hl2_src-leak-2017/src/public/tier0/threadtools.h

1826 lines
57 KiB
C++

//========= Copyright Valve Corporation, All rights reserved. ============//
//
// Purpose: A collection of utility classes to simplify thread handling, and
// as much as possible contain portability problems. Here avoiding
// including windows.h.
//
//=============================================================================
#ifndef THREADTOOLS_H
#define THREADTOOLS_H
#include "tier0/type_traits.h"
#include <limits.h>
#include "tier0/platform.h"
#include "tier0/dbg.h"
#include "tier0/vcrmode.h"
#include "tier0/vprof_telemetry.h"
#ifdef PLATFORM_WINDOWS_PC
#include <intrin.h>
#endif
#ifdef POSIX
#include <pthread.h>
#include <errno.h>
#define WAIT_OBJECT_0 0
#define WAIT_TIMEOUT 0x00000102
#define WAIT_FAILED -1
#define THREAD_PRIORITY_HIGHEST 2
#endif
#if defined( _WIN32 )
#pragma once
#pragma warning(push)
#pragma warning(disable:4251)
#endif
// #define THREAD_PROFILER 1
#ifndef _RETAIL
#define THREAD_MUTEX_TRACING_SUPPORTED
#if defined(_WIN32) && defined(_DEBUG)
#define THREAD_MUTEX_TRACING_ENABLED
#endif
#endif
#ifdef _WIN32
typedef void *HANDLE;
#endif
// Start thread running - error if already running
enum ThreadPriorityEnum_t
{
#if defined( PLATFORM_PS3 )
TP_PRIORITY_NORMAL = 1001,
TP_PRIORITY_HIGH = 100,
TP_PRIORITY_LOW = 2001,
TP_PRIORITY_DEFAULT = 1001
#error "Need PRIORITY_LOWEST/HIGHEST"
#elif defined( PLATFORM_LINUX )
// We can use nice on Linux threads to change scheduling.
// pthreads on Linux only allows priority setting on
// real-time threads.
// NOTE: Lower numbers are higher priority, thus the need
// for TP_IS_PRIORITY_HIGHER.
TP_PRIORITY_DEFAULT = 0,
TP_PRIORITY_NORMAL = 0,
TP_PRIORITY_HIGH = -10,
TP_PRIORITY_LOW = 10,
TP_PRIORITY_HIGHEST = -20,
TP_PRIORITY_LOWEST = 19,
#else // PLATFORM_PS3
TP_PRIORITY_DEFAULT = 0, // THREAD_PRIORITY_NORMAL
TP_PRIORITY_NORMAL = 0, // THREAD_PRIORITY_NORMAL
TP_PRIORITY_HIGH = 1, // THREAD_PRIORITY_ABOVE_NORMAL
TP_PRIORITY_LOW = -1, // THREAD_PRIORITY_BELOW_NORMAL
TP_PRIORITY_HIGHEST = 2, // THREAD_PRIORITY_HIGHEST
TP_PRIORITY_LOWEST = -2, // THREAD_PRIORITY_LOWEST
#endif // PLATFORM_PS3
};
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
const unsigned TT_INFINITE = 0xffffffff;
#ifndef NO_THREAD_LOCAL
#ifndef THREAD_LOCAL
#ifdef _WIN32
#define THREAD_LOCAL __declspec(thread)
#elif POSIX
#define THREAD_LOCAL __thread
#endif
#endif
#endif // NO_THREAD_LOCAL
typedef unsigned long ThreadId_t;
//-----------------------------------------------------------------------------
//
// Simple thread creation. Differs from VCR mode/CreateThread/_beginthreadex
// in that it accepts a standard C function rather than compiler specific one.
//
//-----------------------------------------------------------------------------
FORWARD_DECLARE_HANDLE( ThreadHandle_t );
typedef unsigned (*ThreadFunc_t)( void *pParam );
PLATFORM_OVERLOAD ThreadHandle_t CreateSimpleThread( ThreadFunc_t, void *pParam, ThreadId_t *pID, unsigned stackSize = 0 );
PLATFORM_INTERFACE ThreadHandle_t CreateSimpleThread( ThreadFunc_t, void *pParam, unsigned stackSize = 0 );
PLATFORM_INTERFACE bool ReleaseThreadHandle( ThreadHandle_t );
//-----------------------------------------------------------------------------
PLATFORM_INTERFACE void ThreadSleep(unsigned duration = 0);
PLATFORM_INTERFACE uint ThreadGetCurrentId();
PLATFORM_INTERFACE ThreadHandle_t ThreadGetCurrentHandle();
PLATFORM_INTERFACE int ThreadGetPriority( ThreadHandle_t hThread = NULL );
PLATFORM_INTERFACE bool ThreadSetPriority( ThreadHandle_t hThread, int priority );
inline bool ThreadSetPriority( int priority ) { return ThreadSetPriority( NULL, priority ); }
PLATFORM_INTERFACE bool ThreadInMainThread();
PLATFORM_INTERFACE void DeclareCurrentThreadIsMainThread();
// NOTE: ThreadedLoadLibraryFunc_t needs to return the sleep time in milliseconds or TT_INFINITE
typedef int (*ThreadedLoadLibraryFunc_t)();
PLATFORM_INTERFACE void SetThreadedLoadLibraryFunc( ThreadedLoadLibraryFunc_t func );
PLATFORM_INTERFACE ThreadedLoadLibraryFunc_t GetThreadedLoadLibraryFunc();
#if defined( _WIN32 ) && !defined( _WIN64 ) && !defined( _X360 )
extern "C" unsigned long __declspec(dllimport) __stdcall GetCurrentThreadId();
#define ThreadGetCurrentId GetCurrentThreadId
#endif
inline void ThreadPause()
{
#if defined( PLATFORM_WINDOWS_PC )
// Intrinsic for __asm pause; from <intrin.h>
_mm_pause();
#elif POSIX
__asm __volatile( "pause" );
#elif defined( _X360 )
#else
#error "implement me"
#endif
}
PLATFORM_INTERFACE bool ThreadJoin( ThreadHandle_t, unsigned timeout = TT_INFINITE );
// If you're not calling ThreadJoin, you need to call ThreadDetach so pthreads on Linux knows it can
// free the memory for this thread. Otherwise you wind up leaking threads until you run out and
// CreateSimpleThread() will fail.
PLATFORM_INTERFACE void ThreadDetach( ThreadHandle_t );
PLATFORM_INTERFACE void ThreadSetDebugName( ThreadId_t id, const char *pszName );
inline void ThreadSetDebugName( const char *pszName ) { ThreadSetDebugName( (ThreadId_t)-1, pszName ); }
PLATFORM_INTERFACE void ThreadSetAffinity( ThreadHandle_t hThread, int nAffinityMask );
//-----------------------------------------------------------------------------
enum ThreadWaitResult_t
{
TW_FAILED = 0xffffffff, // WAIT_FAILED
TW_TIMEOUT = 0x00000102, // WAIT_TIMEOUT
};
#ifdef _WIN32
PLATFORM_INTERFACE int ThreadWaitForObjects( int nEvents, const HANDLE *pHandles, bool bWaitAll = true, unsigned timeout = TT_INFINITE );
inline int ThreadWaitForObject( HANDLE handle, bool bWaitAll = true, unsigned timeout = TT_INFINITE ) { return ThreadWaitForObjects( 1, &handle, bWaitAll, timeout ); }
#endif
//-----------------------------------------------------------------------------
//
// Interlock methods. These perform very fast atomic thread
// safe operations. These are especially relevant in a multi-core setting.
//
//-----------------------------------------------------------------------------
#ifdef _WIN32
#define NOINLINE
#elif POSIX
#define NOINLINE __attribute__ ((noinline))
#endif
// ThreadMemoryBarrier is a fence/barrier sufficient for most uses. It prevents reads
// from moving past reads, and writes moving past writes. It is sufficient for
// read-acquire and write-release barriers. It is not a full barrier and it does
// not prevent reads from moving past writes -- that would require a full __sync()
// on PPC and is significantly more expensive.
#if defined( _X360 ) || defined( _PS3 )
#define ThreadMemoryBarrier() __lwsync()
#elif defined(_MSC_VER)
// Prevent compiler reordering across this barrier. This is
// sufficient for most purposes on x86/x64.
#if _MSC_VER < 1500
// !KLUDGE! For VC 2005
// http://connect.microsoft.com/VisualStudio/feedback/details/100051
#pragma intrinsic(_ReadWriteBarrier)
#endif
#define ThreadMemoryBarrier() _ReadWriteBarrier()
#elif defined(GNUC)
// Prevent compiler reordering across this barrier. This is
// sufficient for most purposes on x86/x64.
// http://preshing.com/20120625/memory-ordering-at-compile-time
#define ThreadMemoryBarrier() asm volatile("" ::: "memory")
#else
#error Every platform needs to define ThreadMemoryBarrier to at least prevent compiler reordering
#endif
#if defined(_WIN32) && !defined(_X360)
#if ( _MSC_VER >= 1310 )
#define USE_INTRINSIC_INTERLOCKED
#endif
#endif
#ifdef USE_INTRINSIC_INTERLOCKED
extern "C"
{
long __cdecl _InterlockedIncrement(volatile long*);
long __cdecl _InterlockedDecrement(volatile long*);
long __cdecl _InterlockedExchange(volatile long*, long);
long __cdecl _InterlockedExchangeAdd(volatile long*, long);
long __cdecl _InterlockedCompareExchange(volatile long*, long, long);
}
#pragma intrinsic( _InterlockedCompareExchange )
#pragma intrinsic( _InterlockedDecrement )
#pragma intrinsic( _InterlockedExchange )
#pragma intrinsic( _InterlockedExchangeAdd )
#pragma intrinsic( _InterlockedIncrement )
inline long ThreadInterlockedIncrement( long volatile *p ) { Assert( (size_t)p % 4 == 0 ); return _InterlockedIncrement( p ); }
inline long ThreadInterlockedDecrement( long volatile *p ) { Assert( (size_t)p % 4 == 0 ); return _InterlockedDecrement( p ); }
inline long ThreadInterlockedExchange( long volatile *p, long value ) { Assert( (size_t)p % 4 == 0 ); return _InterlockedExchange( p, value ); }
inline long ThreadInterlockedExchangeAdd( long volatile *p, long value ) { Assert( (size_t)p % 4 == 0 ); return _InterlockedExchangeAdd( p, value ); }
inline long ThreadInterlockedCompareExchange( long volatile *p, long value, long comperand ) { Assert( (size_t)p % 4 == 0 ); return _InterlockedCompareExchange( p, value, comperand ); }
inline bool ThreadInterlockedAssignIf( long volatile *p, long value, long comperand ) { Assert( (size_t)p % 4 == 0 ); return ( _InterlockedCompareExchange( p, value, comperand ) == comperand ); }
#else
PLATFORM_INTERFACE long ThreadInterlockedIncrement( long volatile * );
PLATFORM_INTERFACE long ThreadInterlockedDecrement( long volatile * );
PLATFORM_INTERFACE long ThreadInterlockedExchange( long volatile *, long value );
PLATFORM_INTERFACE long ThreadInterlockedExchangeAdd( long volatile *, long value );
PLATFORM_INTERFACE long ThreadInterlockedCompareExchange( long volatile *, long value, long comperand );
PLATFORM_INTERFACE bool ThreadInterlockedAssignIf( long volatile *, long value, long comperand );
#endif
inline unsigned ThreadInterlockedExchangeSubtract( long volatile *p, long value ) { return ThreadInterlockedExchangeAdd( (long volatile *)p, -value ); }
#if defined( USE_INTRINSIC_INTERLOCKED ) && !defined( _WIN64 )
#define TIPTR()
inline void *ThreadInterlockedExchangePointer( void * volatile *p, void *value ) { return (void *)_InterlockedExchange( reinterpret_cast<long volatile *>(p), reinterpret_cast<long>(value) ); }
inline void *ThreadInterlockedCompareExchangePointer( void * volatile *p, void *value, void *comperand ) { return (void *)_InterlockedCompareExchange( reinterpret_cast<long volatile *>(p), reinterpret_cast<long>(value), reinterpret_cast<long>(comperand) ); }
inline bool ThreadInterlockedAssignPointerIf( void * volatile *p, void *value, void *comperand ) { return ( _InterlockedCompareExchange( reinterpret_cast<long volatile *>(p), reinterpret_cast<long>(value), reinterpret_cast<long>(comperand) ) == reinterpret_cast<long>(comperand) ); }
#else
PLATFORM_INTERFACE void *ThreadInterlockedExchangePointer( void * volatile *, void *value ) NOINLINE;
PLATFORM_INTERFACE void *ThreadInterlockedCompareExchangePointer( void * volatile *, void *value, void *comperand ) NOINLINE;
PLATFORM_INTERFACE bool ThreadInterlockedAssignPointerIf( void * volatile *, void *value, void *comperand ) NOINLINE;
#endif
inline void const *ThreadInterlockedExchangePointerToConst( void const * volatile *p, void const *value ) { return ThreadInterlockedExchangePointer( const_cast < void * volatile * > ( p ), const_cast < void * > ( value ) ); }
inline void const *ThreadInterlockedCompareExchangePointerToConst( void const * volatile *p, void const *value, void const *comperand ) { return ThreadInterlockedCompareExchangePointer( const_cast < void * volatile * > ( p ), const_cast < void * > ( value ), const_cast < void * > ( comperand ) ); }
inline bool ThreadInterlockedAssignPointerToConstIf( void const * volatile *p, void const *value, void const *comperand ) { return ThreadInterlockedAssignPointerIf( const_cast < void * volatile * > ( p ), const_cast < void * > ( value ), const_cast < void * > ( comperand ) ); }
#if defined( PLATFORM_64BITS )
#if defined (_WIN32)
typedef __m128i int128;
inline int128 int128_zero() { return _mm_setzero_si128(); }
#else
typedef __int128_t int128;
#define int128_zero() 0
#endif
PLATFORM_INTERFACE bool ThreadInterlockedAssignIf128( volatile int128 *pDest, const int128 &value, const int128 &comperand ) NOINLINE;
#endif
PLATFORM_INTERFACE int64 ThreadInterlockedIncrement64( int64 volatile * ) NOINLINE;
PLATFORM_INTERFACE int64 ThreadInterlockedDecrement64( int64 volatile * ) NOINLINE;
PLATFORM_INTERFACE int64 ThreadInterlockedCompareExchange64( int64 volatile *, int64 value, int64 comperand ) NOINLINE;
PLATFORM_INTERFACE int64 ThreadInterlockedExchange64( int64 volatile *, int64 value ) NOINLINE;
PLATFORM_INTERFACE int64 ThreadInterlockedExchangeAdd64( int64 volatile *, int64 value ) NOINLINE;
PLATFORM_INTERFACE bool ThreadInterlockedAssignIf64(volatile int64 *pDest, int64 value, int64 comperand ) NOINLINE;
inline unsigned ThreadInterlockedExchangeSubtract( unsigned volatile *p, unsigned value ) { return ThreadInterlockedExchangeAdd( (long volatile *)p, value ); }
inline unsigned ThreadInterlockedIncrement( unsigned volatile *p ) { return ThreadInterlockedIncrement( (long volatile *)p ); }
inline unsigned ThreadInterlockedDecrement( unsigned volatile *p ) { return ThreadInterlockedDecrement( (long volatile *)p ); }
inline unsigned ThreadInterlockedExchange( unsigned volatile *p, unsigned value ) { return ThreadInterlockedExchange( (long volatile *)p, value ); }
inline unsigned ThreadInterlockedExchangeAdd( unsigned volatile *p, unsigned value ) { return ThreadInterlockedExchangeAdd( (long volatile *)p, value ); }
inline unsigned ThreadInterlockedCompareExchange( unsigned volatile *p, unsigned value, unsigned comperand ) { return ThreadInterlockedCompareExchange( (long volatile *)p, value, comperand ); }
inline bool ThreadInterlockedAssignIf( unsigned volatile *p, unsigned value, unsigned comperand ) { return ThreadInterlockedAssignIf( (long volatile *)p, value, comperand ); }
inline int ThreadInterlockedExchangeSubtract( int volatile *p, int value ) { return ThreadInterlockedExchangeAdd( (long volatile *)p, value ); }
inline int ThreadInterlockedIncrement( int volatile *p ) { return ThreadInterlockedIncrement( (long volatile *)p ); }
inline int ThreadInterlockedDecrement( int volatile *p ) { return ThreadInterlockedDecrement( (long volatile *)p ); }
inline int ThreadInterlockedExchange( int volatile *p, int value ) { return ThreadInterlockedExchange( (long volatile *)p, value ); }
inline int ThreadInterlockedExchangeAdd( int volatile *p, int value ) { return ThreadInterlockedExchangeAdd( (long volatile *)p, value ); }
inline int ThreadInterlockedCompareExchange( int volatile *p, int value, int comperand ) { return ThreadInterlockedCompareExchange( (long volatile *)p, value, comperand ); }
inline bool ThreadInterlockedAssignIf( int volatile *p, int value, int comperand ) { return ThreadInterlockedAssignIf( (long volatile *)p, value, comperand ); }
//-----------------------------------------------------------------------------
// Access to VTune thread profiling
//-----------------------------------------------------------------------------
#if defined(_WIN32) && defined(THREAD_PROFILER)
PLATFORM_INTERFACE void ThreadNotifySyncPrepare(void *p);
PLATFORM_INTERFACE void ThreadNotifySyncCancel(void *p);
PLATFORM_INTERFACE void ThreadNotifySyncAcquired(void *p);
PLATFORM_INTERFACE void ThreadNotifySyncReleasing(void *p);
#else
#define ThreadNotifySyncPrepare(p) ((void)0)
#define ThreadNotifySyncCancel(p) ((void)0)
#define ThreadNotifySyncAcquired(p) ((void)0)
#define ThreadNotifySyncReleasing(p) ((void)0)
#endif
//-----------------------------------------------------------------------------
// Encapsulation of a thread local datum (needed because THREAD_LOCAL doesn't
// work in a DLL loaded with LoadLibrary()
//-----------------------------------------------------------------------------
#ifndef NO_THREAD_LOCAL
#if defined(_LINUX) && !defined(OSX)
// linux totally supports compiler thread locals, even across dll's.
#define PLAT_COMPILER_SUPPORTED_THREADLOCALS 1
#define CTHREADLOCALINTEGER( typ ) __thread int
#define CTHREADLOCALINT __thread int
#define CTHREADLOCALPTR( typ ) __thread typ *
#define CTHREADLOCAL( typ ) __thread typ
#define GETLOCAL( x ) ( x )
#endif // _LINUX && !OSX
#if defined(WIN32) || defined(OSX)
#ifndef __AFXTLS_H__ // not compatible with some Windows headers
#define CTHREADLOCALINT CThreadLocalInt<int>
#define CTHREADLOCALINTEGER( typ ) CThreadLocalInt<typ>
#define CTHREADLOCALPTR( typ ) CThreadLocalPtr<typ>
#define CTHREADLOCAL( typ ) CThreadLocal<typ>
#define GETLOCAL( x ) ( x.Get() )
#endif
#endif // WIN32 || OSX
#endif // NO_THREAD_LOCALS
#ifndef __AFXTLS_H__ // not compatible with some Windows headers
#ifndef NO_THREAD_LOCAL
class PLATFORM_CLASS CThreadLocalBase
{
public:
CThreadLocalBase();
~CThreadLocalBase();
void * Get() const;
void Set(void *);
private:
#ifdef _WIN32
uint32 m_index;
#elif POSIX
pthread_key_t m_index;
#endif
};
//---------------------------------------------------------
#ifndef __AFXTLS_H__
template <class T>
class CThreadLocal : public CThreadLocalBase
{
public:
CThreadLocal()
{
COMPILE_TIME_ASSERT( sizeof(T) == sizeof(void *) );
}
T Get() const
{
return reinterpret_cast<T>( CThreadLocalBase::Get() );
}
void Set(T val)
{
CThreadLocalBase::Set( reinterpret_cast<void *>(val) );
}
};
#endif
//---------------------------------------------------------
template <class T = intp>
class CThreadLocalInt : public CThreadLocal<T>
{
public:
CThreadLocalInt()
{
COMPILE_TIME_ASSERT( sizeof(T) >= sizeof(int) );
}
operator int() const { return (int)this->Get(); }
int operator=( int i ) { this->Set( (intp)i ); return i; }
int operator++() { T i = this->Get(); this->Set( ++i ); return (int)i; }
int operator++(int) { T i = this->Get(); this->Set( i + 1 ); return (int)i; }
int operator--() { T i = this->Get(); this->Set( --i ); return (int)i; }
int operator--(int) { T i = this->Get(); this->Set( i - 1 ); return (int)i; }
};
//---------------------------------------------------------
template <class T>
class CThreadLocalPtr : private CThreadLocalBase
{
public:
CThreadLocalPtr() {}
operator const void *() const { return (T *)Get(); }
operator void *() { return (T *)Get(); }
operator const T *() const { return (T *)Get(); }
operator const T *() { return (T *)Get(); }
operator T *() { return (T *)Get(); }
int operator=( int i ) { AssertMsg( i == 0, "Only NULL allowed on integer assign" ); Set( NULL ); return 0; }
T * operator=( T *p ) { Set( p ); return p; }
bool operator !() const { return (!Get()); }
bool operator!=( int i ) const { AssertMsg( i == 0, "Only NULL allowed on integer compare" ); return (Get() != NULL); }
bool operator==( int i ) const { AssertMsg( i == 0, "Only NULL allowed on integer compare" ); return (Get() == NULL); }
bool operator==( const void *p ) const { return (Get() == p); }
bool operator!=( const void *p ) const { return (Get() != p); }
bool operator==( const T *p ) const { return operator==((void*)p); }
bool operator!=( const T *p ) const { return operator!=((void*)p); }
T * operator->() { return (T *)Get(); }
T & operator *() { return *((T *)Get()); }
const T * operator->() const { return (T *)Get(); }
const T & operator *() const { return *((T *)Get()); }
const T & operator[]( int i ) const { return *((T *)Get() + i); }
T & operator[]( int i ) { return *((T *)Get() + i); }
private:
// Disallowed operations
CThreadLocalPtr( T *pFrom );
CThreadLocalPtr( const CThreadLocalPtr<T> &from );
T **operator &();
T * const *operator &() const;
void operator=( const CThreadLocalPtr<T> &from );
bool operator==( const CThreadLocalPtr<T> &p ) const;
bool operator!=( const CThreadLocalPtr<T> &p ) const;
};
#endif // NO_THREAD_LOCAL
#endif // !__AFXTLS_H__
//-----------------------------------------------------------------------------
//
// A super-fast thread-safe integer A simple class encapsulating the notion of an
// atomic integer used across threads that uses the built in and faster
// "interlocked" functionality rather than a full-blown mutex. Useful for simple
// things like reference counts, etc.
//
//-----------------------------------------------------------------------------
template <typename T>
class CInterlockedIntT
{
public:
CInterlockedIntT() : m_value( 0 ) { COMPILE_TIME_ASSERT( sizeof(T) == sizeof(long) ); }
CInterlockedIntT( T value ) : m_value( value ) {}
T GetRaw() const { return m_value; }
operator T() const { return m_value; }
bool operator!() const { return ( m_value == 0 ); }
bool operator==( T rhs ) const { return ( m_value == rhs ); }
bool operator!=( T rhs ) const { return ( m_value != rhs ); }
T operator++() { return (T)ThreadInterlockedIncrement( (long *)&m_value ); }
T operator++(int) { return operator++() - 1; }
T operator--() { return (T)ThreadInterlockedDecrement( (long *)&m_value ); }
T operator--(int) { return operator--() + 1; }
bool AssignIf( T conditionValue, T newValue ) { return ThreadInterlockedAssignIf( (long *)&m_value, (long)newValue, (long)conditionValue ); }
T operator=( T newValue ) { ThreadInterlockedExchange((long *)&m_value, newValue); return m_value; }
void operator+=( T add ) { ThreadInterlockedExchangeAdd( (long *)&m_value, (long)add ); }
void operator-=( T subtract ) { operator+=( -subtract ); }
void operator*=( T multiplier ) {
T original, result;
do
{
original = m_value;
result = original * multiplier;
} while ( !AssignIf( original, result ) );
}
void operator/=( T divisor ) {
T original, result;
do
{
original = m_value;
result = original / divisor;
} while ( !AssignIf( original, result ) );
}
T operator+( T rhs ) const { return m_value + rhs; }
T operator-( T rhs ) const { return m_value - rhs; }
private:
volatile T m_value;
};
typedef CInterlockedIntT<int> CInterlockedInt;
typedef CInterlockedIntT<unsigned> CInterlockedUInt;
//-----------------------------------------------------------------------------
template <typename T>
class CInterlockedPtr
{
public:
CInterlockedPtr() : m_value( 0 ) {}
CInterlockedPtr( T *value ) : m_value( value ) {}
operator T *() const { return m_value; }
bool operator!() const { return ( m_value == 0 ); }
bool operator==( T *rhs ) const { return ( m_value == rhs ); }
bool operator!=( T *rhs ) const { return ( m_value != rhs ); }
#if defined( PLATFORM_64BITS )
T *operator++() { return ((T *)ThreadInterlockedExchangeAdd64( (int64 *)&m_value, sizeof(T) )) + 1; }
T *operator++(int) { return (T *)ThreadInterlockedExchangeAdd64( (int64 *)&m_value, sizeof(T) ); }
T *operator--() { return ((T *)ThreadInterlockedExchangeAdd64( (int64 *)&m_value, -sizeof(T) )) - 1; }
T *operator--(int) { return (T *)ThreadInterlockedExchangeAdd64( (int64 *)&m_value, -sizeof(T) ); }
bool AssignIf( T *conditionValue, T *newValue ) { return ThreadInterlockedAssignPointerToConstIf( (void const **) &m_value, (void const *) newValue, (void const *) conditionValue ); }
T *operator=( T *newValue ) { ThreadInterlockedExchangePointerToConst( (void const **) &m_value, (void const *) newValue ); return newValue; }
void operator+=( int add ) { ThreadInterlockedExchangeAdd64( (int64 *)&m_value, add * sizeof(T) ); }
#else
T *operator++() { return ((T *)ThreadInterlockedExchangeAdd( (long *)&m_value, sizeof(T) )) + 1; }
T *operator++(int) { return (T *)ThreadInterlockedExchangeAdd( (long *)&m_value, sizeof(T) ); }
T *operator--() { return ((T *)ThreadInterlockedExchangeAdd( (long *)&m_value, -sizeof(T) )) - 1; }
T *operator--(int) { return (T *)ThreadInterlockedExchangeAdd( (long *)&m_value, -sizeof(T) ); }
bool AssignIf( T *conditionValue, T *newValue ) { return ThreadInterlockedAssignPointerToConstIf( (void const **) &m_value, (void const *) newValue, (void const *) conditionValue ); }
T *operator=( T *newValue ) { ThreadInterlockedExchangePointerToConst( (void const **) &m_value, (void const *) newValue ); return newValue; }
void operator+=( int add ) { ThreadInterlockedExchangeAdd( (long *)&m_value, add * sizeof(T) ); }
#endif
void operator-=( int subtract ) { operator+=( -subtract ); }
T *operator+( int rhs ) const { return m_value + rhs; }
T *operator-( int rhs ) const { return m_value - rhs; }
T *operator+( unsigned rhs ) const { return m_value + rhs; }
T *operator-( unsigned rhs ) const { return m_value - rhs; }
size_t operator-( T *p ) const { return m_value - p; }
size_t operator-( const CInterlockedPtr<T> &p ) const { return m_value - p.m_value; }
private:
T * volatile m_value;
};
//-----------------------------------------------------------------------------
//
// Platform independent verification that multiple threads aren't getting into the same code at the same time.
// Note: This is intended for use to identify problems, it doesn't provide any sort of thread safety.
//
//-----------------------------------------------------------------------------
class ReentrancyVerifier
{
public:
inline ReentrancyVerifier(CInterlockedInt* counter, int sleepTimeMS)
: mCounter(counter)
{
Assert(mCounter != NULL);
if (++(*mCounter) != 1) {
DebuggerBreakIfDebugging_StagingOnly();
}
if (sleepTimeMS > 0)
{
ThreadSleep(sleepTimeMS);
}
}
inline ~ReentrancyVerifier()
{
if (--(*mCounter) != 0) {
DebuggerBreakIfDebugging_StagingOnly();
}
}
private:
CInterlockedInt* mCounter;
};
//-----------------------------------------------------------------------------
//
// Platform independent for critical sections management
//
//-----------------------------------------------------------------------------
class PLATFORM_CLASS CThreadMutex
{
public:
CThreadMutex();
~CThreadMutex();
//------------------------------------------------------
// Mutex acquisition/release. Const intentionally defeated.
//------------------------------------------------------
void Lock();
void Lock() const { (const_cast<CThreadMutex *>(this))->Lock(); }
void Unlock();
void Unlock() const { (const_cast<CThreadMutex *>(this))->Unlock(); }
bool TryLock();
bool TryLock() const { return (const_cast<CThreadMutex *>(this))->TryLock(); }
//------------------------------------------------------
// Use this to make deadlocks easier to track by asserting
// when it is expected that the current thread owns the mutex
//------------------------------------------------------
bool AssertOwnedByCurrentThread();
//------------------------------------------------------
// Enable tracing to track deadlock problems
//------------------------------------------------------
void SetTrace( bool );
private:
// Disallow copying
CThreadMutex( const CThreadMutex & );
CThreadMutex &operator=( const CThreadMutex & );
#if defined( _WIN32 )
// Efficient solution to breaking the windows.h dependency, invariant is tested.
#ifdef _WIN64
#define TT_SIZEOF_CRITICALSECTION 40
#else
#ifndef _X360
#define TT_SIZEOF_CRITICALSECTION 24
#else
#define TT_SIZEOF_CRITICALSECTION 28
#endif // !_XBOX
#endif // _WIN64
byte m_CriticalSection[TT_SIZEOF_CRITICALSECTION];
#elif defined(POSIX)
pthread_mutex_t m_Mutex;
pthread_mutexattr_t m_Attr;
#else
#error
#endif
#ifdef THREAD_MUTEX_TRACING_SUPPORTED
// Debugging (always here to allow mixed debug/release builds w/o changing size)
uint m_currentOwnerID;
uint16 m_lockCount;
bool m_bTrace;
#endif
};
//-----------------------------------------------------------------------------
//
// An alternative mutex that is useful for cases when thread contention is
// rare, but a mutex is required. Instances should be declared volatile.
// Sleep of 0 may not be sufficient to keep high priority threads from starving
// lesser threads. This class is not a suitable replacement for a critical
// section if the resource contention is high.
//
//-----------------------------------------------------------------------------
#if !defined(THREAD_PROFILER)
class CThreadFastMutex
{
public:
CThreadFastMutex()
: m_ownerID( 0 ),
m_depth( 0 )
{
}
private:
FORCEINLINE bool TryLockInline( const uint32 threadId ) volatile
{
if ( threadId != m_ownerID && !ThreadInterlockedAssignIf( (volatile long *)&m_ownerID, (long)threadId, 0 ) )
return false;
ThreadMemoryBarrier();
++m_depth;
return true;
}
bool TryLock( const uint32 threadId ) volatile
{
return TryLockInline( threadId );
}
PLATFORM_CLASS void Lock( const uint32 threadId, unsigned nSpinSleepTime ) volatile;
public:
bool TryLock() volatile
{
#ifdef _DEBUG
if ( m_depth == INT_MAX )
DebuggerBreak();
if ( m_depth < 0 )
DebuggerBreak();
#endif
return TryLockInline( ThreadGetCurrentId() );
}
#ifndef _DEBUG
FORCEINLINE
#endif
void Lock( unsigned int nSpinSleepTime = 0 ) volatile
{
const uint32 threadId = ThreadGetCurrentId();
if ( !TryLockInline( threadId ) )
{
ThreadPause();
Lock( threadId, nSpinSleepTime );
}
#ifdef _DEBUG
if ( m_ownerID != ThreadGetCurrentId() )
DebuggerBreak();
if ( m_depth == INT_MAX )
DebuggerBreak();
if ( m_depth < 0 )
DebuggerBreak();
#endif
}
#ifndef _DEBUG
FORCEINLINE
#endif
void Unlock() volatile
{
#ifdef _DEBUG
if ( m_ownerID != ThreadGetCurrentId() )
DebuggerBreak();
if ( m_depth <= 0 )
DebuggerBreak();
#endif
--m_depth;
if ( !m_depth )
{
ThreadMemoryBarrier();
ThreadInterlockedExchange( &m_ownerID, 0 );
}
}
#ifdef WIN32
bool TryLock() const volatile { return (const_cast<CThreadFastMutex *>(this))->TryLock(); }
void Lock(unsigned nSpinSleepTime = 1 ) const volatile { (const_cast<CThreadFastMutex *>(this))->Lock( nSpinSleepTime ); }
void Unlock() const volatile { (const_cast<CThreadFastMutex *>(this))->Unlock(); }
#endif
// To match regular CThreadMutex:
bool AssertOwnedByCurrentThread() { return true; }
void SetTrace( bool ) {}
uint32 GetOwnerId() const { return m_ownerID; }
int GetDepth() const { return m_depth; }
private:
volatile uint32 m_ownerID;
int m_depth;
};
#ifdef COMPILER_CLANG
# pragma clang diagnostic push
# pragma clang diagnostic ignored "-Wunused-private-field"
#endif // Q_CC_CLANG
class ALIGN128 CAlignedThreadFastMutex : public CThreadFastMutex
{
public:
CAlignedThreadFastMutex()
{
Assert( (size_t)this % 128 == 0 && sizeof(*this) == 128 );
}
private:
uint8 pad[128-sizeof(CThreadFastMutex)];
} ALIGN128_POST;
#ifdef COMPILER_CLANG
# pragma clang diagnostic pop
#endif
#else
typedef CThreadMutex CThreadFastMutex;
#endif
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
class CThreadNullMutex
{
public:
static void Lock() {}
static void Unlock() {}
static bool TryLock() { return true; }
static bool AssertOwnedByCurrentThread() { return true; }
static void SetTrace( bool b ) {}
static uint32 GetOwnerId() { return 0; }
static int GetDepth() { return 0; }
};
//-----------------------------------------------------------------------------
//
// A mutex decorator class used to control the use of a mutex, to make it
// less expensive when not multithreading
//
//-----------------------------------------------------------------------------
template <class BaseClass, bool *pCondition>
class CThreadConditionalMutex : public BaseClass
{
public:
void Lock() { if ( *pCondition ) BaseClass::Lock(); }
void Lock() const { if ( *pCondition ) BaseClass::Lock(); }
void Unlock() { if ( *pCondition ) BaseClass::Unlock(); }
void Unlock() const { if ( *pCondition ) BaseClass::Unlock(); }
bool TryLock() { if ( *pCondition ) return BaseClass::TryLock(); else return true; }
bool TryLock() const { if ( *pCondition ) return BaseClass::TryLock(); else return true; }
bool AssertOwnedByCurrentThread() { if ( *pCondition ) return BaseClass::AssertOwnedByCurrentThread(); else return true; }
void SetTrace( bool b ) { if ( *pCondition ) BaseClass::SetTrace( b ); }
};
//-----------------------------------------------------------------------------
// Mutex decorator that blows up if another thread enters
//-----------------------------------------------------------------------------
template <class BaseClass>
class CThreadTerminalMutex : public BaseClass
{
public:
bool TryLock() { if ( !BaseClass::TryLock() ) { DebuggerBreak(); return false; } return true; }
bool TryLock() const { if ( !BaseClass::TryLock() ) { DebuggerBreak(); return false; } return true; }
void Lock() { if ( !TryLock() ) BaseClass::Lock(); }
void Lock() const { if ( !TryLock() ) BaseClass::Lock(); }
};
//-----------------------------------------------------------------------------
//
// Class to Lock a critical section, and unlock it automatically
// when the lock goes out of scope
//
//-----------------------------------------------------------------------------
template <class MUTEX_TYPE = CThreadMutex>
class CAutoLockT
{
public:
FORCEINLINE CAutoLockT( MUTEX_TYPE &lock, const char* pMutexName, const char* pFilename, int nLineNum, uint64 minReportDurationUs )
: m_lock( const_cast< typename V_remove_const< MUTEX_TYPE >::type & >( lock ) )
, m_pMutexName( pMutexName )
, m_pFilename( pFilename )
, m_nLineNum( nLineNum )
, m_bOwned( true )
{
tmTryLockEx( TELEMETRY_LEVEL0, &m_uLockMatcher, minReportDurationUs, pFilename, nLineNum, &m_lock, pMutexName );
m_lock.Lock();
tmEndTryLockEx( TELEMETRY_LEVEL0, m_uLockMatcher, pFilename, nLineNum, &m_lock, TMLR_SUCCESS );
tmSetLockStateEx( TELEMETRY_LEVEL0, pFilename, nLineNum, &m_lock, TMLS_LOCKED, pMutexName );
}
FORCEINLINE CAutoLockT<MUTEX_TYPE>( CAutoLockT<MUTEX_TYPE> && rhs )
: m_lock( const_cast< typename V_remove_const< MUTEX_TYPE >::type &>( rhs.m_lock ) )
{
m_pMutexName = rhs.m_pMutexName;
m_pFilename = rhs.m_pFilename;
m_nLineNum = rhs.m_nLineNum;
#ifdef RAD_TELEMETRY_ENABLED
m_uLockMatcher = rhs.m_uLockMatcher;
#endif
m_bOwned = true;
rhs.m_bOwned = false;
}
FORCEINLINE ~CAutoLockT()
{
if ( m_bOwned )
{
m_lock.Unlock();
tmSetLockStateEx( TELEMETRY_LEVEL0, m_pFilename, m_nLineNum, &m_lock, TMLS_RELEASED, m_pMutexName );
}
}
private:
typename V_remove_const< MUTEX_TYPE >::type &m_lock;
const char* m_pMutexName;
const char* m_pFilename;
int m_nLineNum;
bool m_bOwned; // Did owenership of the lock pass to another instance?
#ifdef RAD_TELEMETRY_ENABLED
TmU64 m_uLockMatcher;
#endif
// Disallow copying
CAutoLockT<MUTEX_TYPE>( const CAutoLockT<MUTEX_TYPE> & );
CAutoLockT<MUTEX_TYPE> &operator=( const CAutoLockT<MUTEX_TYPE> & );
// No move assignment because no default construction.
CAutoLockT<MUTEX_TYPE> &operator=( CAutoLockT<MUTEX_TYPE> && );
};
typedef CAutoLockT<CThreadMutex> CAutoLock;
template < typename MUTEX_TYPE >
inline CAutoLockT<MUTEX_TYPE> make_auto_lock( MUTEX_TYPE& lock, const char* pMutexname, const char* pFilename, int nLineNum, int nMinReportDurationUs = 1 )
{
return CAutoLockT<MUTEX_TYPE>( lock, pMutexname, pFilename, nLineNum, nMinReportDurationUs );
}
//---------------------------------------------------------
#define AUTO_LOCK( mutex ) \
auto UNIQUE_ID = make_auto_lock( mutex, #mutex, __FILE__, __LINE__ );
#define AUTO_LOCK_D( mutex, minDurationUs ) \
auto UNIQUE_ID = make_auto_lock( mutex, #mutex, __FILE__, __LINE__, minDurationUs );
#define LOCAL_THREAD_LOCK_( tag ) \
; \
static CThreadFastMutex autoMutex_##tag; \
AUTO_LOCK( autoMutex_##tag )
#define LOCAL_THREAD_LOCK() \
LOCAL_THREAD_LOCK_(_)
//-----------------------------------------------------------------------------
//
// Base class for event, semaphore and mutex objects.
//
//-----------------------------------------------------------------------------
class PLATFORM_CLASS CThreadSyncObject
{
public:
~CThreadSyncObject();
//-----------------------------------------------------
// Query if object is useful
//-----------------------------------------------------
bool operator!() const;
//-----------------------------------------------------
// Access handle
//-----------------------------------------------------
#ifdef _WIN32
operator HANDLE() { return GetHandle(); }
const HANDLE GetHandle() const { return m_hSyncObject; }
#endif
//-----------------------------------------------------
// Wait for a signal from the object
//-----------------------------------------------------
bool Wait( uint32 dwTimeout = TT_INFINITE );
protected:
CThreadSyncObject();
void AssertUseable();
#ifdef _WIN32
HANDLE m_hSyncObject;
bool m_bCreatedHandle;
#elif defined(POSIX)
pthread_mutex_t m_Mutex;
pthread_cond_t m_Condition;
bool m_bInitalized;
int m_cSet;
bool m_bManualReset;
bool m_bWakeForEvent;
#else
#error "Implement me"
#endif
private:
CThreadSyncObject( const CThreadSyncObject & );
CThreadSyncObject &operator=( const CThreadSyncObject & );
};
//-----------------------------------------------------------------------------
//
// Wrapper for unnamed event objects
//
//-----------------------------------------------------------------------------
#if defined( _WIN32 )
//-----------------------------------------------------------------------------
//
// CThreadSemaphore
//
//-----------------------------------------------------------------------------
class PLATFORM_CLASS CThreadSemaphore : public CThreadSyncObject
{
public:
CThreadSemaphore(long initialValue, long maxValue);
//-----------------------------------------------------
// Increases the count of the semaphore object by a specified
// amount. Wait() decreases the count by one on return.
//-----------------------------------------------------
bool Release(long releaseCount = 1, long * pPreviousCount = NULL );
private:
CThreadSemaphore(const CThreadSemaphore &);
CThreadSemaphore &operator=(const CThreadSemaphore &);
};
//-----------------------------------------------------------------------------
//
// A mutex suitable for out-of-process, multi-processor usage
//
//-----------------------------------------------------------------------------
class PLATFORM_CLASS CThreadFullMutex : public CThreadSyncObject
{
public:
CThreadFullMutex( bool bEstablishInitialOwnership = false, const char * pszName = NULL );
//-----------------------------------------------------
// Release ownership of the mutex
//-----------------------------------------------------
bool Release();
// To match regular CThreadMutex:
void Lock() { Wait(); }
void Lock( unsigned timeout ) { Wait( timeout ); }
void Unlock() { Release(); }
bool AssertOwnedByCurrentThread() { return true; }
void SetTrace( bool ) {}
private:
CThreadFullMutex( const CThreadFullMutex & );
CThreadFullMutex &operator=( const CThreadFullMutex & );
};
#endif
class PLATFORM_CLASS CThreadEvent : public CThreadSyncObject
{
public:
CThreadEvent( bool fManualReset = false );
#ifdef WIN32
CThreadEvent( HANDLE hHandle );
#endif
//-----------------------------------------------------
// Set the state to signaled
//-----------------------------------------------------
bool Set();
//-----------------------------------------------------
// Set the state to nonsignaled
//-----------------------------------------------------
bool Reset();
//-----------------------------------------------------
// Check if the event is signaled
//-----------------------------------------------------
bool Check();
bool Wait( uint32 dwTimeout = TT_INFINITE );
private:
CThreadEvent( const CThreadEvent & );
CThreadEvent &operator=( const CThreadEvent & );
};
// Hard-wired manual event for use in array declarations
class CThreadManualEvent : public CThreadEvent
{
public:
CThreadManualEvent()
: CThreadEvent( true )
{
}
};
inline int ThreadWaitForEvents( int nEvents, CThreadEvent * const *pEvents, bool bWaitAll = true, unsigned timeout = TT_INFINITE )
{
#ifdef POSIX
Assert( nEvents == 1);
if ( pEvents[0]->Wait( timeout ) )
return WAIT_OBJECT_0;
else
return WAIT_TIMEOUT;
#else
HANDLE handles[64];
for ( int i = 0; i < min( nEvents, (int)ARRAYSIZE(handles) ); i++ )
handles[i] = pEvents[i]->GetHandle();
return ThreadWaitForObjects( nEvents, handles, bWaitAll, timeout );
#endif
}
//-----------------------------------------------------------------------------
//
// CThreadRWLock
//
//-----------------------------------------------------------------------------
class PLATFORM_CLASS CThreadRWLock
{
public:
CThreadRWLock();
void LockForRead();
void UnlockRead();
void LockForWrite();
void UnlockWrite();
void LockForRead() const { const_cast<CThreadRWLock *>(this)->LockForRead(); }
void UnlockRead() const { const_cast<CThreadRWLock *>(this)->UnlockRead(); }
void LockForWrite() const { const_cast<CThreadRWLock *>(this)->LockForWrite(); }
void UnlockWrite() const { const_cast<CThreadRWLock *>(this)->UnlockWrite(); }
private:
void WaitForRead();
#ifdef WIN32
CThreadFastMutex m_mutex;
#else
CThreadMutex m_mutex;
#endif
CThreadEvent m_CanWrite;
CThreadEvent m_CanRead;
int m_nWriters;
int m_nActiveReaders;
int m_nPendingReaders;
};
//-----------------------------------------------------------------------------
//
// CThreadSpinRWLock
//
//-----------------------------------------------------------------------------
class ALIGN8 PLATFORM_CLASS CThreadSpinRWLock
{
public:
CThreadSpinRWLock() { COMPILE_TIME_ASSERT( sizeof( LockInfo_t ) == sizeof( int64 ) ); Assert( (intp)this % 8 == 0 ); memset( this, 0, sizeof( *this ) ); }
bool TryLockForWrite();
bool TryLockForRead();
void LockForRead();
void UnlockRead();
void LockForWrite();
void UnlockWrite();
bool TryLockForWrite() const { return const_cast<CThreadSpinRWLock *>(this)->TryLockForWrite(); }
bool TryLockForRead() const { return const_cast<CThreadSpinRWLock *>(this)->TryLockForRead(); }
void LockForRead() const { const_cast<CThreadSpinRWLock *>(this)->LockForRead(); }
void UnlockRead() const { const_cast<CThreadSpinRWLock *>(this)->UnlockRead(); }
void LockForWrite() const { const_cast<CThreadSpinRWLock *>(this)->LockForWrite(); }
void UnlockWrite() const { const_cast<CThreadSpinRWLock *>(this)->UnlockWrite(); }
private:
struct LockInfo_t
{
uint32 m_writerId;
int m_nReaders;
};
bool AssignIf( const LockInfo_t &newValue, const LockInfo_t &comperand );
bool TryLockForWrite( const uint32 threadId );
void SpinLockForWrite( const uint32 threadId );
volatile LockInfo_t m_lockInfo;
CInterlockedInt m_nWriters;
} ALIGN8_POST;
//-----------------------------------------------------------------------------
//
// A thread wrapper similar to a Java thread.
//
//-----------------------------------------------------------------------------
class PLATFORM_CLASS CThread
{
public:
CThread();
virtual ~CThread();
//-----------------------------------------------------
const char *GetName();
void SetName( const char * );
size_t CalcStackDepth( void *pStackVariable ) { return ((byte *)m_pStackBase - (byte *)pStackVariable); }
//-----------------------------------------------------
// Functions for the other threads
//-----------------------------------------------------
// Start thread running - error if already running
virtual bool Start( unsigned nBytesStack = 0 );
// Returns true if thread has been created and hasn't yet exited
bool IsAlive();
// This method causes the current thread to wait until this thread
// is no longer alive.
bool Join( unsigned timeout = TT_INFINITE );
#ifdef _WIN32
// Access the thread handle directly
HANDLE GetThreadHandle();
uint GetThreadId();
#elif defined( LINUX )
uint GetThreadId();
#endif
//-----------------------------------------------------
int GetResult();
//-----------------------------------------------------
// Functions for both this, and maybe, and other threads
//-----------------------------------------------------
// Forcibly, abnormally, but relatively cleanly stop the thread
void Stop( int exitCode = 0 );
// Get the priority
int GetPriority() const;
// Set the priority
bool SetPriority( int );
// Request a thread to suspend, this must ONLY be called from the thread itself, not the main thread
// This suspend variant causes the thread in question to suspend at a known point in its execution
// which means you don't risk the global deadlocks/hangs potentially caused by the raw Suspend() call
void SuspendCooperative();
// Resume a previously suspended thread from the Cooperative call
void ResumeCooperative();
// wait for a thread to execute its SuspendCooperative call
void BWaitForThreadSuspendCooperative();
#ifndef LINUX
// forcefully Suspend a thread
unsigned int Suspend();
// forcefully Resume a previously suspended thread
unsigned int Resume();
#endif
// Force hard-termination of thread. Used for critical failures.
bool Terminate( int exitCode = 0 );
//-----------------------------------------------------
// Global methods
//-----------------------------------------------------
// Get the Thread object that represents the current thread, if any.
// Can return NULL if the current thread was not created using
// CThread
static CThread *GetCurrentCThread();
// Offer a context switch. Under Win32, equivalent to Sleep(0)
#ifdef Yield
#undef Yield
#endif
static void Yield();
// This method causes the current thread to yield and not to be
// scheduled for further execution until a certain amount of real
// time has elapsed, more or less.
static void Sleep( unsigned duration );
protected:
// Optional pre-run call, with ability to fail-create. Note Init()
// is forced synchronous with Start()
virtual bool Init();
// Thread will run this function on startup, must be supplied by
// derived class, performs the intended action of the thread.
virtual int Run() = 0;
// Called when the thread is about to exit, by the about-to-exit thread.
virtual void OnExit();
// Called after OnExit when a thread finishes or is killed. Not virtual because no inherited classes
// override it and we don't want to change the vtable from the published SDK version.
void Cleanup();
bool WaitForCreateComplete( CThreadEvent *pEvent );
// "Virtual static" facility
typedef unsigned (__stdcall *ThreadProc_t)( void * );
virtual ThreadProc_t GetThreadProc();
virtual bool IsThreadRunning();
CThreadMutex m_Lock;
#ifdef WIN32
ThreadHandle_t GetThreadID() const { return (ThreadHandle_t)m_hThread; }
#else
ThreadId_t GetThreadID() const { return (ThreadId_t)m_threadId; }
#endif
private:
enum Flags
{
SUPPORT_STOP_PROTOCOL = 1 << 0
};
// Thread initially runs this. param is actually 'this'. function
// just gets this and calls ThreadProc
struct ThreadInit_t
{
CThread * pThread;
CThreadEvent *pInitCompleteEvent;
bool * pfInitSuccess;
};
static unsigned __stdcall ThreadProc( void * pv );
// make copy constructor and assignment operator inaccessible
CThread( const CThread & );
CThread &operator=( const CThread & );
#ifdef _WIN32
HANDLE m_hThread;
ThreadId_t m_threadId;
#elif defined(POSIX)
pthread_t m_threadId;
#endif
CInterlockedInt m_nSuspendCount;
CThreadEvent m_SuspendEvent;
CThreadEvent m_SuspendEventSignal;
int m_result;
char m_szName[32];
void * m_pStackBase;
unsigned m_flags;
};
//-----------------------------------------------------------------------------
//
// A helper class to let you sleep a thread for memory validation, you need to handle
// m_bSleepForValidate in your ::Run() call and set m_bSleepingForValidate when sleeping
//
//-----------------------------------------------------------------------------
class PLATFORM_CLASS CValidatableThread : public CThread
{
public:
CValidatableThread()
{
m_bSleepForValidate = false;
m_bSleepingForValidate = false;
}
#ifdef DBGFLAG_VALIDATE
virtual void SleepForValidate() { m_bSleepForValidate = true; }
bool BSleepingForValidate() { return m_bSleepingForValidate; }
virtual void WakeFromValidate() { m_bSleepForValidate = false; }
#endif
protected:
bool m_bSleepForValidate;
bool m_bSleepingForValidate;
};
//-----------------------------------------------------------------------------
// Simple thread class encompasses the notion of a worker thread, handing
// synchronized communication.
//-----------------------------------------------------------------------------
// These are internal reserved error results from a call attempt
enum WTCallResult_t
{
WTCR_FAIL = -1,
WTCR_TIMEOUT = -2,
WTCR_THREAD_GONE = -3,
};
class CFunctor;
class PLATFORM_CLASS CWorkerThread : public CThread
{
public:
CWorkerThread();
//-----------------------------------------------------
//
// Inter-thread communication
//
// Calls in either direction take place on the same "channel."
// Seperate functions are specified to make identities obvious
//
//-----------------------------------------------------
// Master: Signal the thread, and block for a response
int CallWorker( unsigned, unsigned timeout = TT_INFINITE, bool fBoostWorkerPriorityToMaster = true, CFunctor *pParamFunctor = NULL );
// Worker: Signal the thread, and block for a response
int CallMaster( unsigned, unsigned timeout = TT_INFINITE );
// Wait for the next request
bool WaitForCall( unsigned dwTimeout, unsigned *pResult = NULL );
bool WaitForCall( unsigned *pResult = NULL );
// Is there a request?
bool PeekCall( unsigned *pParam = NULL, CFunctor **ppParamFunctor = NULL );
// Reply to the request
void Reply( unsigned );
// Wait for a reply in the case when CallWorker() with timeout != TT_INFINITE
int WaitForReply( unsigned timeout = TT_INFINITE );
// If you want to do WaitForMultipleObjects you'll need to include
// this handle in your wait list or you won't be responsive
CThreadEvent &GetCallHandle();
// Find out what the request was
unsigned GetCallParam( CFunctor **ppParamFunctor = NULL ) const;
// Boost the worker thread to the master thread, if worker thread is lesser, return old priority
int BoostPriority();
protected:
#ifndef _WIN32
#define __stdcall
#endif
typedef uint32 (__stdcall *WaitFunc_t)( int nEvents, CThreadEvent * const *pEvents, int bWaitAll, uint32 timeout );
int Call( unsigned, unsigned timeout, bool fBoost, WaitFunc_t = NULL, CFunctor *pParamFunctor = NULL );
int WaitForReply( unsigned timeout, WaitFunc_t );
private:
CWorkerThread( const CWorkerThread & );
CWorkerThread &operator=( const CWorkerThread & );
CThreadEvent m_EventSend;
CThreadEvent m_EventComplete;
unsigned m_Param;
CFunctor *m_pParamFunctor;
int m_ReturnVal;
};
// a unidirectional message queue. A queue of type T. Not especially high speed since each message
// is malloced/freed. Note that if your message class has destructors/constructors, they MUST be
// thread safe!
template<class T> class CMessageQueue
{
CThreadEvent SignalEvent; // signals presence of data
CThreadMutex QueueAccessMutex;
// the parts protected by the mutex
struct MsgNode
{
MsgNode *Next;
T Data;
};
MsgNode *Head;
MsgNode *Tail;
public:
CMessageQueue( void )
{
Head = Tail = NULL;
}
// check for a message. not 100% reliable - someone could grab the message first
bool MessageWaiting( void )
{
return ( Head != NULL );
}
void WaitMessage( T *pMsg )
{
for(;;)
{
while( ! MessageWaiting() )
SignalEvent.Wait();
QueueAccessMutex.Lock();
if (! Head )
{
// multiple readers could make this null
QueueAccessMutex.Unlock();
continue;
}
*( pMsg ) = Head->Data;
MsgNode *remove_this = Head;
Head = Head->Next;
if (! Head) // if empty, fix tail ptr
Tail = NULL;
QueueAccessMutex.Unlock();
delete remove_this;
break;
}
}
void QueueMessage( T const &Msg)
{
MsgNode *new1=new MsgNode;
new1->Data=Msg;
new1->Next=NULL;
QueueAccessMutex.Lock();
if ( Tail )
{
Tail->Next=new1;
Tail = new1;
}
else
{
Head = new1;
Tail = new1;
}
SignalEvent.Set();
QueueAccessMutex.Unlock();
}
};
//-----------------------------------------------------------------------------
//
// CThreadMutex. Inlining to reduce overhead and to allow client code
// to decide debug status (tracing)
//
//-----------------------------------------------------------------------------
#ifdef _WIN32
typedef struct _RTL_CRITICAL_SECTION RTL_CRITICAL_SECTION;
typedef RTL_CRITICAL_SECTION CRITICAL_SECTION;
#ifndef _X360
extern "C"
{
void __declspec(dllimport) __stdcall InitializeCriticalSection(CRITICAL_SECTION *);
void __declspec(dllimport) __stdcall EnterCriticalSection(CRITICAL_SECTION *);
void __declspec(dllimport) __stdcall LeaveCriticalSection(CRITICAL_SECTION *);
void __declspec(dllimport) __stdcall DeleteCriticalSection(CRITICAL_SECTION *);
};
#endif
//---------------------------------------------------------
inline void CThreadMutex::Lock()
{
#ifdef THREAD_MUTEX_TRACING_ENABLED
uint thisThreadID = ThreadGetCurrentId();
if ( m_bTrace && m_currentOwnerID && ( m_currentOwnerID != thisThreadID ) )
Msg( "Thread %u about to wait for lock %p owned by %u\n", ThreadGetCurrentId(), (CRITICAL_SECTION *)&m_CriticalSection, m_currentOwnerID );
#endif
VCRHook_EnterCriticalSection((CRITICAL_SECTION *)&m_CriticalSection);
#ifdef THREAD_MUTEX_TRACING_ENABLED
if (m_lockCount == 0)
{
// we now own it for the first time. Set owner information
m_currentOwnerID = thisThreadID;
if ( m_bTrace )
Msg( "Thread %u now owns lock %p\n", m_currentOwnerID, (CRITICAL_SECTION *)&m_CriticalSection );
}
m_lockCount++;
#endif
}
//---------------------------------------------------------
inline void CThreadMutex::Unlock()
{
#ifdef THREAD_MUTEX_TRACING_ENABLED
AssertMsg( m_lockCount >= 1, "Invalid unlock of thread lock" );
m_lockCount--;
if (m_lockCount == 0)
{
if ( m_bTrace )
Msg( "Thread %u releasing lock %p\n", m_currentOwnerID, (CRITICAL_SECTION *)&m_CriticalSection );
m_currentOwnerID = 0;
}
#endif
LeaveCriticalSection((CRITICAL_SECTION *)&m_CriticalSection);
}
//---------------------------------------------------------
inline bool CThreadMutex::AssertOwnedByCurrentThread()
{
#ifdef THREAD_MUTEX_TRACING_ENABLED
if (ThreadGetCurrentId() == m_currentOwnerID)
return true;
AssertMsg3( 0, "Expected thread %u as owner of lock %p, but %u owns", ThreadGetCurrentId(), (CRITICAL_SECTION *)&m_CriticalSection, m_currentOwnerID );
return false;
#else
return true;
#endif
}
//---------------------------------------------------------
inline void CThreadMutex::SetTrace( bool bTrace )
{
#ifdef THREAD_MUTEX_TRACING_ENABLED
m_bTrace = bTrace;
#endif
}
//---------------------------------------------------------
#elif defined(POSIX)
inline CThreadMutex::CThreadMutex()
{
// enable recursive locks as we need them
pthread_mutexattr_init( &m_Attr );
pthread_mutexattr_settype( &m_Attr, PTHREAD_MUTEX_RECURSIVE );
pthread_mutex_init( &m_Mutex, &m_Attr );
}
//---------------------------------------------------------
inline CThreadMutex::~CThreadMutex()
{
pthread_mutex_destroy( &m_Mutex );
}
//---------------------------------------------------------
inline void CThreadMutex::Lock()
{
pthread_mutex_lock( &m_Mutex );
}
//---------------------------------------------------------
inline void CThreadMutex::Unlock()
{
pthread_mutex_unlock( &m_Mutex );
}
//---------------------------------------------------------
inline bool CThreadMutex::AssertOwnedByCurrentThread()
{
return true;
}
//---------------------------------------------------------
inline void CThreadMutex::SetTrace(bool fTrace)
{
}
#endif // POSIX
//-----------------------------------------------------------------------------
//
// CThreadRWLock inline functions
//
//-----------------------------------------------------------------------------
inline CThreadRWLock::CThreadRWLock()
: m_CanRead( true ),
m_nWriters( 0 ),
m_nActiveReaders( 0 ),
m_nPendingReaders( 0 )
{
}
inline void CThreadRWLock::LockForRead()
{
m_mutex.Lock();
if ( m_nWriters)
{
WaitForRead();
}
m_nActiveReaders++;
m_mutex.Unlock();
}
inline void CThreadRWLock::UnlockRead()
{
m_mutex.Lock();
m_nActiveReaders--;
if ( m_nActiveReaders == 0 && m_nWriters != 0 )
{
m_CanWrite.Set();
}
m_mutex.Unlock();
}
//-----------------------------------------------------------------------------
//
// CThreadSpinRWLock inline functions
//
//-----------------------------------------------------------------------------
inline bool CThreadSpinRWLock::AssignIf( const LockInfo_t &newValue, const LockInfo_t &comperand )
{
return ThreadInterlockedAssignIf64( (int64 *)&m_lockInfo, *((int64 *)&newValue), *((int64 *)&comperand) );
}
inline bool CThreadSpinRWLock::TryLockForWrite( const uint32 threadId )
{
// In order to grab a write lock, there can be no readers and no owners of the write lock
if ( m_lockInfo.m_nReaders > 0 || ( m_lockInfo.m_writerId && m_lockInfo.m_writerId != threadId ) )
{
return false;
}
static const LockInfo_t oldValue = { 0, 0 };
LockInfo_t newValue = { threadId, 0 };
const bool bSuccess = AssignIf( newValue, oldValue );
#if defined(_X360)
if ( bSuccess )
{
// X360TBD: Serious perf implications. Not Yet. __sync();
}
#endif
return bSuccess;
}
inline bool CThreadSpinRWLock::TryLockForWrite()
{
m_nWriters++;
if ( !TryLockForWrite( ThreadGetCurrentId() ) )
{
m_nWriters--;
return false;
}
return true;
}
inline bool CThreadSpinRWLock::TryLockForRead()
{
if ( m_nWriters != 0 )
{
return false;
}
// In order to grab a write lock, the number of readers must not change and no thread can own the write
LockInfo_t oldValue;
LockInfo_t newValue;
oldValue.m_nReaders = m_lockInfo.m_nReaders;
oldValue.m_writerId = 0;
newValue.m_nReaders = oldValue.m_nReaders + 1;
newValue.m_writerId = 0;
const bool bSuccess = AssignIf( newValue, oldValue );
#if defined(_X360)
if ( bSuccess )
{
// X360TBD: Serious perf implications. Not Yet. __sync();
}
#endif
return bSuccess;
}
inline void CThreadSpinRWLock::LockForWrite()
{
const uint32 threadId = ThreadGetCurrentId();
m_nWriters++;
if ( !TryLockForWrite( threadId ) )
{
ThreadPause();
SpinLockForWrite( threadId );
}
}
// read data from a memory address
template<class T> FORCEINLINE T ReadVolatileMemory( T const *pPtr )
{
volatile const T * pVolatilePtr = ( volatile const T * ) pPtr;
return *pVolatilePtr;
}
//-----------------------------------------------------------------------------
#if defined( _WIN32 )
#pragma warning(pop)
#endif
#endif // THREADTOOLS_H