[j].position - pmodel->vertex[i].position).Length();
float normalDist = DotProduct( pmodel->vertex[j].normal, pmodel->vertex[i].normal );
if ( dist <= g_WeldVertEpsilon && normalDist > g_WeldNormalEpsilon )
{
found = true;
weldTable[i] = j;
break;
}
}
if ( !found )
{
weldTable[i] = i;
}
}
}
//-----------------------------------------------------------------------------
// Purpose: marks all verts with a unique ID. Each set of connected verts has
// the same ID. IDs are the index of the lowest numbered face on the
// mesh
// Input : *vertID - array that holds IDs
// *pmodel - model to process
//-----------------------------------------------------------------------------
void MarkConnectedMeshes( int *vertID, s_source_t *pmodel, int *vertMap )
{
int i;
// mark all verts as max faceid + 1
for ( i = 0; i < pmodel->numvertices; i++ )
{
// If these verts have been welded to a lower-index vert, mark them
// as already processed to avoid making additional convex objects out of them.
if ( vertMap[i] != i )
{
vertID[i] = -1;
}
else
{
vertID[i] = pmodel->numfaces+1;
}
}
int marked = 0;
int faceid = 0;
// iterate the face list, minimizing the vertID at each vert
// until we have an iteration where no vertIDs are changed
do
{
marked = 0;
faceid = 0;
for ( i = 0; i < pmodel->nummeshes; i++ )
{
s_mesh_t *pmesh = pmodel->mesh + pmodel->meshindex[i];
for ( int j = 0; j < pmesh->numfaces; j++ )
{
s_face_t *face = pmodel->face + pmesh->faceoffset + j;
s_face_t globalFace;
GlobalFace( &globalFace, pmesh, face );
// account for welding
globalFace.a = vertMap[globalFace.a];
globalFace.b = vertMap[globalFace.b];
globalFace.c = vertMap[globalFace.c];
// find min(faceid, vertID[a], vertID[b], vertID[c]);
int newid = min(faceid, vertID[globalFace.a]);
newid = min( newid, vertID[globalFace.b]);
newid = min( newid, vertID[globalFace.c]);
// mark all verts with the minimum, count the number we had to mark
if ( vertID[globalFace.a] != newid )
{
vertID[globalFace.a] = newid;
marked++;
}
if ( vertID[globalFace.b] != newid )
{
vertID[globalFace.b] = newid;
marked++;
}
if ( vertID[globalFace.c] != newid )
{
vertID[globalFace.c] = newid;
marked++;
}
faceid++;
}
}
} while ( marked != 0 );
}
//-----------------------------------------------------------------------------
// Purpose: Finds a CPhysCollisionModel in a linked list of models.
// Input : *pHead -
// *pName -
// Output : CPhysCollisionModel
//-----------------------------------------------------------------------------
CPhysCollisionModel *FindObjectInList( CPhysCollisionModel *pHead, const char *pName )
{
while ( pHead )
{
if ( !stricmp( pName, pHead->m_name ) )
break;
pHead = pHead->m_pNext;
}
return pHead;
}
//-----------------------------------------------------------------------------
// Purpose: Fix all bones to reference the remapped/collapsed bone structure
// Input : *pSource -
// *pList -
//-----------------------------------------------------------------------------
void FixBoneList( int *boneMap, const s_source_t *pSource, CPhysCollisionModel *pList )
{
if ( !g_bJointed )
return;
CPhysCollisionModel *pmodel = pList;
while ( pmodel )
{
int nodeIndex = FindLocalBoneNamed( pSource, pmodel->m_name );
if ( nodeIndex < 0 )
{
MdlWarning("Physics for unknown bone %s\n", pmodel->m_name );
}
else
{
int count = 0;
// remove simplified bones
while ( pSource->boneLocalToGlobal[nodeIndex] < 0 )
{
if ( count++ > MAXSTUDIOSRCBONES )
break;
// simplified out, move up to the parent
nodeIndex = pSource->localBone[nodeIndex].parent;
}
if ( nodeIndex >= 0 )
{
// bone collapse may have changed parent hierarchy, and the root name.
// The vertices are converted to the new reference by ConvertToWorldSpace(), as well as RemapVerticesToGlobalBones()
pmodel->m_name = g_bonetable[ pSource->boneLocalToGlobal[nodeIndex] ].name;
pmodel->m_parent = NULL;
int parentIndex = pSource->localBone[nodeIndex].parent;
if ( parentIndex >= 0 && parentIndex != nodeIndex )
{
parentIndex = boneMap[parentIndex];
if (pSource->boneLocalToGlobal[parentIndex] < 0)
{
pmodel->m_parent = pSource->localBone[parentIndex].name;
}
else
{
pmodel->m_parent = g_bonetable[ pSource->boneLocalToGlobal[parentIndex] ].name;
}
}
}
else
{
MdlWarning("Physics for unknown bone %s\n", pmodel->m_name );
}
}
pmodel = pmodel->m_pNext;
}
}
//-----------------------------------------------------------------------------
// Purpose: Fixup all references to parents by walking up on models whose parents
// have no collision geometry. Bones without geometry cannot be physically
// simulated, so they must be removed.
// NOTE: This is broken. It won't work for tree structures with an empty parent
// (i.e. 2 children attached to a parent bone that has no physics geometry - thus empty)
// It will not convert that parent into a constraint between 2 children
// Input : *pList -
// *pSource -
// *pParentName -
// Output : const char
//-----------------------------------------------------------------------------
const char *FixParent( CPhysCollisionModel *pList, s_source_t *pSource, const char *pParentName )
{
while ( pParentName )
{
if ( FindObjectInList( pList, pParentName ) )
{
return pParentName;
}
int nodeIndex = FindLocalBoneNamed( pSource, pParentName );
if ( nodeIndex < 0 )
return NULL;
int parentIndex = pSource->localBone[nodeIndex].parent;
if ( parentIndex < 0 )
{
break;
}
pParentName = pSource->localBone[parentIndex].name;
}
return NULL;
}
struct boundingvolume_t
{
Vector mins;
Vector maxs;
};
void CreateCollide( CPhysCollisionModel *pBase, CPhysConvex **pElements, int elementCount, const boundingvolume_t &bv )
{
int i;
if ( !pBase )
return;
// NOTE: Must do this before building collide
pBase->m_volume = 0;
pBase->m_surfaceArea = 0;
for ( i = 0; i < elementCount; i++ )
{
pBase->m_volume += physcollision->ConvexVolume( pElements[i] );
pBase->m_surfaceArea += physcollision->ConvexSurfaceArea( pElements[i] );
}
convertconvexparams_t params;
params.Defaults();
params.buildOuterConvexHull = true;
params.buildDragAxisAreas = true;
Vector size = bv.maxs - bv.mins;
int largest = 0;
float minSurfaceArea = -1.0f;
for ( i = 0; i < 3; i++ )
{
if ( size[i] > size[largest] )
{
largest = i;
}
int other = (i+1)%3;
int cross = (i+2)%3;
float surfaceArea = size[other] * size[cross];
if ( minSurfaceArea < 0 || surfaceArea < minSurfaceArea )
{
minSurfaceArea = surfaceArea;
}
}
// this can be really slow with super-large models and a low error tolerance
// Basically you get a ray cast through each square of epsilon surface area on each OBB side
// So compute it for 0.01% error (on the smallest side, less on larger sides)
params.dragAreaEpsilon = clamp( minSurfaceArea * 1e-4f, 0.25f, 128.0f );
Vector tmp = size;
tmp[largest] = 0;
float len = tmp.Length();
if ( len > 0 )
{
float sizeRatio = size[largest] / len;
// HACKHACK: Hardcoded size ratio to induce damping
// This prevents long skinny objects from rolling endlessly
if ( sizeRatio > 9 )
{
pBase->m_rotdamping = 1.0f;
}
}
// THIS DESTROYS pConvex!!
pBase->m_pCollisionData = physcollision->ConvertConvexToCollideParams( pElements, elementCount, params );
// debug output for the drag area calculations
#if 0
Msg("Drag epsilon is %.3f\n", params.dragAreaEpsilon );
Vector areas = physcollision->CollideGetOrthographicAreas( pBase->m_pCollisionData );
Msg("Drag fractions are %.3f %.3f %.3f\n", areas.x, areas.y, areas.z );
#endif
}
// is this list of verts contained in a slab of epsilon width? If so, it's probably
// an error of some kind - we shouldn't be authoring flat or 2d collision models
bool IsApproximatelyPlanar( Vector **verts, int vertCount, float epsilon )
{
if ( vertCount < 4 )
return true;
// If we're using an un-welded model, then this may generate a degenerate normal
// loop to search for an actual plane
int v0 = 1, v1 = 2;
Vector normal;
while ( v0 < vertCount && v1 < vertCount )
{
Vector edge0 = *verts[v0] - *verts[0];
Vector edge1 = *verts[v1] - *verts[0];
normal = CrossProduct( edge0, edge1 );
float len = VectorNormalize( normal );
if ( len > 0.001 )
break;
if ( edge0.Length() < 0.001 )
{
// verts[0] and v0 are coincident, try new verts
v0++;
v1++;
}
else
{
// v0 seems fine, try a new v1 -- it's probably coincident with v0
v1++;
}
}
// form the plane and project all of the verts into it
float minDist = DotProduct( normal, *verts[0] );
float maxDist = minDist;
for ( int i = 0; i < vertCount; i++ )
{
float d = DotProduct( *verts[i], normal );
if ( d < minDist )
{
minDist = d;
}
else if ( d > maxDist )
{
maxDist = d;
}
// at least one vert out of the plane, we've got something 3 dimensional
if ( fabsf(maxDist-minDist) > epsilon )
return false;
}
return true;
}
void BuildConvexListByVertID( s_source_t *pmodel, CUtlVector<convexlist_t> &convexList, CUtlVector<int> &vertList, CUtlVector<int> &vertID )
{
// loop through each island of verts and append it to the convex list
convexlist_t current;
for ( int i = 0; i < pmodel->numvertices; i++ )
{
// already processed this group
if ( vertID[i] < 0 || vertID[i] > pmodel->numfaces )
continue;
current.firstVertIndex = vertList.Count();
current.numVertIndex = 0;
int id = vertID[i];
for ( int j = i; j < pmodel->numvertices; j++ )
{
if ( vertID[j] == id )
{
vertList.AddToTail(j);
current.numVertIndex++;
// don't reuse this vert
vertID[j] = -1;
}
}
convexList.AddToTail(current);
}
}
// build a list of vertex indices for each connected sub-piece
void BuildSingleConvexForFaceList( s_source_t *pmodel, CUtlVector<convexlist_t> &convexList, CUtlVector<int> &vertList, const CUtlVector<s_face_t> &faceList )
{
CUtlVector<int> vertID;
vertID.SetCount(pmodel->numvertices);
int i;
for ( i = 0; i < pmodel->numvertices; i++ )
{
vertID[i] = -1;
}
for ( i = 0; i < faceList.Count(); i++ )
{
const s_face_t &globalFace = faceList[i];
vertID[globalFace.a] = 1;
vertID[globalFace.b] = 1;
vertID[globalFace.c] = 1;
}
BuildConvexListByVertID( pmodel, convexList, vertList, vertID );
}
void BuildConvexListForFaceList( s_source_t *pmodel, CUtlVector<convexlist_t> &convexList, CUtlVector<int> &vertList, const CUtlVector<s_face_t> &faceList )
{
CUtlVector<int> weldTable;
weldTable.SetCount(pmodel->numvertices);
BuildVertWeldTable( weldTable.Base(), pmodel );
int i;
CUtlVector<int> vertID;
vertID.SetCount(pmodel->numvertices);
// mark all verts as max faceid + 1
for ( i = 0; i < pmodel->numvertices; i++ )
{
// If these verts have been welded to a lower-index vert, mark them
// as already processed to avoid making additional convex objects out of them.
if ( weldTable[i] != i )
{
vertID[i] = -1;
}
else
{
vertID[i] = pmodel->numfaces+1;
}
}
Assert(convexList.Count()==0);
Assert(vertList.Count()==0);
int marked = 0;
int faceid = 0;
// iterate the face list, minimizing the vertID at each vert
// until we have an iteration where no vertIDs are changed
do
{
marked = 0;
faceid = 0;
// basically this flood fills ids out to the verts until each island of connected
// verts shares a single id (so new verts got marked)
for ( i = 0; i < faceList.Count(); i++ )
{
s_face_t globalFace = faceList[i];
// account for welding
globalFace.a = weldTable[globalFace.a];
globalFace.b = weldTable[globalFace.b];
globalFace.c = weldTable[globalFace.c];
int newid = min(i, vertID[globalFace.a]);
newid = min( newid, vertID[globalFace.b]);
newid = min( newid, vertID[globalFace.c]);
// mark all verts with the minimum, count the number we had to mark
if ( vertID[globalFace.a] != newid )
{
vertID[globalFace.a] = newid;
marked++;
}
if ( vertID[globalFace.b] != newid )
{
vertID[globalFace.b] = newid;
marked++;
}
if ( vertID[globalFace.c] != newid )
{
vertID[globalFace.c] = newid;
marked++;
}
}
} while ( marked != 0 );
BuildConvexListByVertID( pmodel, convexList, vertList, vertID );
}
// take a list of convex elements (lists of vert indices into master vert list) and build CPhysConvex out of them
// return true if there are no errors detected
bool BuildConvexesForLists( CUtlVector<CPhysConvex *> &convexOut, const CUtlVector<convexlist_t> &convexList, const CUtlVector<int> &vertList, const CUtlVector<Vector> &worldspaceVerts, bool bRemove2d )
{
bool bValid = true;
CUtlVector<Vector *> vertsThisConvex;
for ( int i = 0; i < convexList.Count(); i++ )
{
const convexlist_t &elem = convexList[i];
vertsThisConvex.RemoveAll();
for ( int j = 0; j < elem.numVertIndex; j++ )
{
// this is ok because physcollision won't modify these, but wants non-const
Vector *pVert = const_cast<Vector *>(&worldspaceVerts[vertList[j + elem.firstVertIndex]]);
vertsThisConvex.AddToTail( pVert );
}
// need at least 3 verts to build a CPhysConvex
if ( vertsThisConvex.Count() > 2 )
{
const float g_epsilon_2d = 0.5f;
// HACKHACK: A heuristic to detect models without smoothing groups set
// UNDONE: Do a BSP to decompose arbitrary models to convex?
if ( IsApproximatelyPlanar( vertsThisConvex.Base(), vertsThisConvex.Count(), g_epsilon_2d ) )
{
if ( bRemove2d )
continue;
MdlWarning("Model has 2-dimensional geometry (less than %.3f inches thick on any axis)!!!\n", g_epsilon_2d );
bValid = false;
}
// go ahead and build it out
CPhysConvex *pConvex = physcollision->ConvexFromVerts( vertsThisConvex.Base(), vertsThisConvex.Count() );
if ( pConvex )
{
// Got something valid, attach this convex data to the root model
physcollision->SetConvexGameData( pConvex, 0 );
convexOut.AddToTail(pConvex);
}
}
}
return bValid;
}
//-----------------------------------------------------------------------------
// Purpose: Build a jointed collision model with constraints
// Input : &joints -
// Output : int
//-----------------------------------------------------------------------------
int ProcessJointedModel( CJointedModel &joints )
{
if( !g_quiet )
{
printf("Processing jointed collision model\n" );
}
s_source_t *pmodel = joints.m_pModel;
// loop through each bone and form a collision model
for ( int boneIndex = 0; boneIndex < joints.m_pModel->numbones; boneIndex++ )
{
if ( !joints.ShouldProcessBone( boneIndex ) )
continue;
CUtlVector<Vector> bonespaceVerts;
bonespaceVerts.SetCount(pmodel->numvertices);
ConvertToBoneSpace( joints.m_pModel, boneIndex, bonespaceVerts );
CUtlVector<s_face_t> faceList;
CUtlVector<convexlist_t> convexList;
CUtlVector<int> vertList;
CUtlVector<CPhysConvex *> convexOut;
bool bValid = false;
for ( int i = 0; i < pmodel->nummeshes; i++ )
{
s_mesh_t *pmesh = pmodel->mesh + pmodel->meshindex[i];
for ( int j = 0; j < pmesh->numfaces; j++ )
{
s_face_t *face = pmodel->face + pmesh->faceoffset + j;
s_face_t globalFace;
GlobalFace( &globalFace, pmesh, face );
if ( FaceHasVertOnBone( joints, pmodel, &globalFace, boneIndex ) )
{
faceList.AddToTail( globalFace );
}
}
if ( joints.m_allowConcaveJoints )
{
BuildConvexListForFaceList( pmodel, convexList, vertList, faceList );
}
else
{
BuildSingleConvexForFaceList( pmodel, convexList, vertList, faceList );
}
bValid = BuildConvexesForLists( convexOut, convexList, vertList, bonespaceVerts, joints.m_remove2d );
}
if ( convexOut.Count() > joints.m_maxConvex )
{
MdlWarning("COSTLY COLLISION MODEL!!!! (%d parts - %d allowed)\n", convexOut.Count(), joints.m_maxConvex );
bValid = false;
}
if ( !bValid && convexOut.Count() )
{
MdlWarning("Error with convex elements of %s, building single convex!!!!\n", pmodel->filename );
for ( int i = 0; i < convexOut.Count(); i++ )
{
physcollision->ConvexFree( convexOut[i] );
}
convexOut.Purge();
}
if ( convexOut.Count() )
{
int i;
CPhysCollisionModel *pPhys = InitCollisionModel( joints, pmodel->localBone[boneIndex].name );
pPhys->m_mass = 1.0;
pPhys->m_name = joints.m_pModel->localBone[boneIndex].name;
if ( joints.m_pModel->localBone[boneIndex].parent >= 0 )
{
pPhys->m_parent = joints.m_pModel->localBone[joints.m_pModel->localBone[boneIndex].parent].name;
}
else
{
pPhys->m_parent = NULL;
}
boundingvolume_t bv;
ClearBounds( bv.mins, bv.maxs );
int vertCount = 0;
for ( i = 0; i < convexList.Count(); i++ )
{
const convexlist_t &elem = convexList[i];
for ( int j = 0; j < elem.numVertIndex; j++ )
{
AddPointToBounds( bonespaceVerts[vertList[elem.firstVertIndex+j]], bv.mins, bv.maxs );
vertCount++;
}
}
for ( i = 0; i < convexOut.Count(); i++ )
{
// Attach this convex data to this particular bone
int globalBoneIndex = joints.m_pModel->boneLocalToGlobal[boneIndex];
physcollision->SetConvexGameData( convexOut[i], globalBoneIndex + 1 );
}
CreateCollide( pPhys, convexOut.Base(), convexOut.Count(), bv );
if( !g_quiet )
{
printf("%-24s (%3d verts, %d convex elements) volume: %4.2f\n", pPhys->m_name, vertCount, convexOut.Count(), pPhys->m_volume );
}
joints.UnlinkCollisionModel( pPhys );
joints.AppendCollisionModel( pPhys );
}
}
// remove any non-physical joints at this point
CPhysCollisionModel *pPhys = joints.m_pCollisionList;
while (pPhys)
{
CPhysCollisionModel *pNext = pPhys->m_pNext;
if ( !pPhys->m_pCollisionData )
{
joints.UnlinkCollisionModel(pPhys);
delete pPhys;
}
pPhys = pNext;
}
return 1;
}
#if 0
// debug visualization code - use this to dump out intermediate geometry files for visualization in glview.exe
void DumpToGLView( char const *pName, s_source_t *pmodel, Vector *worldVerts, int *used )
{
int i;
for ( i = 0; i < pmodel->numvertices; i++ )
used[i] = -1;
FILE *fp = fopen( pName, "w" );
// dump the model to a glview file
for ( i = 0; i < pmodel->nummeshes; i++ )
{
s_mesh_t *pmesh = pmodel->mesh + pmodel->meshindex[i];
for ( int j = 0; j < pmesh->numfaces; j++ )
{
s_face_t *face = pmodel->face + pmesh->faceoffset + j;
s_face_t globalFace;
GlobalFace( &globalFace, pmesh, face );
fprintf( fp, "3\n" );
fprintf( fp, "%6.3f %6.3f %6.3f 0 1 0\n", worldVerts[globalFace.b].x, worldVerts[globalFace.b].y, worldVerts[globalFace.b].z );
fprintf( fp, "%6.3f %6.3f %6.3f 1 0 0\n", worldVerts[globalFace.a].x, worldVerts[globalFace.a].y, worldVerts[globalFace.a].z );
fprintf( fp, "%6.3f %6.3f %6.3f 0 0 1\n", worldVerts[globalFace.c].x, worldVerts[globalFace.c].y, worldVerts[globalFace.c].z );
used[globalFace.a] = 0;
used[globalFace.b] = 0;
used[globalFace.c] = 0;
}
}
// dump a triangle expanded around each vert to the file (to show degenerate tris' verts).
for ( i = 0; i < pmodel->numvertices; i++ )
{
if ( used[i] < 0 )
continue;
fprintf( fp, "3\n" );
Vector vert;
vert = worldVerts[i] + Vector(0,0,5);
fprintf( fp, "%6.3f %6.3f %6.3f 1 0 0\n", vert.x, vert.y, vert.z );
vert = worldVerts[i] + Vector(5,0,-5);
fprintf( fp, "%6.3f %6.3f %6.3f 0 1 0\n", vert.x, vert.y, vert.z );
vert = worldVerts[i] + Vector(-5,0,-5);
fprintf( fp, "%6.3f %6.3f %6.3f 0 0 1\n", vert.x, vert.y, vert.z );
}
fclose( fp );
}
#endif
int ProcessSingleBody( CJointedModel &joints )
{
s_source_t *pmodel = joints.m_pModel;
// THIS CODE IS ONLY EXECUTED ON PROPS - i.e. NON-JOINTED MODELS
CUtlVector<Vector> worldspaceVerts;
worldspaceVerts.SetCount(pmodel->numvertices);
ConvertToWorldSpace( joints, pmodel, worldspaceVerts );
CUtlVector<s_face_t> faceList;
CUtlVector<convexlist_t> convexList;
CUtlVector<int> vertList;
CUtlVector<CPhysConvex *> convexOut;
bool bValid = false;
if ( joints.m_allowConcave )
{
for ( int i = 0; i < pmodel->nummeshes; i++ )
{
s_mesh_t *pmesh = pmodel->mesh + pmodel->meshindex[i];
for ( int j = 0; j < pmesh->numfaces; j++ )
{
s_face_t *face = pmodel->face + pmesh->faceoffset + j;
s_face_t globalFace;
GlobalFace( &globalFace, pmesh, face );
faceList.AddToTail( globalFace );
}
}
BuildConvexListForFaceList( pmodel, convexList, vertList, faceList );
bValid = BuildConvexesForLists( convexOut, convexList, vertList, worldspaceVerts, joints.m_remove2d );
}
if ( convexOut.Count() > joints.m_maxConvex )
{
MdlWarning("COSTLY COLLISION MODEL!!!! (%d parts - %d allowed)\n", convexOut.Count(), joints.m_maxConvex );
bValid = false;
}
if ( !bValid && convexOut.Count() )
{
MdlWarning("Error with convex elements of %s, building single convex!!!!\n", pmodel->filename );
for ( int i = 0; i < convexOut.Count(); i++ )
{
physcollision->ConvexFree( convexOut[i] );
}
convexOut.Purge();
}
// either we don't want concave, or there was an error building it
if ( !convexOut.Count() )
{
convexlist_t elem;
elem.firstVertIndex = 0;
elem.numVertIndex = pmodel->numvertices;
convexList.AddToTail(elem);
for ( int i = 0; i < pmodel->numvertices; i++ )
{
vertList.AddToTail(i);
}
BuildConvexesForLists( convexOut, convexList, vertList, worldspaceVerts, true );
}
if ( convexOut.Count() )
{
if( !g_quiet )
{
printf("Model has %d convex sub-parts\n", convexOut.Count() );
}
CPhysCollisionModel *pPhys = new CPhysCollisionModel;
joints.SetCollisionModelDefaults( pPhys );
boundingvolume_t bv;
ClearBounds( bv.mins, bv.maxs );
for ( int i = worldspaceVerts.Count()-1; --i >= 0; )
{
AddPointToBounds( worldspaceVerts[i], bv.mins, bv.maxs );
}
CreateCollide( pPhys, convexOut.Base(), convexOut.Count(), bv );
// Init mass, write routine will distribute the total mass
pPhys->m_mass = 1.0;
char tmp[512];
Q_FileBase( pmodel->filename, tmp, sizeof( tmp ) );
// UNDONE: Memory leak
char *out = new char[strlen(tmp)+1];
strcpy( out, tmp );
pPhys->m_name = out;
pPhys->m_parent = NULL;
joints.AppendCollisionModel( pPhys );
}
return 1;
}
#define MAX_ARGS 16
#define ARG_SIZE 256
//-----------------------------------------------------------------------------
// Purpose: HACKETY HACK - get the args into a buffer.
// This checks for overflow, but it's not very robust - shouldn't be necessary though
// Input : pArgs[][ARG_SIZE] -
// maxCount - array size of pargs
// Output : int - count actually used
//-----------------------------------------------------------------------------
int ReadArgs( char pArgs[][ARG_SIZE], int maxCount )
{
int argCount = 0;
while ( argCount < maxCount && TokenAvailable() )
{
GetToken(false);
strncpy( pArgs[argCount], token, ARG_SIZE );
argCount++;
}
return argCount;
}
//-----------------------------------------------------------------------------
// Purpose: Simple atof wrapper to keep from crashing on bad user input
// Input : *pString -
// Output : float
//-----------------------------------------------------------------------------
float Safe_atof( const char *pString )
{
if ( !pString )
return 0;
return atof(pString);
}
//-----------------------------------------------------------------------------
// Purpose: Simple atoi wrapper to avoid crashing on bad user input
// Input : *pString -
// Output : int
//-----------------------------------------------------------------------------
int Safe_atoi( const char *pString )
{
if ( !pString )
return 0;
return atoi(pString);
}
//-----------------------------------------------------------------------------
// Purpose: Add a constraint to our joint system
// Input : &joints -
// *pJointName -
// *pJointAxis -
// *pJointType -
// *pLimitMin -
// *pLimitMax -
//-----------------------------------------------------------------------------
void CCmd_JointConstrain( CJointedModel &joints, const char *pJointName, const char *pJointAxis, const char *pJointType, const char *pLimitMin, const char *pLimitMax, const char *pFriction )
{
float limitMin = Safe_atof(pLimitMin);
float limitMax = Safe_atof(pLimitMax);
float friction = Safe_atof(pFriction);
int axis = -1;
int jointIndex = FindLocalBoneNamed( joints.m_pModel, pJointName );
if ( !g_bCreateMakefile && jointIndex < 0 )
{
MdlWarning("Can't find joint %s\n", pJointName );
return;
}
pJointName = joints.m_pModel->localBone[jointIndex].name;
if ( pJointAxis )
{
axis = tolower(pJointAxis[0]) - 'x';
}
if ( axis < 0 || axis > 2 || limitMin > limitMax )
{
MdlError("Invalid joint constraint for %s\nCan't build ragdoll!\n", pJointName );
return;
}
jointlimit_t jointType = JOINT_FREE;
if ( !stricmp( pJointType, "free" ) )
{
jointType = JOINT_FREE;
}
else if ( !stricmp( pJointType, "fixed" ) )
{
jointType = JOINT_FIXED;
}
else if ( !stricmp( pJointType, "limit" ) )
{
jointType = JOINT_LIMIT;
}
else
{
MdlWarning("Unknown joint type %s (must be free, fixed, or limit)\n", pJointType );
return;
}
joints.AddConstraint( pJointName, axis, jointType, limitMin, limitMax, friction );
}
//-----------------------------------------------------------------------------
// Purpose: Remove a joint from the system (don't create physical geometry for it)
// Input : &joints -
// args[][ARG_SIZE] -
// argCount -
//-----------------------------------------------------------------------------
// UNDONE: Automatically skip joints that will have mass that is too low?
void CCmd_JointSkip( CJointedModel &joints, const char *pName )
{
int boneIndex = FindLocalBoneNamed( joints.m_pModel, pName );
if ( boneIndex < 0 )
{
MdlWarning("Can't skip joint %s, not found\n", pName );
}
else
{
// printf("skipping joint %s\n", pName );
joints.SkipBone( boneIndex );
}
}
//-----------------------------------------------------------------------------
// Purpose: Sets the object's mass. The code will distribute this mass to each
// part based on the collision model's volume
// Input : &joints -
// *pMass -
//-----------------------------------------------------------------------------
void CCmd_TotalMass( CJointedModel &joints, const char *pMass )
{
joints.SetTotalMass( Safe_atof(pMass) );
}
//-----------------------------------------------------------------------------
// Purpose: verts from the bone named pChild are added to the collision model of pParent
// Input : *pmodel - source model
// *pParent - destination bone name
// *pChild - source bone name
//-----------------------------------------------------------------------------
void CCmd_JointMerge( CJointedModel &joints, const char *pParent, const char *pChild )
{
joints.AddMergeCommand( pParent, pChild );
joints.MergeBones( FindLocalBoneNamed( joints.m_pModel, pParent ), FindLocalBoneNamed( joints.m_pModel, pChild ) );
}
void CCmd_JointRoot( CJointedModel &joints, const char *pBone )
{
// save the root bone name
strcpy( joints.m_rootName, pBone );
}
void CCmd_JoinAnimatedFriction( CJointedModel &joints, const char *pMinFriction, const char *pMaxFriction, const char *pTimeIn, const char *pTimeHold, const char *pTimeOut )
{
joints.m_flFrictionTimeIn = Safe_atof( pTimeIn );
joints.m_flFrictionTimeOut = Safe_atof( pTimeOut );
joints.m_flFrictionTimeHold = Safe_atof( pTimeHold );
joints.m_iMinAnimatedFriction = Safe_atoi( pMinFriction );
joints.m_iMaxAnimatedFriction = Safe_atoi( pMaxFriction );
joints.m_bHasAnimatedFriction = true;
}
//-----------------------------------------------------------------------------
// Purpose: Parses all legal commands inside the $collisionjoints {} block
// Input : &joints -
//-----------------------------------------------------------------------------
void ParseCollisionCommands( CJointedModel &joints )
{
char command[512];
char args[MAX_ARGS][ARG_SIZE];
int argCount;
while( GetToken( true ) )
{
if ( !strcmp( token, "}" ) )
return;
strcpy( command, token );
if ( !stricmp( command, "$mass" ) )
{
argCount = ReadArgs( args, 1 );
CCmd_TotalMass( joints, args[0] );
}
// default properties
else if ( !stricmp( command, "$automass" ) )
{
joints.SetAutoMass();
}
else if ( !stricmp( command, "$inertia" ) )
{
argCount = ReadArgs( args, 1 );
joints.DefaultInertia( Safe_atof( args[0] ) );
}
else if ( !stricmp( command, "$damping" ) )
{
argCount = ReadArgs( args, 1 );
joints.DefaultDamping( Safe_atof( args[0] ) );
}
else if ( !stricmp( command, "$rotdamping" ) )
{
argCount = ReadArgs( args, 1 );
joints.DefaultRotdamping( Safe_atof( args[0] ) );
}
else if ( !stricmp( command, "$drag" ) )
{
argCount = ReadArgs( args, 1 );
joints.DefaultDrag( Safe_atof( args[0] ) );
}
else if ( !stricmp( command, "$rollingDrag" ) )
{
argCount = ReadArgs( args, 1 );
// JAY: Removed this in favor of heuristic/tuning approach
//joints.DefaultRollingDrag( Safe_atof( args[0] ) );
}
else if ( !stricmp( command, "$maxconvexpieces") )
{
argCount = ReadArgs( args, 1 );
joints.SetMaxConvex( Safe_atoi(args[0]) );
}
else if ( !stricmp( command, "$remove2d") )
{
joints.Remove2DConvex();
}
else if ( !stricmp( command, "$concaveperjoint") )
{
joints.AllowConcaveJoints();
}
else if ( !stricmp( command, "$weldposition") )
{
argCount = ReadArgs(args,1);
g_WeldVertEpsilon = Safe_atof( args[0] );
}
else if ( !stricmp( command, "$weldnormal") )
{
argCount = ReadArgs(args,1);
g_WeldNormalEpsilon = Safe_atof( args[0] );
}
else if ( !stricmp( command, "$concave" ) )
{
joints.AllowConcave();
}
else if ( !stricmp( command, "$masscenter" ) )
{
argCount = ReadArgs( args, 3 );
Vector center;
center.Init( Safe_atof(args[0]), Safe_atof(args[1]), Safe_atof(args[2]) );
joints.ForceMassCenter( center );
}
// joint commands
else if ( !stricmp( command, "$jointskip" ) )
{
argCount = ReadArgs( args, 1 );
CCmd_JointSkip( joints, args[0] );
}
else if ( !stricmp( command, "$jointmerge" ) )
{
argCount = ReadArgs( args, 2 );
CCmd_JointMerge( joints, args[0], args[1] );
}
else if ( !stricmp( command, "$rootbone" ) )
{
argCount = ReadArgs( args, 1 );
CCmd_JointRoot( joints, args[0] );
}
else if ( !stricmp( command, "$jointconstrain" ) )
{
argCount = ReadArgs( args, 6 );
char *pFriction = args[5];
if ( argCount < 6 )
{
pFriction = "1.0";
}
CCmd_JointConstrain( joints, args[0], args[1], args[2], args[3], args[4], pFriction );
}
// joint properties
else if ( !stricmp( command, "$jointinertia" ) )
{
argCount = ReadArgs( args, 2 );
joints.JointInertia( args[0], Safe_atof( args[1] ) );
}
else if ( !stricmp( command, "$jointdamping" ) )
{
argCount = ReadArgs( args, 2 );
joints.JointDamping( args[0], Safe_atof( args[1] ) );
}
else if ( !stricmp( command, "$jointrotdamping" ) )
{
argCount = ReadArgs( args, 2 );
joints.JointRotdamping( args[0], Safe_atof( args[1] ) );
}
else if ( !stricmp( command, "$jointmassbias" ) )
{
argCount = ReadArgs( args, 2 );
joints.JointMassBias( args[0], Safe_atof( args[1] ) );
}
else if ( !stricmp( command, "$noselfcollisions" ) )
{
joints.SetNoSelfCollisions();
}
else if ( !stricmp( command, "$jointcollide" ) )
{
argCount = ReadArgs( args, 2 );
joints.AppendCollisionPair( args[0], args[1] );
}
else if ( !stricmp( command, "$animatedfriction" ) )
{
argCount = ReadArgs( args, 5 );
if ( argCount == 5 )
{
CCmd_JoinAnimatedFriction( joints, args[0], args[1], args[2], args[3], args[4] );
}
}
else if ( !stricmp( command, "$assumeworldspace") )
{
joints.m_bAssumeWorldspace = true;
}
else
{
MdlWarning("Unknown command %s in collision series\n", command );
}
}
}
void Cmd_CollisionText( void )
{
int level = 1;
if ( !GetToken( true ) )
return;
if ( token[0] != '{' )
return;
while ( GetToken(true) )
{
if ( !strcmp( token, "}" ) )
{
level--;
if ( level <= 0 )
break;
g_JointedModel.AddText( " }\n" );
}
else if ( !strcmp( token, "{" ) )
{
g_JointedModel.AddText( "{" );
level++;
}
else
{
// tokens inside braces are quoted
if ( level > 1 )
{
g_JointedModel.AddText( "\"" );
g_JointedModel.AddText( token );
g_JointedModel.AddText( "\" " );
}
else
{
g_JointedModel.AddText( token );
g_JointedModel.AddText( " " );
}
}
}
}
static bool LoadSurfaceProps( const char *pMaterialFilename )
{
if ( !physprops )
return false;
FileHandle_t fp = g_pFileSystem->Open( pMaterialFilename, "rb", TOOLS_READ_PATH_ID );
if ( fp == FILESYSTEM_INVALID_HANDLE )
return false;
int len = g_pFileSystem->Size( fp );
char *pText = new char[len+1];
g_pFileSystem->Read( pText, len, fp );
g_pFileSystem->Close( fp );
pText[len]=0;
physprops->ParseSurfaceData( pMaterialFilename, pText );
delete[] pText;
return true;
}
void LoadSurfacePropsAll()
{
// already loaded
if ( physprops->SurfacePropCount() )
return;
const char *SURFACEPROP_MANIFEST_FILE = "scripts/surfaceproperties_manifest.txt";
KeyValues *manifest = new KeyValues( SURFACEPROP_MANIFEST_FILE );
if ( manifest->LoadFromFile( g_pFileSystem, SURFACEPROP_MANIFEST_FILE, "GAME" ) )
{
for ( KeyValues *sub = manifest->GetFirstSubKey(); sub != NULL; sub = sub->GetNextKey() )
{
if ( !Q_stricmp( sub->GetName(), "file" ) )
{
// Add
LoadSurfaceProps( sub->GetString() );
continue;
}
}
}
manifest->deleteThis();
}
//-----------------------------------------------------------------------------
// Purpose: Entry point for script processing. Delegate to necessary subroutines.
// Parse the collisionmodel {} and collisionjoints {} chunks
// Input : separateJoints - whether this has a constraint system or not (true if it does)
// Output : int
//-----------------------------------------------------------------------------
int DoCollisionModel( bool separateJoints )
{
char name[512];
s_source_t *pmodel;
// name
if (!GetToken(false)) return 0;
V_strcpy_safe( name, token );
PhysicsDLLPath( "VPHYSICS.DLL" );
// CreateInterfaceFn physicsFactory = GetPhysicsFactory();
CreateInterfaceFn physicsFactory = Sys_GetFactory(Sys_LoadModule( "vphysics.dll" ));
if ( !physicsFactory )
return 0;
physcollision = (IPhysicsCollision *)physicsFactory( VPHYSICS_COLLISION_INTERFACE_VERSION, NULL );
physprops = (IPhysicsSurfaceProps *)physicsFactory( VPHYSICS_SURFACEPROPS_INTERFACE_VERSION, NULL );
LoadSurfacePropsAll();
int nummaterials = g_nummaterials;
int numtextures = g_numtextures;
pmodel = Load_Source( name, "SMD" );
if ( !pmodel )
return 0;
// auto-remove any new materials/textures
if (nummaterials && numtextures && (numtextures != g_numtextures || nummaterials != g_nummaterials))
{
g_numtextures = numtextures;
g_nummaterials = nummaterials;
pmodel->texmap[0] = 0;
}
// all bones map to themselves by default
g_JointedModel.SetSource( pmodel );
bool parseCommands = false;
// If the next token is a { that means a data block for the collision model
if (GetToken(true))
{
if ( !strcmp( token, "{" ) )
{
parseCommands = true;
}
else
{
UnGetToken();
}
}
if ( parseCommands )
{
ParseCollisionCommands( g_JointedModel );
}
g_bJointed = separateJoints;
// collision script is stored in g_JointedModel for later processing
return 1;
}
//-----------------------------------------------------------------------------
// Purpose: Walk the list of models, add up the volume
// Input : *pList -
// Output : float
//-----------------------------------------------------------------------------
float TotalVolume( CPhysCollisionModel *pList )
{
float volume = 0;
while ( pList )
{
volume += pList->m_volume * pList->m_massBias;
pList = pList->m_pNext;
}
return volume;
}
//-----------------------------------------------------------------------------
// Purpose: Write key/value pairs out to a file
// Input : *fp - output file
// *pKeyName - key name
// outputData - type specific output data
//-----------------------------------------------------------------------------
void KeyWriteInt( FILE *fp, const char *pKeyName, int outputData )
{
fprintf( fp, "\"%s\" \"%d\"\n", pKeyName, outputData );
}
void KeyWriteIntPair( FILE *fp, const char *pKeyName, int outputData0, int outputData1 )
{
fprintf( fp, "\"%s\" \"%d,%d\"\n", pKeyName, outputData0, outputData1 );
}
void KeyWriteString( FILE *fp, const char *pKeyName, const char *outputData )
{
fprintf( fp, "\"%s\" \"%s\"\n", pKeyName, outputData );
}
void KeyWriteVector3( FILE *fp, const char *pKeyName, const Vector& outputData )
{
fprintf( fp, "\"%s\" \"%f %f %f\"\n", pKeyName, outputData[0], outputData[1], outputData[2] );
}
void KeyWriteQAngle( FILE *fp, const char *pKeyName, const QAngle& outputData )
{
fprintf( fp, "\"%s\" \"%f %f %f\"\n", pKeyName, outputData[0], outputData[1], outputData[2] );
}
void KeyWriteFloat( FILE *fp, const char *pKeyName, float outputData )
{
fprintf( fp, "\"%s\" \"%f\"\n", pKeyName, outputData );
}
void FixCollisionHierarchy( CJointedModel &joints )
{
if ( joints.m_pCollisionList )
{
CPhysCollisionModel *pPhys = joints.m_pCollisionList;
FixBoneList( joints.m_bonemap, joints.m_pModel, joints.m_pCollisionList );
// Point parents at joints that are actually in the model
for ( ;pPhys; pPhys = pPhys->m_pNext )
{
pPhys->m_parent = FixParent( joints.m_pCollisionList, joints.m_pModel, pPhys->m_parent );
}
// sort the list so parents come before children
joints.SortCollisionList();
// Now remap the constraints to bones to
// Now that bones are in order, set physics indices in main bone structure
CJointConstraint *pList = g_JointedModel.m_pConstraintList;
while ( pList )
{
pList->m_pJointName = FixParent( joints.m_pCollisionList, joints.m_pModel, pList->m_pJointName );
pList = pList->m_pNext;
}
pPhys = joints.m_pCollisionList;
int i;
for ( i = 0; i < g_numbones; i++ )
{
g_bonetable[i].physicsBoneIndex = -1;
}
int index = 0;
while ( pPhys )
{
int boneIndex = FindBoneInTable( pPhys->m_name );
if ( boneIndex >= 0 )
{
g_bonetable[boneIndex].physicsBoneIndex = index;
}
pPhys = pPhys->m_pNext;
index ++;
}
for ( i = 0; i < g_numbones; i++ )
{
// if no bone was set, set to parent bone
if ( g_bonetable[i].physicsBoneIndex < 0 )
{
int index = g_bonetable[i].parent;
int bone = -1;
while ( index >= 0 )
{
bone = g_bonetable[index].physicsBoneIndex;
if ( bone >= 0 )
break;
index = g_bonetable[index].parent;
}
// found one?
if ( bone >= 0 )
{
g_bonetable[i].physicsBoneIndex = bone;
}
else
{
// just set physics to affect root
g_bonetable[i].physicsBoneIndex = 0;
}
}
}
}
}
//-----------------------------------------------------------------------------
// Purpose: Builds the physics/collision model.
// This must execute after the model has been simplified!!
//-----------------------------------------------------------------------------
void CollisionModel_Build( void )
{
// no collision model referenced
if ( !g_JointedModel.m_pModel )
return;
g_JointedModel.Simplify();
if ( g_bJointed )
{
ProcessJointedModel( g_JointedModel );
}
else
{
ProcessSingleBody( g_JointedModel );
}
FixCollisionHierarchy( g_JointedModel );
if( !g_quiet )
{
printf("Collision model completed.\n" );
}
g_JointedModel.ComputeMass();
}
void BuildRagdollConstraint( CPhysCollisionModel *pPhys, constraint_ragdollparams_t &ragdoll )
{
memset( &ragdoll, 0, sizeof(ragdoll) );
ragdoll.parentIndex = g_JointedModel.CollisionIndex(pPhys->m_parent);
ragdoll.childIndex = g_JointedModel.CollisionIndex(pPhys->m_name);
if ( ragdoll.parentIndex < 0 || ragdoll.childIndex < 0 )
{
MdlWarning("Constraint between bone %s and %s\n", pPhys->m_name, pPhys->m_parent );
if ( ragdoll.childIndex < 0 )
MdlWarning("\"%s\" does not appear in collision model!!!\n", pPhys->m_name );
if ( ragdoll.parentIndex < 0 )
MdlWarning("\"%s\" does not appear in collision model!!!\n", pPhys->m_parent );
MdlError("Bad constraint in ragdoll\n");
}
CJointConstraint *pList = g_JointedModel.m_pConstraintList;
while ( pList )
{
int index = g_JointedModel.CollisionIndex(pList->m_pJointName);
CPhysCollisionModel *pListModel = g_JointedModel.GetCollisionModel(pList->m_pJointName);
if ( index < 0 )
{
MdlError("Rotation constraint on bone \"%s\" which does not appear in collision model!!!\n", pList->m_pJointName );
}
else if ( (!pListModel->m_parent || g_JointedModel.CollisionIndex(pListModel->m_parent) < 0) && stricmp( pList->m_pJointName, g_JointedModel.m_rootName ) )
{
MdlError("Rotation constraint on bone \"%s\" which has no parent!!!\n", pList->m_pJointName );
}
else if ( index == ragdoll.childIndex )
{
switch ( pList->m_jointType )
{
case JOINT_LIMIT:
ragdoll.axes[pList->m_axis].SetAxisFriction( pList->m_limitMin, pList->m_limitMax, pList->m_friction );
break;
case JOINT_FIXED:
ragdoll.axes[pList->m_axis].SetAxisFriction( 0,0,0 );
break;
case JOINT_FREE:
ragdoll.axes[pList->m_axis].SetAxisFriction( -360, 360, pList->m_friction );
break;
}
}
pList = pList->m_pNext;
}
}
float GetCollisionModelMass()
{
return g_JointedModel.m_totalMass;
}
void CollisionModel_ExpandBBox( Vector &mins, Vector &maxs )
{
// don't do fixup for ragdolls
if ( g_bJointed )
return;
if ( g_JointedModel.m_pCollisionList )
{
Vector collideMins, collideMaxs;
physcollision->CollideGetAABB( &collideMins, &collideMaxs, g_JointedModel.m_pCollisionList->m_pCollisionData, vec3_origin, vec3_angle );
// add the 0.25 inch collision separation as well
const float radius = 0.25;
collideMins -= Vector(radius,radius,radius);
collideMaxs += Vector(radius,radius,radius);
AddPointToBounds( collideMins, mins, maxs );
AddPointToBounds( collideMaxs, mins, maxs );
}
}
//-----------------------------------------------------------------------------
// Purpose: Write out any data that's been saved in the globals
//-----------------------------------------------------------------------------
void CollisionModel_Write( long checkSum )
{
if ( g_JointedModel.m_pCollisionList )
{
CPhysCollisionModel *pPhys = g_JointedModel.m_pCollisionList;
char filename[MAX_PATH];
V_strcpy_safe( filename, gamedir );
// if( *g_pPlatformName )
// {
// strcat( filename, "platform_" );
// strcat( filename, g_pPlatformName );
// strcat( filename, "/" );
// }
V_strcat_safe( filename, "models/" );
V_strcat_safe( filename, outname );
float volume = TotalVolume( pPhys );
if ( volume <= 0 )
volume = 1;
if( !g_quiet )
{
printf("Collision model volume %.2f in^3\n", volume );
}
Q_SetExtension( filename, ".phy", sizeof( filename ) );
CPlainAutoPtr< CP4File > spFile( g_p4factory->AccessFile( filename ) );
spFile->Edit();
FILE *fp = fopen( filename, "wb" );
if ( fp )
{
// write out the collision header (size is version)
phyheader_t header;
header.size = sizeof(header);
header.id = 0;
header.checkSum = checkSum;
header.solidCount = 0;
pPhys = g_JointedModel.m_pCollisionList;
while ( pPhys )
{
header.solidCount++;
pPhys = pPhys->m_pNext;
}
fwrite( &header, sizeof(header), 1, fp );
// Write out the binary physics collision data
pPhys = g_JointedModel.m_pCollisionList;
while ( pPhys )
{
int size = physcollision->CollideSize( pPhys->m_pCollisionData );
fwrite( &size, sizeof(int), 1, fp );
char *buf = (char *)stackalloc( size );
physcollision->CollideWrite( buf, pPhys->m_pCollisionData );
fwrite( buf, size, 1, fp );
pPhys = pPhys->m_pNext;
}
// write out the properties of each solid
int solidIndex = 0;
pPhys = g_JointedModel.m_pCollisionList;
while ( pPhys )
{
pPhys->m_mass = ((pPhys->m_volume * pPhys->m_massBias) / volume) * g_JointedModel.m_totalMass;
if ( pPhys->m_mass < 1.0 )
pPhys->m_mass = 1.0;
fprintf( fp, "solid {\n" );
KeyWriteInt( fp, "index", solidIndex );
KeyWriteString( fp, "name", pPhys->m_name );
if ( pPhys->m_parent )
{
KeyWriteString( fp, "parent", pPhys->m_parent );
}
KeyWriteFloat( fp, "mass", pPhys->m_mass );
//KeyWriteFloat( fp, "volume", pPhys->m_volume );
char* pSurfaceProps = GetSurfaceProp( pPhys->m_name );
KeyWriteString( fp, "surfaceprop", pSurfaceProps );
KeyWriteFloat( fp, "damping", pPhys->m_damping );
KeyWriteFloat( fp, "rotdamping", pPhys->m_rotdamping );
if ( pPhys->m_dragCoefficient != -1 )
{
KeyWriteFloat( fp, "drag", pPhys->m_dragCoefficient );
}
KeyWriteFloat( fp, "inertia", pPhys->m_inertia );
KeyWriteFloat( fp, "volume", pPhys->m_volume );
if ( pPhys->m_massBias != 1.0f )
{
KeyWriteFloat( fp, "massbias", pPhys->m_massBias );
}
fprintf( fp, "}\n" );
pPhys = pPhys->m_pNext;
solidIndex++;
}
// by default, write constraints from each limb to its parent
pPhys = g_JointedModel.m_pCollisionList;
while ( pPhys )
{
// check to see if bone collapse/remap has left this with parent pointing at itself
if ( pPhys->m_parent )
{
constraint_ragdollparams_t ragdoll;
BuildRagdollConstraint( pPhys, ragdoll );
if ( ragdoll.parentIndex != ragdoll.childIndex )
{
fprintf( fp, "ragdollconstraint {\n" );
KeyWriteInt( fp, "parent", ragdoll.parentIndex );
KeyWriteInt( fp, "child", ragdoll.childIndex );
KeyWriteFloat( fp, "xmin", ragdoll.axes[0].minRotation );
KeyWriteFloat( fp, "xmax", ragdoll.axes[0].maxRotation );
KeyWriteFloat( fp, "xfriction", ragdoll.axes[0].torque );
KeyWriteFloat( fp, "ymin", ragdoll.axes[1].minRotation );
KeyWriteFloat( fp, "ymax", ragdoll.axes[1].maxRotation );
KeyWriteFloat( fp, "yfriction", ragdoll.axes[1].torque );
KeyWriteFloat( fp, "zmin", ragdoll.axes[2].minRotation );
KeyWriteFloat( fp, "zmax", ragdoll.axes[2].maxRotation );
KeyWriteFloat( fp, "zfriction", ragdoll.axes[2].torque );
fprintf( fp, "}\n" );
}
}
pPhys = pPhys->m_pNext;
}
if ( g_JointedModel.m_noSelfCollisions )
{
fprintf(fp, "collisionrules {\n" );
KeyWriteInt( fp, "selfcollisions", 0 );
fprintf(fp, "}\n");
}
else if ( g_JointedModel.m_pCollisionPairs )
{
fprintf(fp, "collisionrules {\n" );
collisionpair_t *pPair = g_JointedModel.m_pCollisionPairs;
while ( pPair )
{
pPair->obj0 = g_JointedModel.CollisionIndex( pPair->pName0 );
pPair->obj1 = g_JointedModel.CollisionIndex( pPair->pName1 );
if ( pPair->obj0 >= 0 && pPair->obj1 >= 0 && pPair->obj0 != pPair->obj1 )
{
KeyWriteIntPair( fp, "collisionpair", pPair->obj0, pPair->obj1 );
}
else
{
MdlWarning("Invalid collision pair (%s, %s)\n", pPair->pName0, pPair->pName1 );
}
pPair = pPair->pNext;
}
fprintf(fp, "}\n");
}
if ( g_JointedModel.m_bHasAnimatedFriction == true )
{
fprintf( fp, "animatedfriction {\n" );
KeyWriteFloat( fp, "animfrictionmin", g_JointedModel.m_iMinAnimatedFriction );
KeyWriteFloat( fp, "animfrictionmax", g_JointedModel.m_iMaxAnimatedFriction );
KeyWriteFloat( fp, "animfrictiontimein", g_JointedModel.m_flFrictionTimeIn );
KeyWriteFloat( fp, "animfrictiontimeout", g_JointedModel.m_flFrictionTimeOut );
KeyWriteFloat( fp, "animfrictiontimehold", g_JointedModel.m_flFrictionTimeHold );
fprintf( fp, "}\n" );
}
// block that is only parsed by the editor
fprintf( fp, "editparams {\n" );
KeyWriteString( fp, "rootname", g_JointedModel.m_rootName );
KeyWriteFloat( fp, "totalmass", g_JointedModel.m_totalMass );
if ( g_JointedModel.m_allowConcave )
{
KeyWriteInt( fp, "concave", 1 );
}
for ( int k = 0; k < g_JointedModel.m_mergeList.Count(); k++ )
{
char buf[512];
Q_snprintf( buf, sizeof(buf), "%s,%s", g_JointedModel.m_mergeList[k].pParent, g_JointedModel.m_mergeList[k].pChild );
KeyWriteString( fp, "jointmerge", buf );
}
fprintf( fp, "}\n" );
char terminator = 0;
if ( g_JointedModel.m_textCommands.Size() )
{
fwrite( g_JointedModel.m_textCommands.Base(), g_JointedModel.m_textCommands.Size(), 1, fp );
}
fwrite( &terminator, sizeof(terminator), 1, fp );
fclose( fp );
spFile->Add();
}
else
{
MdlWarning("Error writing %s!!!\n", filename );
}
}
}