hl2_src-leak-2017/src/public/tier1/mempool.h

560 lines
15 KiB
C++

//========= Copyright Valve Corporation, All rights reserved. ============//
//
// Purpose:
//
// $Workfile: $
// $Date: $
//
//-----------------------------------------------------------------------------
// $Log: $
//
// $NoKeywords: $
//===========================================================================//
#ifndef MEMPOOL_H
#define MEMPOOL_H
#ifdef _WIN32
#pragma once
#endif
#include "tier0/memalloc.h"
#include "tier0/tslist.h"
#include "tier0/platform.h"
#include "tier1/utlvector.h"
#include "tier1/utlrbtree.h"
//-----------------------------------------------------------------------------
// Purpose: Optimized pool memory allocator
//-----------------------------------------------------------------------------
typedef void (*MemoryPoolReportFunc_t)( PRINTF_FORMAT_STRING char const* pMsg, ... );
// Ways a memory pool can grow when it needs to make a new blob:
enum MemoryPoolGrowType_t
{
UTLMEMORYPOOL_GROW_NONE=0, // Don't allow new blobs.
UTLMEMORYPOOL_GROW_FAST=1, // New blob size is numElements * (i+1) (ie: the blocks it allocates
// get larger and larger each time it allocates one).
UTLMEMORYPOOL_GROW_SLOW=2 // New blob size is numElements.
};
class CUtlMemoryPool
{
public:
// !KLUDGE! For legacy code support, import the global enum into this scope
enum MemoryPoolGrowType_t
{
GROW_NONE=UTLMEMORYPOOL_GROW_NONE,
GROW_FAST=UTLMEMORYPOOL_GROW_FAST,
GROW_SLOW=UTLMEMORYPOOL_GROW_SLOW
};
CUtlMemoryPool( int blockSize, int numElements, int growMode = UTLMEMORYPOOL_GROW_FAST, const char *pszAllocOwner = NULL, int nAlignment = 0 );
~CUtlMemoryPool();
void* Alloc(); // Allocate the element size you specified in the constructor.
void* Alloc( size_t amount );
void* AllocZero(); // Allocate the element size you specified in the constructor, zero the memory before construction
void* AllocZero( size_t amount );
void Free(void *pMem);
// Frees everything
void Clear();
// Error reporting...
static void SetErrorReportFunc( MemoryPoolReportFunc_t func );
// returns number of allocated blocks
int Count() { return m_BlocksAllocated; }
int PeakCount() { return m_PeakAlloc; }
protected:
class CBlob
{
public:
CBlob *m_pPrev, *m_pNext;
int m_NumBytes; // Number of bytes in this blob.
char m_Data[1];
char m_Padding[3]; // to int align the struct
};
// Resets the pool
void Init();
void AddNewBlob();
void ReportLeaks();
int m_BlockSize;
int m_BlocksPerBlob;
int m_GrowMode; // GROW_ enum.
// Put m_BlocksAllocated in front of m_pHeadOfFreeList for better
// packing on 64-bit where pointers are 8-byte aligned.
int m_BlocksAllocated;
// FIXME: Change m_ppMemBlob into a growable array?
void *m_pHeadOfFreeList;
int m_PeakAlloc;
unsigned short m_nAlignment;
unsigned short m_NumBlobs;
const char * m_pszAllocOwner;
// CBlob could be not a multiple of 4 bytes so stuff it at the end here to keep us otherwise aligned
CBlob m_BlobHead;
static MemoryPoolReportFunc_t g_ReportFunc;
};
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
class CMemoryPoolMT : public CUtlMemoryPool
{
public:
CMemoryPoolMT(int blockSize, int numElements, int growMode = UTLMEMORYPOOL_GROW_FAST, const char *pszAllocOwner = NULL) : CUtlMemoryPool( blockSize, numElements, growMode, pszAllocOwner) {}
void* Alloc() { AUTO_LOCK( m_mutex ); return CUtlMemoryPool::Alloc(); }
void* Alloc( size_t amount ) { AUTO_LOCK( m_mutex ); return CUtlMemoryPool::Alloc( amount ); }
void* AllocZero() { AUTO_LOCK( m_mutex ); return CUtlMemoryPool::AllocZero(); }
void* AllocZero( size_t amount ) { AUTO_LOCK( m_mutex ); return CUtlMemoryPool::AllocZero( amount ); }
void Free(void *pMem) { AUTO_LOCK( m_mutex ); CUtlMemoryPool::Free( pMem ); }
// Frees everything
void Clear() { AUTO_LOCK( m_mutex ); return CUtlMemoryPool::Clear(); }
private:
CThreadFastMutex m_mutex; // @TODO: Rework to use tslist (toml 7/6/2007)
};
//-----------------------------------------------------------------------------
// Wrapper macro to make an allocator that returns particular typed allocations
// and construction and destruction of objects.
//-----------------------------------------------------------------------------
template< class T >
class CClassMemoryPool : public CUtlMemoryPool
{
public:
CClassMemoryPool(int numElements, int growMode = GROW_FAST, int nAlignment = 0 ) :
CUtlMemoryPool( sizeof(T), numElements, growMode, MEM_ALLOC_CLASSNAME(T), nAlignment ) {
#ifdef PLATFORM_64BITS
COMPILE_TIME_ASSERT( sizeof(CUtlMemoryPool) == 64 );
#else
COMPILE_TIME_ASSERT( sizeof(CUtlMemoryPool) == 48 );
#endif
}
T* Alloc();
T* AllocZero();
void Free( T *pMem );
void Clear();
};
//-----------------------------------------------------------------------------
// Specialized pool for aligned data management (e.g., Xbox cubemaps)
//-----------------------------------------------------------------------------
template <int ITEM_SIZE, int ALIGNMENT, int CHUNK_SIZE, class CAllocator, int COMPACT_THRESHOLD = 4 >
class CAlignedMemPool
{
enum
{
BLOCK_SIZE = ALIGN_VALUE( ITEM_SIZE, ALIGNMENT ) > 8 ? ALIGN_VALUE( ITEM_SIZE, ALIGNMENT ) : 8
};
public:
CAlignedMemPool();
void *Alloc();
void Free( void *p );
static int __cdecl CompareChunk( void * const *ppLeft, void * const *ppRight );
void Compact();
int NumTotal() { return m_Chunks.Count() * ( CHUNK_SIZE / BLOCK_SIZE ); }
int NumAllocated() { return NumTotal() - m_nFree; }
int NumFree() { return m_nFree; }
int BytesTotal() { return NumTotal() * BLOCK_SIZE; }
int BytesAllocated() { return NumAllocated() * BLOCK_SIZE; }
int BytesFree() { return NumFree() * BLOCK_SIZE; }
int ItemSize() { return ITEM_SIZE; }
int BlockSize() { return BLOCK_SIZE; }
int ChunkSize() { return CHUNK_SIZE; }
private:
struct FreeBlock_t
{
FreeBlock_t *pNext;
byte reserved[ BLOCK_SIZE - sizeof( FreeBlock_t *) ];
};
CUtlVector<void *> m_Chunks; // Chunks are tracked outside blocks (unlike CUtlMemoryPool) to simplify alignment issues
FreeBlock_t * m_pFirstFree;
int m_nFree;
CAllocator m_Allocator;
float m_TimeLastCompact;
};
//-----------------------------------------------------------------------------
// Pool variant using standard allocation
//-----------------------------------------------------------------------------
template <typename T, int nInitialCount = 0, bool bDefCreateNewIfEmpty = true >
class CObjectPool
{
public:
CObjectPool()
{
int i = nInitialCount;
while ( i-- > 0 )
{
m_AvailableObjects.PushItem( new T );
}
}
~CObjectPool()
{
Purge();
}
int NumAvailable()
{
return m_AvailableObjects.Count();
}
void Purge()
{
T *p;
while ( m_AvailableObjects.PopItem( &p ) )
{
delete p;
}
}
T *GetObject( bool bCreateNewIfEmpty = bDefCreateNewIfEmpty )
{
T *p;
if ( !m_AvailableObjects.PopItem( &p ) )
{
p = ( bCreateNewIfEmpty ) ? new T : NULL;
}
return p;
}
void PutObject( T *p )
{
m_AvailableObjects.PushItem( p );
}
private:
CTSList<T *> m_AvailableObjects;
};
//-----------------------------------------------------------------------------
template< class T >
inline T* CClassMemoryPool<T>::Alloc()
{
T *pRet;
{
MEM_ALLOC_CREDIT_(MEM_ALLOC_CLASSNAME(T));
pRet = (T*)CUtlMemoryPool::Alloc();
}
if ( pRet )
{
Construct( pRet );
}
return pRet;
}
template< class T >
inline T* CClassMemoryPool<T>::AllocZero()
{
T *pRet;
{
MEM_ALLOC_CREDIT_(MEM_ALLOC_CLASSNAME(T));
pRet = (T*)CUtlMemoryPool::AllocZero();
}
if ( pRet )
{
Construct( pRet );
}
return pRet;
}
template< class T >
inline void CClassMemoryPool<T>::Free(T *pMem)
{
if ( pMem )
{
Destruct( pMem );
}
CUtlMemoryPool::Free( pMem );
}
template< class T >
inline void CClassMemoryPool<T>::Clear()
{
CUtlRBTree<void *> freeBlocks;
SetDefLessFunc( freeBlocks );
void *pCurFree = m_pHeadOfFreeList;
while ( pCurFree != NULL )
{
freeBlocks.Insert( pCurFree );
pCurFree = *((void**)pCurFree);
}
for( CBlob *pCur=m_BlobHead.m_pNext; pCur != &m_BlobHead; pCur=pCur->m_pNext )
{
T *p = (T *)pCur->m_Data;
T *pLimit = (T *)(pCur->m_Data + pCur->m_NumBytes);
while ( p < pLimit )
{
if ( freeBlocks.Find( p ) == freeBlocks.InvalidIndex() )
{
Destruct( p );
}
p++;
}
}
CUtlMemoryPool::Clear();
}
//-----------------------------------------------------------------------------
// Macros that make it simple to make a class use a fixed-size allocator
// Put DECLARE_FIXEDSIZE_ALLOCATOR in the private section of a class,
// Put DEFINE_FIXEDSIZE_ALLOCATOR in the CPP file
//-----------------------------------------------------------------------------
#define DECLARE_FIXEDSIZE_ALLOCATOR( _class ) \
public: \
inline void* operator new( size_t size ) { MEM_ALLOC_CREDIT_(#_class " pool"); return s_Allocator.Alloc(size); } \
inline void* operator new( size_t size, int nBlockUse, const char *pFileName, int nLine ) { MEM_ALLOC_CREDIT_(#_class " pool"); return s_Allocator.Alloc(size); } \
inline void operator delete( void* p ) { s_Allocator.Free(p); } \
inline void operator delete( void* p, int nBlockUse, const char *pFileName, int nLine ) { s_Allocator.Free(p); } \
private: \
static CUtlMemoryPool s_Allocator
#define DEFINE_FIXEDSIZE_ALLOCATOR( _class, _initsize, _grow ) \
CUtlMemoryPool _class::s_Allocator(sizeof(_class), _initsize, _grow, #_class " pool")
#define DEFINE_FIXEDSIZE_ALLOCATOR_ALIGNED( _class, _initsize, _grow, _alignment ) \
CUtlMemoryPool _class::s_Allocator(sizeof(_class), _initsize, _grow, #_class " pool", _alignment )
#define DECLARE_FIXEDSIZE_ALLOCATOR_MT( _class ) \
public: \
inline void* operator new( size_t size ) { MEM_ALLOC_CREDIT_(#_class " pool"); return s_Allocator.Alloc(size); } \
inline void* operator new( size_t size, int nBlockUse, const char *pFileName, int nLine ) { MEM_ALLOC_CREDIT_(#_class " pool"); return s_Allocator.Alloc(size); } \
inline void operator delete( void* p ) { s_Allocator.Free(p); } \
inline void operator delete( void* p, int nBlockUse, const char *pFileName, int nLine ) { s_Allocator.Free(p); } \
private: \
static CMemoryPoolMT s_Allocator
#define DEFINE_FIXEDSIZE_ALLOCATOR_MT( _class, _initsize, _grow ) \
CMemoryPoolMT _class::s_Allocator(sizeof(_class), _initsize, _grow, #_class " pool")
//-----------------------------------------------------------------------------
// Macros that make it simple to make a class use a fixed-size allocator
// This version allows us to use a memory pool which is externally defined...
// Put DECLARE_FIXEDSIZE_ALLOCATOR_EXTERNAL in the private section of a class,
// Put DEFINE_FIXEDSIZE_ALLOCATOR_EXTERNAL in the CPP file
//-----------------------------------------------------------------------------
#define DECLARE_FIXEDSIZE_ALLOCATOR_EXTERNAL( _class ) \
public: \
inline void* operator new( size_t size ) { MEM_ALLOC_CREDIT_(#_class " pool"); return s_pAllocator->Alloc(size); } \
inline void* operator new( size_t size, int nBlockUse, const char *pFileName, int nLine ) { MEM_ALLOC_CREDIT_(#_class " pool"); return s_pAllocator->Alloc(size); } \
inline void operator delete( void* p ) { s_pAllocator->Free(p); } \
private: \
static CUtlMemoryPool* s_pAllocator
#define DEFINE_FIXEDSIZE_ALLOCATOR_EXTERNAL( _class, _allocator ) \
CUtlMemoryPool* _class::s_pAllocator = _allocator
template <int ITEM_SIZE, int ALIGNMENT, int CHUNK_SIZE, class CAllocator, int COMPACT_THRESHOLD >
inline CAlignedMemPool<ITEM_SIZE, ALIGNMENT, CHUNK_SIZE, CAllocator, COMPACT_THRESHOLD>::CAlignedMemPool()
: m_pFirstFree( 0 ),
m_nFree( 0 ),
m_TimeLastCompact( 0 )
{
COMPILE_TIME_ASSERT( sizeof( FreeBlock_t ) >= BLOCK_SIZE );
COMPILE_TIME_ASSERT( ALIGN_VALUE( sizeof( FreeBlock_t ), ALIGNMENT ) == sizeof( FreeBlock_t ) );
}
template <int ITEM_SIZE, int ALIGNMENT, int CHUNK_SIZE, class CAllocator, int COMPACT_THRESHOLD >
inline void *CAlignedMemPool<ITEM_SIZE, ALIGNMENT, CHUNK_SIZE, CAllocator, COMPACT_THRESHOLD>::Alloc()
{
if ( !m_pFirstFree )
{
FreeBlock_t *pNew = (FreeBlock_t *)m_Allocator.Alloc( CHUNK_SIZE );
Assert( (unsigned)pNew % ALIGNMENT == 0 );
m_Chunks.AddToTail( pNew );
m_nFree = CHUNK_SIZE / BLOCK_SIZE;
m_pFirstFree = pNew;
for ( int i = 0; i < m_nFree - 1; i++ )
{
pNew->pNext = pNew + 1;
pNew++;
}
pNew->pNext = NULL;
}
void *p = m_pFirstFree;
m_pFirstFree = m_pFirstFree->pNext;
m_nFree--;
return p;
}
template <int ITEM_SIZE, int ALIGNMENT, int CHUNK_SIZE, class CAllocator, int COMPACT_THRESHOLD >
inline void CAlignedMemPool<ITEM_SIZE, ALIGNMENT, CHUNK_SIZE, CAllocator, COMPACT_THRESHOLD>::Free( void *p )
{
// Insertion sort to encourage allocation clusters in chunks
FreeBlock_t *pFree = ((FreeBlock_t *)p);
FreeBlock_t *pCur = m_pFirstFree;
FreeBlock_t *pPrev = NULL;
while ( pCur && pFree > pCur )
{
pPrev = pCur;
pCur = pCur->pNext;
}
pFree->pNext = pCur;
if ( pPrev )
{
pPrev->pNext = pFree;
}
else
{
m_pFirstFree = pFree;
}
m_nFree++;
if ( m_nFree >= ( CHUNK_SIZE / BLOCK_SIZE ) * COMPACT_THRESHOLD )
{
float time = Plat_FloatTime();
float compactTime = ( m_nFree >= ( CHUNK_SIZE / BLOCK_SIZE ) * COMPACT_THRESHOLD * 4 ) ? 15.0 : 30.0;
if ( m_TimeLastCompact > time || m_TimeLastCompact + compactTime < Plat_FloatTime() )
{
Compact();
m_TimeLastCompact = time;
}
}
}
template <int ITEM_SIZE, int ALIGNMENT, int CHUNK_SIZE, class CAllocator, int COMPACT_THRESHOLD >
inline int __cdecl CAlignedMemPool<ITEM_SIZE, ALIGNMENT, CHUNK_SIZE, CAllocator, COMPACT_THRESHOLD>::CompareChunk( void * const *ppLeft, void * const *ppRight )
{
return ((unsigned)*ppLeft) - ((unsigned)*ppRight);
}
template <int ITEM_SIZE, int ALIGNMENT, int CHUNK_SIZE, class CAllocator, int COMPACT_THRESHOLD >
inline void CAlignedMemPool<ITEM_SIZE, ALIGNMENT, CHUNK_SIZE, CAllocator, COMPACT_THRESHOLD>::Compact()
{
FreeBlock_t *pCur = m_pFirstFree;
FreeBlock_t *pPrev = NULL;
m_Chunks.Sort( CompareChunk );
#ifdef VALIDATE_ALIGNED_MEM_POOL
{
FreeBlock_t *p = m_pFirstFree;
while ( p )
{
if ( p->pNext && p > p->pNext )
{
__asm { int 3 }
}
p = p->pNext;
}
for ( int i = 0; i < m_Chunks.Count(); i++ )
{
if ( i + 1 < m_Chunks.Count() )
{
if ( m_Chunks[i] > m_Chunks[i + 1] )
{
__asm { int 3 }
}
}
}
}
#endif
int i;
for ( i = 0; i < m_Chunks.Count(); i++ )
{
int nBlocksPerChunk = CHUNK_SIZE / BLOCK_SIZE;
FreeBlock_t *pChunkLimit = ((FreeBlock_t *)m_Chunks[i]) + nBlocksPerChunk;
int nFromChunk = 0;
if ( pCur == m_Chunks[i] )
{
FreeBlock_t *pFirst = pCur;
while ( pCur && pCur >= m_Chunks[i] && pCur < pChunkLimit )
{
pCur = pCur->pNext;
nFromChunk++;
}
pCur = pFirst;
}
while ( pCur && pCur >= m_Chunks[i] && pCur < pChunkLimit )
{
if ( nFromChunk != nBlocksPerChunk )
{
if ( pPrev )
{
pPrev->pNext = pCur;
}
else
{
m_pFirstFree = pCur;
}
pPrev = pCur;
}
else if ( pPrev )
{
pPrev->pNext = NULL;
}
else
{
m_pFirstFree = NULL;
}
pCur = pCur->pNext;
}
if ( nFromChunk == nBlocksPerChunk )
{
m_Allocator.Free( m_Chunks[i] );
m_nFree -= nBlocksPerChunk;
m_Chunks[i] = 0;
}
}
for ( i = m_Chunks.Count() - 1; i >= 0 ; i-- )
{
if ( !m_Chunks[i] )
{
m_Chunks.FastRemove( i );
}
}
}
#endif // MEMPOOL_H