hl2_src-leak-2017/src/public/tier1/fmtstr.h

367 lines
11 KiB
C++

//========= Copyright Valve Corporation, All rights reserved. ============//
//
// Purpose: A simple class for performing safe and in-expression sprintf-style
// string formatting
//
// $NoKeywords: $
//=============================================================================//
#ifndef FMTSTR_H
#define FMTSTR_H
#include <stdarg.h>
#include <stdio.h>
#include "tier0/platform.h"
#include "tier0/dbg.h"
#include "tier1/strtools.h"
#if defined( _WIN32 )
#pragma once
#endif
#if defined(POSIX)
#pragma GCC visibility push(hidden)
#endif
//=============================================================================
// using macro to be compatable with GCC
#define FmtStrVSNPrintf( szBuf, nBufSize, bQuietTruncation, ppszFormat, nPrevLen, lastArg ) \
do \
{ \
int result; \
va_list arg_ptr; \
bool bTruncated = false; \
static int scAsserted = 0; \
\
va_start(arg_ptr, lastArg); \
result = V_vsnprintfRet( (szBuf), (nBufSize)-1, (*(ppszFormat)), arg_ptr, &bTruncated ); \
va_end(arg_ptr); \
\
(szBuf)[(nBufSize)-1] = 0; \
if ( bTruncated && !(bQuietTruncation) && scAsserted < 5 ) \
{ \
Warning( "FmtStrVSNPrintf truncated to %d without QUIET_TRUNCATION specified!\n", ( int )( nBufSize ) ); \
AssertMsg( 0, "FmtStrVSNPrintf truncated without QUIET_TRUNCATION specified!\n" ); \
scAsserted++; \
} \
m_nLength = nPrevLen + result; \
} \
while (0)
// using macro to be compatable with GCC
#define FmtStrVSNPrintfNoLengthFixup( szBuf, nBufSize, bQuietTruncation, ppszFormat, nPrevLen, lastArg ) \
do \
{ \
int result; \
va_list arg_ptr; \
bool bTruncated = false; \
static int scAsserted = 0; \
\
va_start(arg_ptr, lastArg); \
result = V_vsnprintfRet( (szBuf), (nBufSize)-1, (*(ppszFormat)), arg_ptr, &bTruncated ); \
va_end(arg_ptr); \
\
(szBuf)[(nBufSize)-1] = 0; \
if ( bTruncated && !(bQuietTruncation) && scAsserted < 5 ) \
{ \
Warning( "FmtStrVSNPrintf truncated to %d without QUIET_TRUNCATION specified!\n", ( int )( nBufSize ) ); \
AssertMsg( 0, "FmtStrVSNPrintf truncated without QUIET_TRUNCATION specified!\n" ); \
scAsserted++; \
} \
} \
while (0)
//-----------------------------------------------------------------------------
//
// Purpose: String formatter with specified size
//
template <int SIZE_BUF, bool QUIET_TRUNCATION = false >
class CFmtStrN
{
public:
CFmtStrN()
{
InitQuietTruncation();
m_szBuf[0] = 0;
m_nLength = 0;
}
// Standard C formatting
CFmtStrN(PRINTF_FORMAT_STRING const char *pszFormat, ...) FMTFUNCTION( 2, 3 )
{
InitQuietTruncation();
FmtStrVSNPrintf( m_szBuf, SIZE_BUF, m_bQuietTruncation, &pszFormat, 0, pszFormat );
}
// Use this for pass-through formatting
CFmtStrN(const char ** ppszFormat, ...)
{
InitQuietTruncation();
FmtStrVSNPrintf( m_szBuf, SIZE_BUF, m_bQuietTruncation, ppszFormat, 0, ppszFormat );
}
// Explicit reformat
const char *sprintf(PRINTF_FORMAT_STRING const char *pszFormat, ...) FMTFUNCTION( 2, 3 )
{
InitQuietTruncation();
FmtStrVSNPrintf(m_szBuf, SIZE_BUF, m_bQuietTruncation, &pszFormat, 0, pszFormat );
return m_szBuf;
}
// Use this for va_list formatting
const char *sprintf_argv(const char *pszFormat, va_list arg_ptr)
{
int result;
bool bTruncated = false;
static int s_nWarned = 0;
InitQuietTruncation();
result = V_vsnprintfRet( m_szBuf, SIZE_BUF - 1, pszFormat, arg_ptr, &bTruncated );
m_szBuf[SIZE_BUF - 1] = 0;
if ( bTruncated && !m_bQuietTruncation && ( s_nWarned < 5 ) )
{
Warning( "CFmtStr truncated to %d without QUIET_TRUNCATION specified!\n", SIZE_BUF );
AssertMsg( 0, "CFmtStr truncated without QUIET_TRUNCATION specified!\n" );
s_nWarned++;
}
m_nLength = V_strlen( m_szBuf );
return m_szBuf;
}
// Use this for pass-through formatting
void VSprintf(const char **ppszFormat, ...)
{
InitQuietTruncation();
FmtStrVSNPrintf( m_szBuf, SIZE_BUF, m_bQuietTruncation, ppszFormat, 0, ppszFormat );
}
// Compatible API with CUtlString for converting to const char*
const char *Get( ) const { return m_szBuf; }
const char *String( ) const { return m_szBuf; }
// Use for access
operator const char *() const { return m_szBuf; }
char *Access() { return m_szBuf; }
// Access template argument
static inline int GetMaxLength() { return SIZE_BUF-1; }
CFmtStrN<SIZE_BUF,QUIET_TRUNCATION> & operator=( const char *pchValue )
{
V_strncpy( m_szBuf, pchValue, SIZE_BUF );
m_nLength = V_strlen( m_szBuf );
return *this;
}
CFmtStrN<SIZE_BUF,QUIET_TRUNCATION> & operator+=( const char *pchValue )
{
Append( pchValue );
return *this;
}
int Length() const { return m_nLength; }
void SetLength( int nLength )
{
m_nLength = Min( nLength, SIZE_BUF - 1 );
m_szBuf[m_nLength] = '\0';
}
void Clear()
{
m_szBuf[0] = 0;
m_nLength = 0;
}
void AppendFormat( PRINTF_FORMAT_STRING const char *pchFormat, ... ) FMTFUNCTION( 2, 3 )
{
char *pchEnd = m_szBuf + m_nLength;
FmtStrVSNPrintf( pchEnd, SIZE_BUF - m_nLength, m_bQuietTruncation, &pchFormat, m_nLength, pchFormat );
}
void AppendFormatV( const char *pchFormat, va_list args );
void Append( const char *pchValue )
{
// This function is close to the metal to cut down on the CPU cost
// of the previous incantation of Append which was implemented as
// AppendFormat( "%s", pchValue ). This implementation, though not
// as easy to read, instead does a strcpy from the existing end
// point of the CFmtStrN. This brings something like a 10-20x speedup
// in my rudimentary tests. It isn't using V_strncpy because that
// function doesn't return the number of characters copied, which
// we need to adjust m_nLength. Doing the V_strncpy with a V_strlen
// afterwards took twice as long as this implementations in tests,
// so V_strncpy's implementation was used to write this method.
char *pDest = m_szBuf + m_nLength;
const int maxLen = SIZE_BUF - m_nLength;
char *pLast = pDest + maxLen - 1;
while ( (pDest < pLast) && (*pchValue != 0) )
{
*pDest = *pchValue;
++pDest; ++pchValue;
}
*pDest = 0;
m_nLength = pDest - m_szBuf;
}
//optimized version of append for just adding a single character
void Append( char ch )
{
if( m_nLength < SIZE_BUF - 1 )
{
m_szBuf[ m_nLength ] = ch;
m_nLength++;
m_szBuf[ m_nLength ] = '\0';
}
}
void AppendIndent( uint32 unCount, char chIndent = '\t' );
void SetQuietTruncation( bool bQuiet ) { m_bQuietTruncation = bQuiet; }
protected:
virtual void InitQuietTruncation()
{
m_bQuietTruncation = QUIET_TRUNCATION;
}
bool m_bQuietTruncation;
private:
char m_szBuf[SIZE_BUF];
int m_nLength;
};
// Version which will not assert if strings are truncated
template < int SIZE_BUF >
class CFmtStrQuietTruncationN : public CFmtStrN<SIZE_BUF, true >
{
};
template< int SIZE_BUF, bool QUIET_TRUNCATION >
void CFmtStrN< SIZE_BUF, QUIET_TRUNCATION >::AppendIndent( uint32 unCount, char chIndent )
{
Assert( Length() + unCount < SIZE_BUF );
if( Length() + unCount >= SIZE_BUF )
unCount = SIZE_BUF - (1+Length());
for ( uint32 x = 0; x < unCount; x++ )
{
m_szBuf[ m_nLength++ ] = chIndent;
}
m_szBuf[ m_nLength ] = '\0';
}
template< int SIZE_BUF, bool QUIET_TRUNCATION >
void CFmtStrN< SIZE_BUF, QUIET_TRUNCATION >::AppendFormatV( const char *pchFormat, va_list args )
{
int cubPrinted = V_vsnprintf( m_szBuf+Length(), SIZE_BUF - Length(), pchFormat, args );
m_nLength += cubPrinted;
}
#if defined(POSIX)
#pragma GCC visibility pop
#endif
//-----------------------------------------------------------------------------
//
// Purpose: Default-sized string formatter
//
#define FMTSTR_STD_LEN 256
typedef CFmtStrN<FMTSTR_STD_LEN> CFmtStr;
typedef CFmtStrQuietTruncationN<FMTSTR_STD_LEN> CFmtStrQuietTruncation;
typedef CFmtStrN<1024> CFmtStr1024;
typedef CFmtStrN<8192> CFmtStrMax;
//-----------------------------------------------------------------------------
// Purpose: Fast-path number-to-string helper (with optional quoting)
// Derived off of the Steam CNumStr but with a few tweaks, such as
// trimming off the in-our-cases-unnecessary strlen calls (by not
// storing the length in the class).
//-----------------------------------------------------------------------------
class CNumStr
{
public:
CNumStr() { m_szBuf[0] = 0; }
explicit CNumStr( bool b ) { SetBool( b ); }
explicit CNumStr( int8 n8 ) { SetInt8( n8 ); }
explicit CNumStr( uint8 un8 ) { SetUint8( un8 ); }
explicit CNumStr( int16 n16 ) { SetInt16( n16 ); }
explicit CNumStr( uint16 un16 ) { SetUint16( un16 ); }
explicit CNumStr( int32 n32 ) { SetInt32( n32 ); }
explicit CNumStr( uint32 un32 ) { SetUint32( un32 ); }
explicit CNumStr( int64 n64 ) { SetInt64( n64 ); }
explicit CNumStr( uint64 un64 ) { SetUint64( un64 ); }
#if defined(COMPILER_GCC) && defined(PLATFORM_64BITS)
explicit CNumStr( lint64 n64 ) { SetInt64( (int64)n64 ); }
explicit CNumStr( ulint64 un64 ) { SetUint64( (uint64)un64 ); }
#endif
explicit CNumStr( double f ) { SetDouble( f ); }
explicit CNumStr( float f ) { SetFloat( f ); }
inline void SetBool( bool b ) { Q_memcpy( m_szBuf, b ? "1" : "0", 2 ); }
#ifdef _WIN32
inline void SetInt8( int8 n8 ) { _itoa( (int32)n8, m_szBuf, 10 ); }
inline void SetUint8( uint8 un8 ) { _itoa( (int32)un8, m_szBuf, 10 ); }
inline void SetInt16( int16 n16 ) { _itoa( (int32)n16, m_szBuf, 10 ); }
inline void SetUint16( uint16 un16 ) { _itoa( (int32)un16, m_szBuf, 10 ); }
inline void SetInt32( int32 n32 ) { _itoa( n32, m_szBuf, 10 ); }
inline void SetUint32( uint32 un32 ) { _i64toa( (int64)un32, m_szBuf, 10 ); }
inline void SetInt64( int64 n64 ) { _i64toa( n64, m_szBuf, 10 ); }
inline void SetUint64( uint64 un64 ) { _ui64toa( un64, m_szBuf, 10 ); }
#else
inline void SetInt8( int8 n8 ) { Q_snprintf( m_szBuf, sizeof(m_szBuf), "%d", (int32)n8 ); }
inline void SetUint8( uint8 un8 ) { Q_snprintf( m_szBuf, sizeof(m_szBuf), "%d", (int32)un8 ); }
inline void SetInt16( int16 n16 ) { Q_snprintf( m_szBuf, sizeof(m_szBuf), "%d", (int32)n16 ); }
inline void SetUint16( uint16 un16 ) { Q_snprintf( m_szBuf, sizeof(m_szBuf), "%d", (int32)un16 ); }
inline void SetInt32( int32 n32 ) { Q_snprintf( m_szBuf, sizeof(m_szBuf), "%d", n32 ); }
inline void SetUint32( uint32 un32 ) { Q_snprintf( m_szBuf, sizeof(m_szBuf), "%u", un32 ); }
inline void SetInt64( int64 n64 ) { Q_snprintf( m_szBuf, sizeof(m_szBuf), "%lld", n64 ); }
inline void SetUint64( uint64 un64 ) { Q_snprintf( m_szBuf, sizeof(m_szBuf), "%llu", un64 ); }
#endif
inline void SetDouble( double f ) { Q_snprintf( m_szBuf, sizeof(m_szBuf), "%.18g", f ); }
inline void SetFloat( float f ) { Q_snprintf( m_szBuf, sizeof(m_szBuf), "%.18g", f ); }
inline void SetHexUint64( uint64 un64 ) { Q_binarytohex( (byte *)&un64, sizeof( un64 ), m_szBuf, sizeof( m_szBuf ) ); }
operator const char *() const { return m_szBuf; }
const char* String() const { return m_szBuf; }
void AddQuotes()
{
Assert( m_szBuf[0] != '"' );
const int nLength = Q_strlen( m_szBuf );
Q_memmove( m_szBuf + 1, m_szBuf, nLength );
m_szBuf[0] = '"';
m_szBuf[nLength + 1] = '"';
m_szBuf[nLength + 2] = 0;
}
protected:
char m_szBuf[28]; // long enough to hold 18 digits of precision, a decimal, a - sign, e+### suffix, and quotes
};
//=============================================================================
bool BGetLocalFormattedDateAndTime( time_t timeVal, char *pchDate, int cubDate, char *pchTime, int cubTime );
bool BGetLocalFormattedDate( time_t timeVal, char *pchDate, int cubDate );
bool BGetLocalFormattedTime( time_t timeVal, char *pchTime, int cubTime );
#endif // FMTSTR_H